[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class studentttests
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | One-sample t-test
|
---|
| 29 |
|
---|
| 30 | This test checks three hypotheses about the mean of the given sample. The
|
---|
| 31 | following tests are performed:
|
---|
| 32 | * two-tailed test (null hypothesis - the mean is equal to the given
|
---|
| 33 | value)
|
---|
| 34 | * left-tailed test (null hypothesis - the mean is greater than or
|
---|
| 35 | equal to the given value)
|
---|
| 36 | * right-tailed test (null hypothesis - the mean is less than or equal
|
---|
| 37 | to the given value).
|
---|
| 38 |
|
---|
| 39 | The test is based on the assumption that a given sample has a normal
|
---|
| 40 | distribution and an unknown dispersion. If the distribution sharply
|
---|
| 41 | differs from normal, the test will work incorrectly.
|
---|
| 42 |
|
---|
| 43 | Input parameters:
|
---|
| 44 | X - sample. Array whose index goes from 0 to N-1.
|
---|
| 45 | N - size of sample.
|
---|
| 46 | Mean - assumed value of the mean.
|
---|
| 47 |
|
---|
| 48 | Output parameters:
|
---|
| 49 | BothTails - p-value for two-tailed test.
|
---|
| 50 | If BothTails is less than the given significance level
|
---|
| 51 | the null hypothesis is rejected.
|
---|
| 52 | LeftTail - p-value for left-tailed test.
|
---|
| 53 | If LeftTail is less than the given significance level,
|
---|
| 54 | the null hypothesis is rejected.
|
---|
| 55 | RightTail - p-value for right-tailed test.
|
---|
| 56 | If RightTail is less than the given significance level
|
---|
| 57 | the null hypothesis is rejected.
|
---|
| 58 |
|
---|
| 59 | -- ALGLIB --
|
---|
| 60 | Copyright 08.09.2006 by Bochkanov Sergey
|
---|
| 61 | *************************************************************************/
|
---|
| 62 | public static void studentttest1(ref double[] x,
|
---|
| 63 | int n,
|
---|
| 64 | double mean,
|
---|
| 65 | ref double bothtails,
|
---|
| 66 | ref double lefttail,
|
---|
| 67 | ref double righttail)
|
---|
| 68 | {
|
---|
| 69 | int i = 0;
|
---|
| 70 | double xmean = 0;
|
---|
| 71 | double xvariance = 0;
|
---|
| 72 | double xstddev = 0;
|
---|
| 73 | double v1 = 0;
|
---|
| 74 | double v2 = 0;
|
---|
| 75 | double stat = 0;
|
---|
| 76 | double s = 0;
|
---|
| 77 |
|
---|
| 78 | if( n<=1 )
|
---|
| 79 | {
|
---|
| 80 | bothtails = 1.0;
|
---|
| 81 | lefttail = 1.0;
|
---|
| 82 | righttail = 1.0;
|
---|
| 83 | return;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | //
|
---|
| 87 | // Mean
|
---|
| 88 | //
|
---|
| 89 | xmean = 0;
|
---|
| 90 | for(i=0; i<=n-1; i++)
|
---|
| 91 | {
|
---|
| 92 | xmean = xmean+x[i];
|
---|
| 93 | }
|
---|
| 94 | xmean = xmean/n;
|
---|
| 95 |
|
---|
| 96 | //
|
---|
| 97 | // Variance (using corrected two-pass algorithm)
|
---|
| 98 | //
|
---|
| 99 | xvariance = 0;
|
---|
| 100 | xstddev = 0;
|
---|
| 101 | if( n!=1 )
|
---|
| 102 | {
|
---|
| 103 | v1 = 0;
|
---|
| 104 | for(i=0; i<=n-1; i++)
|
---|
| 105 | {
|
---|
| 106 | v1 = v1+AP.Math.Sqr(x[i]-xmean);
|
---|
| 107 | }
|
---|
| 108 | v2 = 0;
|
---|
| 109 | for(i=0; i<=n-1; i++)
|
---|
| 110 | {
|
---|
| 111 | v2 = v2+(x[i]-xmean);
|
---|
| 112 | }
|
---|
| 113 | v2 = AP.Math.Sqr(v2)/n;
|
---|
| 114 | xvariance = (v1-v2)/(n-1);
|
---|
| 115 | if( (double)(xvariance)<(double)(0) )
|
---|
| 116 | {
|
---|
| 117 | xvariance = 0;
|
---|
| 118 | }
|
---|
| 119 | xstddev = Math.Sqrt(xvariance);
|
---|
| 120 | }
|
---|
| 121 | if( (double)(xstddev)==(double)(0) )
|
---|
| 122 | {
|
---|
| 123 | bothtails = 1.0;
|
---|
| 124 | lefttail = 1.0;
|
---|
| 125 | righttail = 1.0;
|
---|
| 126 | return;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | //
|
---|
| 130 | // Statistic
|
---|
| 131 | //
|
---|
| 132 | stat = (xmean-mean)/(xstddev/Math.Sqrt(n));
|
---|
| 133 | s = studenttdistr.studenttdistribution(n-1, stat);
|
---|
| 134 | bothtails = 2*Math.Min(s, 1-s);
|
---|
| 135 | lefttail = s;
|
---|
| 136 | righttail = 1-s;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 |
|
---|
| 140 | /*************************************************************************
|
---|
| 141 | Two-sample pooled test
|
---|
| 142 |
|
---|
| 143 | This test checks three hypotheses about the mean of the given samples. The
|
---|
| 144 | following tests are performed:
|
---|
| 145 | * two-tailed test (null hypothesis - the means are equal)
|
---|
| 146 | * left-tailed test (null hypothesis - the mean of the first sample is
|
---|
| 147 | greater than or equal to the mean of the second sample)
|
---|
| 148 | * right-tailed test (null hypothesis - the mean of the first sample is
|
---|
| 149 | less than or equal to the mean of the second sample).
|
---|
| 150 |
|
---|
| 151 | Test is based on the following assumptions:
|
---|
| 152 | * given samples have normal distributions
|
---|
| 153 | * dispersions are equal
|
---|
| 154 | * samples are independent.
|
---|
| 155 |
|
---|
| 156 | Input parameters:
|
---|
| 157 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
| 158 | N - size of sample.
|
---|
| 159 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
| 160 | M - size of sample.
|
---|
| 161 |
|
---|
| 162 | Output parameters:
|
---|
| 163 | BothTails - p-value for two-tailed test.
|
---|
| 164 | If BothTails is less than the given significance level
|
---|
| 165 | the null hypothesis is rejected.
|
---|
| 166 | LeftTail - p-value for left-tailed test.
|
---|
| 167 | If LeftTail is less than the given significance level,
|
---|
| 168 | the null hypothesis is rejected.
|
---|
| 169 | RightTail - p-value for right-tailed test.
|
---|
| 170 | If RightTail is less than the given significance level
|
---|
| 171 | the null hypothesis is rejected.
|
---|
| 172 |
|
---|
| 173 | -- ALGLIB --
|
---|
| 174 | Copyright 18.09.2006 by Bochkanov Sergey
|
---|
| 175 | *************************************************************************/
|
---|
| 176 | public static void studentttest2(ref double[] x,
|
---|
| 177 | int n,
|
---|
| 178 | ref double[] y,
|
---|
| 179 | int m,
|
---|
| 180 | ref double bothtails,
|
---|
| 181 | ref double lefttail,
|
---|
| 182 | ref double righttail)
|
---|
| 183 | {
|
---|
| 184 | int i = 0;
|
---|
| 185 | double xmean = 0;
|
---|
| 186 | double ymean = 0;
|
---|
| 187 | double stat = 0;
|
---|
| 188 | double s = 0;
|
---|
| 189 | double p = 0;
|
---|
| 190 |
|
---|
| 191 | if( n<=1 | m<=1 )
|
---|
| 192 | {
|
---|
| 193 | bothtails = 1.0;
|
---|
| 194 | lefttail = 1.0;
|
---|
| 195 | righttail = 1.0;
|
---|
| 196 | return;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | //
|
---|
| 200 | // Mean
|
---|
| 201 | //
|
---|
| 202 | xmean = 0;
|
---|
| 203 | for(i=0; i<=n-1; i++)
|
---|
| 204 | {
|
---|
| 205 | xmean = xmean+x[i];
|
---|
| 206 | }
|
---|
| 207 | xmean = xmean/n;
|
---|
| 208 | ymean = 0;
|
---|
| 209 | for(i=0; i<=m-1; i++)
|
---|
| 210 | {
|
---|
| 211 | ymean = ymean+y[i];
|
---|
| 212 | }
|
---|
| 213 | ymean = ymean/m;
|
---|
| 214 |
|
---|
| 215 | //
|
---|
| 216 | // S
|
---|
| 217 | //
|
---|
| 218 | s = 0;
|
---|
| 219 | for(i=0; i<=n-1; i++)
|
---|
| 220 | {
|
---|
| 221 | s = s+AP.Math.Sqr(x[i]-xmean);
|
---|
| 222 | }
|
---|
| 223 | for(i=0; i<=m-1; i++)
|
---|
| 224 | {
|
---|
| 225 | s = s+AP.Math.Sqr(y[i]-ymean);
|
---|
| 226 | }
|
---|
| 227 | s = Math.Sqrt(s*((double)(1)/(double)(n)+(double)(1)/(double)(m))/(n+m-2));
|
---|
| 228 | if( (double)(s)==(double)(0) )
|
---|
| 229 | {
|
---|
| 230 | bothtails = 1.0;
|
---|
| 231 | lefttail = 1.0;
|
---|
| 232 | righttail = 1.0;
|
---|
| 233 | return;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | //
|
---|
| 237 | // Statistic
|
---|
| 238 | //
|
---|
| 239 | stat = (xmean-ymean)/s;
|
---|
| 240 | p = studenttdistr.studenttdistribution(n+m-2, stat);
|
---|
| 241 | bothtails = 2*Math.Min(p, 1-p);
|
---|
| 242 | lefttail = p;
|
---|
| 243 | righttail = 1-p;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 |
|
---|
| 247 | /*************************************************************************
|
---|
| 248 | Two-sample unpooled test
|
---|
| 249 |
|
---|
| 250 | This test checks three hypotheses about the mean of the given samples. The
|
---|
| 251 | following tests are performed:
|
---|
| 252 | * two-tailed test (null hypothesis - the means are equal)
|
---|
| 253 | * left-tailed test (null hypothesis - the mean of the first sample is
|
---|
| 254 | greater than or equal to the mean of the second sample)
|
---|
| 255 | * right-tailed test (null hypothesis - the mean of the first sample is
|
---|
| 256 | less than or equal to the mean of the second sample).
|
---|
| 257 |
|
---|
| 258 | Test is based on the following assumptions:
|
---|
| 259 | * given samples have normal distributions
|
---|
| 260 | * samples are independent.
|
---|
| 261 | Dispersion equality is not required
|
---|
| 262 |
|
---|
| 263 | Input parameters:
|
---|
| 264 | X - sample 1. Array whose index goes from 0 to N-1.
|
---|
| 265 | N - size of the sample.
|
---|
| 266 | Y - sample 2. Array whose index goes from 0 to M-1.
|
---|
| 267 | M - size of the sample.
|
---|
| 268 |
|
---|
| 269 | Output parameters:
|
---|
| 270 | BothTails - p-value for two-tailed test.
|
---|
| 271 | If BothTails is less than the given significance level
|
---|
| 272 | the null hypothesis is rejected.
|
---|
| 273 | LeftTail - p-value for left-tailed test.
|
---|
| 274 | If LeftTail is less than the given significance level,
|
---|
| 275 | the null hypothesis is rejected.
|
---|
| 276 | RightTail - p-value for right-tailed test.
|
---|
| 277 | If RightTail is less than the given significance level
|
---|
| 278 | the null hypothesis is rejected.
|
---|
| 279 |
|
---|
| 280 | -- ALGLIB --
|
---|
| 281 | Copyright 18.09.2006 by Bochkanov Sergey
|
---|
| 282 | *************************************************************************/
|
---|
| 283 | public static void unequalvariancettest(ref double[] x,
|
---|
| 284 | int n,
|
---|
| 285 | ref double[] y,
|
---|
| 286 | int m,
|
---|
| 287 | ref double bothtails,
|
---|
| 288 | ref double lefttail,
|
---|
| 289 | ref double righttail)
|
---|
| 290 | {
|
---|
| 291 | int i = 0;
|
---|
| 292 | double xmean = 0;
|
---|
| 293 | double ymean = 0;
|
---|
| 294 | double xvar = 0;
|
---|
| 295 | double yvar = 0;
|
---|
| 296 | double df = 0;
|
---|
| 297 | double p = 0;
|
---|
| 298 | double stat = 0;
|
---|
| 299 | double c = 0;
|
---|
| 300 |
|
---|
| 301 | if( n<=1 | m<=1 )
|
---|
| 302 | {
|
---|
| 303 | bothtails = 1.0;
|
---|
| 304 | lefttail = 1.0;
|
---|
| 305 | righttail = 1.0;
|
---|
| 306 | return;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | //
|
---|
| 310 | // Mean
|
---|
| 311 | //
|
---|
| 312 | xmean = 0;
|
---|
| 313 | for(i=0; i<=n-1; i++)
|
---|
| 314 | {
|
---|
| 315 | xmean = xmean+x[i];
|
---|
| 316 | }
|
---|
| 317 | xmean = xmean/n;
|
---|
| 318 | ymean = 0;
|
---|
| 319 | for(i=0; i<=m-1; i++)
|
---|
| 320 | {
|
---|
| 321 | ymean = ymean+y[i];
|
---|
| 322 | }
|
---|
| 323 | ymean = ymean/m;
|
---|
| 324 |
|
---|
| 325 | //
|
---|
| 326 | // Variance (using corrected two-pass algorithm)
|
---|
| 327 | //
|
---|
| 328 | xvar = 0;
|
---|
| 329 | for(i=0; i<=n-1; i++)
|
---|
| 330 | {
|
---|
| 331 | xvar = xvar+AP.Math.Sqr(x[i]-xmean);
|
---|
| 332 | }
|
---|
| 333 | xvar = xvar/(n-1);
|
---|
| 334 | yvar = 0;
|
---|
| 335 | for(i=0; i<=m-1; i++)
|
---|
| 336 | {
|
---|
| 337 | yvar = yvar+AP.Math.Sqr(y[i]-ymean);
|
---|
| 338 | }
|
---|
| 339 | yvar = yvar/(m-1);
|
---|
| 340 | if( (double)(xvar)==(double)(0) | (double)(yvar)==(double)(0) )
|
---|
| 341 | {
|
---|
| 342 | bothtails = 1.0;
|
---|
| 343 | lefttail = 1.0;
|
---|
| 344 | righttail = 1.0;
|
---|
| 345 | return;
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | //
|
---|
| 349 | // Statistic
|
---|
| 350 | //
|
---|
| 351 | stat = (xmean-ymean)/Math.Sqrt(xvar/n+yvar/m);
|
---|
| 352 | c = xvar/n/(xvar/n+yvar/m);
|
---|
| 353 | df = (n-1)*(m-1)/((m-1)*AP.Math.Sqr(c)+(n-1)*(1-AP.Math.Sqr(c)));
|
---|
| 354 | if( (double)(stat)>(double)(0) )
|
---|
| 355 | {
|
---|
| 356 | p = 1-0.5*ibetaf.incompletebeta(df/2, 0.5, df/(df+AP.Math.Sqr(stat)));
|
---|
| 357 | }
|
---|
| 358 | else
|
---|
| 359 | {
|
---|
| 360 | p = 0.5*ibetaf.incompletebeta(df/2, 0.5, df/(df+AP.Math.Sqr(stat)));
|
---|
| 361 | }
|
---|
| 362 | bothtails = 2*Math.Min(p, 1-p);
|
---|
| 363 | lefttail = p;
|
---|
| 364 | righttail = 1-p;
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
| 367 | }
|
---|