[3839] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class studenttdistr
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Student's t distribution
|
---|
| 36 |
|
---|
| 37 | Computes the integral from minus infinity to t of the Student
|
---|
| 38 | t distribution with integer k > 0 degrees of freedom:
|
---|
| 39 |
|
---|
| 40 | t
|
---|
| 41 | -
|
---|
| 42 | | |
|
---|
| 43 | - | 2 -(k+1)/2
|
---|
| 44 | | ( (k+1)/2 ) | ( x )
|
---|
| 45 | ---------------------- | ( 1 + --- ) dx
|
---|
| 46 | - | ( k )
|
---|
| 47 | sqrt( k pi ) | ( k/2 ) |
|
---|
| 48 | | |
|
---|
| 49 | -
|
---|
| 50 | -inf.
|
---|
| 51 |
|
---|
| 52 | Relation to incomplete beta integral:
|
---|
| 53 |
|
---|
| 54 | 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
|
---|
| 55 | where
|
---|
| 56 | z = k/(k + t**2).
|
---|
| 57 |
|
---|
| 58 | For t < -2, this is the method of computation. For higher t,
|
---|
| 59 | a direct method is derived from integration by parts.
|
---|
| 60 | Since the function is symmetric about t=0, the area under the
|
---|
| 61 | right tail of the density is found by calling the function
|
---|
| 62 | with -t instead of t.
|
---|
| 63 |
|
---|
| 64 | ACCURACY:
|
---|
| 65 |
|
---|
| 66 | Tested at random 1 <= k <= 25. The "domain" refers to t.
|
---|
| 67 | Relative error:
|
---|
| 68 | arithmetic domain # trials peak rms
|
---|
| 69 | IEEE -100,-2 50000 5.9e-15 1.4e-15
|
---|
| 70 | IEEE -2,100 500000 2.7e-15 4.9e-17
|
---|
| 71 |
|
---|
| 72 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 73 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 74 | *************************************************************************/
|
---|
| 75 | public static double studenttdistribution(int k,
|
---|
| 76 | double t)
|
---|
| 77 | {
|
---|
| 78 | double result = 0;
|
---|
| 79 | double x = 0;
|
---|
| 80 | double rk = 0;
|
---|
| 81 | double z = 0;
|
---|
| 82 | double f = 0;
|
---|
| 83 | double tz = 0;
|
---|
| 84 | double p = 0;
|
---|
| 85 | double xsqk = 0;
|
---|
| 86 | int j = 0;
|
---|
| 87 |
|
---|
| 88 | System.Diagnostics.Debug.Assert(k>0, "Domain error in StudentTDistribution");
|
---|
| 89 | if( (double)(t)==(double)(0) )
|
---|
| 90 | {
|
---|
| 91 | result = 0.5;
|
---|
| 92 | return result;
|
---|
| 93 | }
|
---|
| 94 | if( (double)(t)<(double)(-2.0) )
|
---|
| 95 | {
|
---|
| 96 | rk = k;
|
---|
| 97 | z = rk/(rk+t*t);
|
---|
| 98 | result = 0.5*ibetaf.incompletebeta(0.5*rk, 0.5, z);
|
---|
| 99 | return result;
|
---|
| 100 | }
|
---|
| 101 | if( (double)(t)<(double)(0) )
|
---|
| 102 | {
|
---|
| 103 | x = -t;
|
---|
| 104 | }
|
---|
| 105 | else
|
---|
| 106 | {
|
---|
| 107 | x = t;
|
---|
| 108 | }
|
---|
| 109 | rk = k;
|
---|
| 110 | z = 1.0+x*x/rk;
|
---|
| 111 | if( k%2!=0 )
|
---|
| 112 | {
|
---|
| 113 | xsqk = x/Math.Sqrt(rk);
|
---|
| 114 | p = Math.Atan(xsqk);
|
---|
| 115 | if( k>1 )
|
---|
| 116 | {
|
---|
| 117 | f = 1.0;
|
---|
| 118 | tz = 1.0;
|
---|
| 119 | j = 3;
|
---|
| 120 | while( j<=k-2 & (double)(tz/f)>(double)(AP.Math.MachineEpsilon) )
|
---|
| 121 | {
|
---|
| 122 | tz = tz*((j-1)/(z*j));
|
---|
| 123 | f = f+tz;
|
---|
| 124 | j = j+2;
|
---|
| 125 | }
|
---|
| 126 | p = p+f*xsqk/z;
|
---|
| 127 | }
|
---|
| 128 | p = p*2.0/Math.PI;
|
---|
| 129 | }
|
---|
| 130 | else
|
---|
| 131 | {
|
---|
| 132 | f = 1.0;
|
---|
| 133 | tz = 1.0;
|
---|
| 134 | j = 2;
|
---|
| 135 | while( j<=k-2 & (double)(tz/f)>(double)(AP.Math.MachineEpsilon) )
|
---|
| 136 | {
|
---|
| 137 | tz = tz*((j-1)/(z*j));
|
---|
| 138 | f = f+tz;
|
---|
| 139 | j = j+2;
|
---|
| 140 | }
|
---|
| 141 | p = f*x/Math.Sqrt(z*rk);
|
---|
| 142 | }
|
---|
| 143 | if( (double)(t)<(double)(0) )
|
---|
| 144 | {
|
---|
| 145 | p = -p;
|
---|
| 146 | }
|
---|
| 147 | result = 0.5+0.5*p;
|
---|
| 148 | return result;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 |
|
---|
| 152 | /*************************************************************************
|
---|
| 153 | Functional inverse of Student's t distribution
|
---|
| 154 |
|
---|
| 155 | Given probability p, finds the argument t such that stdtr(k,t)
|
---|
| 156 | is equal to p.
|
---|
| 157 |
|
---|
| 158 | ACCURACY:
|
---|
| 159 |
|
---|
| 160 | Tested at random 1 <= k <= 100. The "domain" refers to p:
|
---|
| 161 | Relative error:
|
---|
| 162 | arithmetic domain # trials peak rms
|
---|
| 163 | IEEE .001,.999 25000 5.7e-15 8.0e-16
|
---|
| 164 | IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
|
---|
| 165 |
|
---|
| 166 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 167 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 168 | *************************************************************************/
|
---|
| 169 | public static double invstudenttdistribution(int k,
|
---|
| 170 | double p)
|
---|
| 171 | {
|
---|
| 172 | double result = 0;
|
---|
| 173 | double t = 0;
|
---|
| 174 | double rk = 0;
|
---|
| 175 | double z = 0;
|
---|
| 176 | int rflg = 0;
|
---|
| 177 |
|
---|
| 178 | System.Diagnostics.Debug.Assert(k>0 & (double)(p)>(double)(0) & (double)(p)<(double)(1), "Domain error in InvStudentTDistribution");
|
---|
| 179 | rk = k;
|
---|
| 180 | if( (double)(p)>(double)(0.25) & (double)(p)<(double)(0.75) )
|
---|
| 181 | {
|
---|
| 182 | if( (double)(p)==(double)(0.5) )
|
---|
| 183 | {
|
---|
| 184 | result = 0;
|
---|
| 185 | return result;
|
---|
| 186 | }
|
---|
| 187 | z = 1.0-2.0*p;
|
---|
| 188 | z = ibetaf.invincompletebeta(0.5, 0.5*rk, Math.Abs(z));
|
---|
| 189 | t = Math.Sqrt(rk*z/(1.0-z));
|
---|
| 190 | if( (double)(p)<(double)(0.5) )
|
---|
| 191 | {
|
---|
| 192 | t = -t;
|
---|
| 193 | }
|
---|
| 194 | result = t;
|
---|
| 195 | return result;
|
---|
| 196 | }
|
---|
| 197 | rflg = -1;
|
---|
| 198 | if( (double)(p)>=(double)(0.5) )
|
---|
| 199 | {
|
---|
| 200 | p = 1.0-p;
|
---|
| 201 | rflg = 1;
|
---|
| 202 | }
|
---|
| 203 | z = ibetaf.invincompletebeta(0.5*rk, 0.5, 2.0*p);
|
---|
| 204 | if( (double)(AP.Math.MaxRealNumber*z)<(double)(rk) )
|
---|
| 205 | {
|
---|
| 206 | result = rflg*AP.Math.MaxRealNumber;
|
---|
| 207 | return result;
|
---|
| 208 | }
|
---|
| 209 | t = Math.Sqrt(rk/z-rk);
|
---|
| 210 | result = rflg*t;
|
---|
| 211 | return result;
|
---|
| 212 | }
|
---|
| 213 | }
|
---|
| 214 | }
|
---|