[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007-2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class ratint
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Barycentric interpolant.
|
---|
| 29 | *************************************************************************/
|
---|
| 30 | public struct barycentricinterpolant
|
---|
| 31 | {
|
---|
| 32 | public int n;
|
---|
| 33 | public double sy;
|
---|
| 34 | public double[] x;
|
---|
| 35 | public double[] y;
|
---|
| 36 | public double[] w;
|
---|
| 37 | };
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | /*************************************************************************
|
---|
| 41 | Barycentric fitting report:
|
---|
| 42 | TaskRCond reciprocal of task's condition number
|
---|
| 43 | RMSError RMS error
|
---|
| 44 | AvgError average error
|
---|
| 45 | AvgRelError average relative error (for non-zero Y[I])
|
---|
| 46 | MaxError maximum error
|
---|
| 47 | *************************************************************************/
|
---|
| 48 | public struct barycentricfitreport
|
---|
| 49 | {
|
---|
| 50 | public double taskrcond;
|
---|
| 51 | public int dbest;
|
---|
| 52 | public double rmserror;
|
---|
| 53 | public double avgerror;
|
---|
| 54 | public double avgrelerror;
|
---|
| 55 | public double maxerror;
|
---|
| 56 | };
|
---|
| 57 |
|
---|
| 58 |
|
---|
| 59 |
|
---|
| 60 |
|
---|
| 61 | public const int brcvnum = 10;
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | /*************************************************************************
|
---|
| 65 | Rational interpolation using barycentric formula
|
---|
| 66 |
|
---|
| 67 | F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))
|
---|
| 68 |
|
---|
| 69 | Input parameters:
|
---|
| 70 | B - barycentric interpolant built with one of model building
|
---|
| 71 | subroutines.
|
---|
| 72 | T - interpolation point
|
---|
| 73 |
|
---|
| 74 | Result:
|
---|
| 75 | barycentric interpolant F(t)
|
---|
| 76 |
|
---|
| 77 | -- ALGLIB --
|
---|
| 78 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 79 | *************************************************************************/
|
---|
| 80 | public static double barycentriccalc(ref barycentricinterpolant b,
|
---|
| 81 | double t)
|
---|
| 82 | {
|
---|
| 83 | double result = 0;
|
---|
| 84 | double s1 = 0;
|
---|
| 85 | double s2 = 0;
|
---|
| 86 | double s = 0;
|
---|
| 87 | double v = 0;
|
---|
| 88 | int i = 0;
|
---|
| 89 |
|
---|
| 90 |
|
---|
| 91 | //
|
---|
| 92 | // special case: N=1
|
---|
| 93 | //
|
---|
| 94 | if( b.n==1 )
|
---|
| 95 | {
|
---|
| 96 | result = b.sy*b.y[0];
|
---|
| 97 | return result;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | //
|
---|
| 101 | // Here we assume that task is normalized, i.e.:
|
---|
| 102 | // 1. abs(Y[i])<=1
|
---|
| 103 | // 2. abs(W[i])<=1
|
---|
| 104 | // 3. X[] is ordered
|
---|
| 105 | //
|
---|
| 106 | s = Math.Abs(t-b.x[0]);
|
---|
| 107 | for(i=0; i<=b.n-1; i++)
|
---|
| 108 | {
|
---|
| 109 | v = b.x[i];
|
---|
| 110 | if( (double)(v)==(double)(t) )
|
---|
| 111 | {
|
---|
| 112 | result = b.sy*b.y[i];
|
---|
| 113 | return result;
|
---|
| 114 | }
|
---|
| 115 | v = Math.Abs(t-v);
|
---|
| 116 | if( (double)(v)<(double)(s) )
|
---|
| 117 | {
|
---|
| 118 | s = v;
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | s1 = 0;
|
---|
| 122 | s2 = 0;
|
---|
| 123 | for(i=0; i<=b.n-1; i++)
|
---|
| 124 | {
|
---|
| 125 | v = s/(t-b.x[i]);
|
---|
| 126 | v = v*b.w[i];
|
---|
| 127 | s1 = s1+v*b.y[i];
|
---|
| 128 | s2 = s2+v;
|
---|
| 129 | }
|
---|
| 130 | result = b.sy*s1/s2;
|
---|
| 131 | return result;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 |
|
---|
| 135 | /*************************************************************************
|
---|
| 136 | Differentiation of barycentric interpolant: first derivative.
|
---|
| 137 |
|
---|
| 138 | Algorithm used in this subroutine is very robust and should not fail until
|
---|
| 139 | provided with values too close to MaxRealNumber (usually MaxRealNumber/N
|
---|
| 140 | or greater will overflow).
|
---|
| 141 |
|
---|
| 142 | INPUT PARAMETERS:
|
---|
| 143 | B - barycentric interpolant built with one of model building
|
---|
| 144 | subroutines.
|
---|
| 145 | T - interpolation point
|
---|
| 146 |
|
---|
| 147 | OUTPUT PARAMETERS:
|
---|
| 148 | F - barycentric interpolant at T
|
---|
| 149 | DF - first derivative
|
---|
| 150 |
|
---|
| 151 | NOTE
|
---|
| 152 |
|
---|
| 153 |
|
---|
| 154 | -- ALGLIB --
|
---|
| 155 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 156 | *************************************************************************/
|
---|
| 157 | public static void barycentricdiff1(ref barycentricinterpolant b,
|
---|
| 158 | double t,
|
---|
| 159 | ref double f,
|
---|
| 160 | ref double df)
|
---|
| 161 | {
|
---|
| 162 | double v = 0;
|
---|
| 163 | double vv = 0;
|
---|
| 164 | int i = 0;
|
---|
| 165 | int k = 0;
|
---|
| 166 | double n0 = 0;
|
---|
| 167 | double n1 = 0;
|
---|
| 168 | double d0 = 0;
|
---|
| 169 | double d1 = 0;
|
---|
| 170 | double s0 = 0;
|
---|
| 171 | double s1 = 0;
|
---|
| 172 | double xk = 0;
|
---|
| 173 | double xi = 0;
|
---|
| 174 | double xmin = 0;
|
---|
| 175 | double xmax = 0;
|
---|
| 176 | double xscale1 = 0;
|
---|
| 177 | double xoffs1 = 0;
|
---|
| 178 | double xscale2 = 0;
|
---|
| 179 | double xoffs2 = 0;
|
---|
| 180 | double xprev = 0;
|
---|
| 181 |
|
---|
| 182 |
|
---|
| 183 | //
|
---|
| 184 | // special case: N=1
|
---|
| 185 | //
|
---|
| 186 | if( b.n==1 )
|
---|
| 187 | {
|
---|
| 188 | f = b.sy*b.y[0];
|
---|
| 189 | df = 0;
|
---|
| 190 | return;
|
---|
| 191 | }
|
---|
| 192 | if( (double)(b.sy)==(double)(0) )
|
---|
| 193 | {
|
---|
| 194 | f = 0;
|
---|
| 195 | df = 0;
|
---|
| 196 | return;
|
---|
| 197 | }
|
---|
| 198 | System.Diagnostics.Debug.Assert((double)(b.sy)>(double)(0), "BarycentricDiff1: internal error");
|
---|
| 199 |
|
---|
| 200 | //
|
---|
| 201 | // We assume than N>1 and B.SY>0. Find:
|
---|
| 202 | // 1. pivot point (X[i] closest to T)
|
---|
| 203 | // 2. width of interval containing X[i]
|
---|
| 204 | //
|
---|
| 205 | v = Math.Abs(b.x[0]-t);
|
---|
| 206 | k = 0;
|
---|
| 207 | xmin = b.x[0];
|
---|
| 208 | xmax = b.x[0];
|
---|
| 209 | for(i=1; i<=b.n-1; i++)
|
---|
| 210 | {
|
---|
| 211 | vv = b.x[i];
|
---|
| 212 | if( (double)(Math.Abs(vv-t))<(double)(v) )
|
---|
| 213 | {
|
---|
| 214 | v = Math.Abs(vv-t);
|
---|
| 215 | k = i;
|
---|
| 216 | }
|
---|
| 217 | xmin = Math.Min(xmin, vv);
|
---|
| 218 | xmax = Math.Max(xmax, vv);
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | //
|
---|
| 222 | // pivot point found, calculate dNumerator and dDenominator
|
---|
| 223 | //
|
---|
| 224 | xscale1 = 1/(xmax-xmin);
|
---|
| 225 | xoffs1 = -(xmin/(xmax-xmin))+1;
|
---|
| 226 | xscale2 = 2;
|
---|
| 227 | xoffs2 = -3;
|
---|
| 228 | t = t*xscale1+xoffs1;
|
---|
| 229 | t = t*xscale2+xoffs2;
|
---|
| 230 | xk = b.x[k];
|
---|
| 231 | xk = xk*xscale1+xoffs1;
|
---|
| 232 | xk = xk*xscale2+xoffs2;
|
---|
| 233 | v = t-xk;
|
---|
| 234 | n0 = 0;
|
---|
| 235 | n1 = 0;
|
---|
| 236 | d0 = 0;
|
---|
| 237 | d1 = 0;
|
---|
| 238 | xprev = -2;
|
---|
| 239 | for(i=0; i<=b.n-1; i++)
|
---|
| 240 | {
|
---|
| 241 | xi = b.x[i];
|
---|
| 242 | xi = xi*xscale1+xoffs1;
|
---|
| 243 | xi = xi*xscale2+xoffs2;
|
---|
| 244 | System.Diagnostics.Debug.Assert((double)(xi)>(double)(xprev), "BarycentricDiff1: points are too close!");
|
---|
| 245 | xprev = xi;
|
---|
| 246 | if( i!=k )
|
---|
| 247 | {
|
---|
| 248 | vv = AP.Math.Sqr(t-xi);
|
---|
| 249 | s0 = (t-xk)/(t-xi);
|
---|
| 250 | s1 = (xk-xi)/vv;
|
---|
| 251 | }
|
---|
| 252 | else
|
---|
| 253 | {
|
---|
| 254 | s0 = 1;
|
---|
| 255 | s1 = 0;
|
---|
| 256 | }
|
---|
| 257 | vv = b.w[i]*b.y[i];
|
---|
| 258 | n0 = n0+s0*vv;
|
---|
| 259 | n1 = n1+s1*vv;
|
---|
| 260 | vv = b.w[i];
|
---|
| 261 | d0 = d0+s0*vv;
|
---|
| 262 | d1 = d1+s1*vv;
|
---|
| 263 | }
|
---|
| 264 | f = b.sy*n0/d0;
|
---|
| 265 | df = (n1*d0-n0*d1)/AP.Math.Sqr(d0);
|
---|
| 266 | if( (double)(df)!=(double)(0) )
|
---|
| 267 | {
|
---|
| 268 | df = Math.Sign(df)*Math.Exp(Math.Log(Math.Abs(df))+Math.Log(b.sy)+Math.Log(xscale1)+Math.Log(xscale2));
|
---|
| 269 | }
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 |
|
---|
| 273 | /*************************************************************************
|
---|
| 274 | Differentiation of barycentric interpolant: first/second derivatives.
|
---|
| 275 |
|
---|
| 276 | INPUT PARAMETERS:
|
---|
| 277 | B - barycentric interpolant built with one of model building
|
---|
| 278 | subroutines.
|
---|
| 279 | T - interpolation point
|
---|
| 280 |
|
---|
| 281 | OUTPUT PARAMETERS:
|
---|
| 282 | F - barycentric interpolant at T
|
---|
| 283 | DF - first derivative
|
---|
| 284 | D2F - second derivative
|
---|
| 285 |
|
---|
| 286 | NOTE: this algorithm may fail due to overflow/underflor if used on data
|
---|
| 287 | whose values are close to MaxRealNumber or MinRealNumber. Use more robust
|
---|
| 288 | BarycentricDiff1() subroutine in such cases.
|
---|
| 289 |
|
---|
| 290 |
|
---|
| 291 | -- ALGLIB --
|
---|
| 292 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 293 | *************************************************************************/
|
---|
| 294 | public static void barycentricdiff2(ref barycentricinterpolant b,
|
---|
| 295 | double t,
|
---|
| 296 | ref double f,
|
---|
| 297 | ref double df,
|
---|
| 298 | ref double d2f)
|
---|
| 299 | {
|
---|
| 300 | double v = 0;
|
---|
| 301 | double vv = 0;
|
---|
| 302 | int i = 0;
|
---|
| 303 | int k = 0;
|
---|
| 304 | double n0 = 0;
|
---|
| 305 | double n1 = 0;
|
---|
| 306 | double n2 = 0;
|
---|
| 307 | double d0 = 0;
|
---|
| 308 | double d1 = 0;
|
---|
| 309 | double d2 = 0;
|
---|
| 310 | double s0 = 0;
|
---|
| 311 | double s1 = 0;
|
---|
| 312 | double s2 = 0;
|
---|
| 313 | double xk = 0;
|
---|
| 314 | double xi = 0;
|
---|
| 315 |
|
---|
| 316 | f = 0;
|
---|
| 317 | df = 0;
|
---|
| 318 | d2f = 0;
|
---|
| 319 |
|
---|
| 320 | //
|
---|
| 321 | // special case: N=1
|
---|
| 322 | //
|
---|
| 323 | if( b.n==1 )
|
---|
| 324 | {
|
---|
| 325 | f = b.sy*b.y[0];
|
---|
| 326 | df = 0;
|
---|
| 327 | d2f = 0;
|
---|
| 328 | return;
|
---|
| 329 | }
|
---|
| 330 | if( (double)(b.sy)==(double)(0) )
|
---|
| 331 | {
|
---|
| 332 | f = 0;
|
---|
| 333 | df = 0;
|
---|
| 334 | d2f = 0;
|
---|
| 335 | return;
|
---|
| 336 | }
|
---|
| 337 | System.Diagnostics.Debug.Assert((double)(b.sy)>(double)(0), "BarycentricDiff: internal error");
|
---|
| 338 |
|
---|
| 339 | //
|
---|
| 340 | // We assume than N>1 and B.SY>0. Find:
|
---|
| 341 | // 1. pivot point (X[i] closest to T)
|
---|
| 342 | // 2. width of interval containing X[i]
|
---|
| 343 | //
|
---|
| 344 | v = Math.Abs(b.x[0]-t);
|
---|
| 345 | k = 0;
|
---|
| 346 | for(i=1; i<=b.n-1; i++)
|
---|
| 347 | {
|
---|
| 348 | vv = b.x[i];
|
---|
| 349 | if( (double)(Math.Abs(vv-t))<(double)(v) )
|
---|
| 350 | {
|
---|
| 351 | v = Math.Abs(vv-t);
|
---|
| 352 | k = i;
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | //
|
---|
| 357 | // pivot point found, calculate dNumerator and dDenominator
|
---|
| 358 | //
|
---|
| 359 | xk = b.x[k];
|
---|
| 360 | v = t-xk;
|
---|
| 361 | n0 = 0;
|
---|
| 362 | n1 = 0;
|
---|
| 363 | n2 = 0;
|
---|
| 364 | d0 = 0;
|
---|
| 365 | d1 = 0;
|
---|
| 366 | d2 = 0;
|
---|
| 367 | for(i=0; i<=b.n-1; i++)
|
---|
| 368 | {
|
---|
| 369 | if( i!=k )
|
---|
| 370 | {
|
---|
| 371 | xi = b.x[i];
|
---|
| 372 | vv = AP.Math.Sqr(t-xi);
|
---|
| 373 | s0 = (t-xk)/(t-xi);
|
---|
| 374 | s1 = (xk-xi)/vv;
|
---|
| 375 | s2 = -(2*(xk-xi)/(vv*(t-xi)));
|
---|
| 376 | }
|
---|
| 377 | else
|
---|
| 378 | {
|
---|
| 379 | s0 = 1;
|
---|
| 380 | s1 = 0;
|
---|
| 381 | s2 = 0;
|
---|
| 382 | }
|
---|
| 383 | vv = b.w[i]*b.y[i];
|
---|
| 384 | n0 = n0+s0*vv;
|
---|
| 385 | n1 = n1+s1*vv;
|
---|
| 386 | n2 = n2+s2*vv;
|
---|
| 387 | vv = b.w[i];
|
---|
| 388 | d0 = d0+s0*vv;
|
---|
| 389 | d1 = d1+s1*vv;
|
---|
| 390 | d2 = d2+s2*vv;
|
---|
| 391 | }
|
---|
| 392 | f = b.sy*n0/d0;
|
---|
| 393 | df = b.sy*(n1*d0-n0*d1)/AP.Math.Sqr(d0);
|
---|
| 394 | d2f = b.sy*((n2*d0-n0*d2)*AP.Math.Sqr(d0)-(n1*d0-n0*d1)*2*d0*d1)/AP.Math.Sqr(AP.Math.Sqr(d0));
|
---|
| 395 | }
|
---|
| 396 |
|
---|
| 397 |
|
---|
| 398 | /*************************************************************************
|
---|
| 399 | This subroutine performs linear transformation of the argument.
|
---|
| 400 |
|
---|
| 401 | INPUT PARAMETERS:
|
---|
| 402 | B - rational interpolant in barycentric form
|
---|
| 403 | CA, CB - transformation coefficients: x = CA*t + CB
|
---|
| 404 |
|
---|
| 405 | OUTPUT PARAMETERS:
|
---|
| 406 | B - transformed interpolant with X replaced by T
|
---|
| 407 |
|
---|
| 408 | -- ALGLIB PROJECT --
|
---|
| 409 | Copyright 19.08.2009 by Bochkanov Sergey
|
---|
| 410 | *************************************************************************/
|
---|
| 411 | public static void barycentriclintransx(ref barycentricinterpolant b,
|
---|
| 412 | double ca,
|
---|
| 413 | double cb)
|
---|
| 414 | {
|
---|
| 415 | int i = 0;
|
---|
| 416 | int j = 0;
|
---|
| 417 | double v = 0;
|
---|
| 418 |
|
---|
| 419 |
|
---|
| 420 | //
|
---|
| 421 | // special case, replace by constant F(CB)
|
---|
| 422 | //
|
---|
| 423 | if( (double)(ca)==(double)(0) )
|
---|
| 424 | {
|
---|
| 425 | b.sy = barycentriccalc(ref b, cb);
|
---|
| 426 | v = 1;
|
---|
| 427 | for(i=0; i<=b.n-1; i++)
|
---|
| 428 | {
|
---|
| 429 | b.y[i] = 1;
|
---|
| 430 | b.w[i] = v;
|
---|
| 431 | v = -v;
|
---|
| 432 | }
|
---|
| 433 | return;
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | //
|
---|
| 437 | // general case: CA<>0
|
---|
| 438 | //
|
---|
| 439 | for(i=0; i<=b.n-1; i++)
|
---|
| 440 | {
|
---|
| 441 | b.x[i] = (b.x[i]-cb)/ca;
|
---|
| 442 | }
|
---|
| 443 | if( (double)(ca)<(double)(0) )
|
---|
| 444 | {
|
---|
| 445 | for(i=0; i<=b.n-1; i++)
|
---|
| 446 | {
|
---|
| 447 | if( i<b.n-1-i )
|
---|
| 448 | {
|
---|
| 449 | j = b.n-1-i;
|
---|
| 450 | v = b.x[i];
|
---|
| 451 | b.x[i] = b.x[j];
|
---|
| 452 | b.x[j] = v;
|
---|
| 453 | v = b.y[i];
|
---|
| 454 | b.y[i] = b.y[j];
|
---|
| 455 | b.y[j] = v;
|
---|
| 456 | v = b.w[i];
|
---|
| 457 | b.w[i] = b.w[j];
|
---|
| 458 | b.w[j] = v;
|
---|
| 459 | }
|
---|
| 460 | else
|
---|
| 461 | {
|
---|
| 462 | break;
|
---|
| 463 | }
|
---|
| 464 | }
|
---|
| 465 | }
|
---|
| 466 | }
|
---|
| 467 |
|
---|
| 468 |
|
---|
| 469 | /*************************************************************************
|
---|
| 470 | This subroutine performs linear transformation of the barycentric
|
---|
| 471 | interpolant.
|
---|
| 472 |
|
---|
| 473 | INPUT PARAMETERS:
|
---|
| 474 | B - rational interpolant in barycentric form
|
---|
| 475 | CA, CB - transformation coefficients: B2(x) = CA*B(x) + CB
|
---|
| 476 |
|
---|
| 477 | OUTPUT PARAMETERS:
|
---|
| 478 | B - transformed interpolant
|
---|
| 479 |
|
---|
| 480 | -- ALGLIB PROJECT --
|
---|
| 481 | Copyright 19.08.2009 by Bochkanov Sergey
|
---|
| 482 | *************************************************************************/
|
---|
| 483 | public static void barycentriclintransy(ref barycentricinterpolant b,
|
---|
| 484 | double ca,
|
---|
| 485 | double cb)
|
---|
| 486 | {
|
---|
| 487 | int i = 0;
|
---|
| 488 | double v = 0;
|
---|
| 489 | int i_ = 0;
|
---|
| 490 |
|
---|
| 491 | for(i=0; i<=b.n-1; i++)
|
---|
| 492 | {
|
---|
| 493 | b.y[i] = ca*b.sy*b.y[i]+cb;
|
---|
| 494 | }
|
---|
| 495 | b.sy = 0;
|
---|
| 496 | for(i=0; i<=b.n-1; i++)
|
---|
| 497 | {
|
---|
| 498 | b.sy = Math.Max(b.sy, Math.Abs(b.y[i]));
|
---|
| 499 | }
|
---|
| 500 | if( (double)(b.sy)>(double)(0) )
|
---|
| 501 | {
|
---|
| 502 | v = 1/b.sy;
|
---|
| 503 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 504 | {
|
---|
| 505 | b.y[i_] = v*b.y[i_];
|
---|
| 506 | }
|
---|
| 507 | }
|
---|
| 508 | }
|
---|
| 509 |
|
---|
| 510 |
|
---|
| 511 | /*************************************************************************
|
---|
| 512 | Extracts X/Y/W arrays from rational interpolant
|
---|
| 513 |
|
---|
| 514 | INPUT PARAMETERS:
|
---|
| 515 | B - barycentric interpolant
|
---|
| 516 |
|
---|
| 517 | OUTPUT PARAMETERS:
|
---|
| 518 | N - nodes count, N>0
|
---|
| 519 | X - interpolation nodes, array[0..N-1]
|
---|
| 520 | F - function values, array[0..N-1]
|
---|
| 521 | W - barycentric weights, array[0..N-1]
|
---|
| 522 |
|
---|
| 523 | -- ALGLIB --
|
---|
| 524 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 525 | *************************************************************************/
|
---|
| 526 | public static void barycentricunpack(ref barycentricinterpolant b,
|
---|
| 527 | ref int n,
|
---|
| 528 | ref double[] x,
|
---|
| 529 | ref double[] y,
|
---|
| 530 | ref double[] w)
|
---|
| 531 | {
|
---|
| 532 | double v = 0;
|
---|
| 533 | int i_ = 0;
|
---|
| 534 |
|
---|
| 535 | n = b.n;
|
---|
| 536 | x = new double[n];
|
---|
| 537 | y = new double[n];
|
---|
| 538 | w = new double[n];
|
---|
| 539 | v = b.sy;
|
---|
| 540 | for(i_=0; i_<=n-1;i_++)
|
---|
| 541 | {
|
---|
| 542 | x[i_] = b.x[i_];
|
---|
| 543 | }
|
---|
| 544 | for(i_=0; i_<=n-1;i_++)
|
---|
| 545 | {
|
---|
| 546 | y[i_] = v*b.y[i_];
|
---|
| 547 | }
|
---|
| 548 | for(i_=0; i_<=n-1;i_++)
|
---|
| 549 | {
|
---|
| 550 | w[i_] = b.w[i_];
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 |
|
---|
| 555 | /*************************************************************************
|
---|
| 556 | Serialization of the barycentric interpolant
|
---|
| 557 |
|
---|
| 558 | INPUT PARAMETERS:
|
---|
| 559 | B - barycentric interpolant
|
---|
| 560 |
|
---|
| 561 | OUTPUT PARAMETERS:
|
---|
| 562 | RA - array of real numbers which contains interpolant,
|
---|
| 563 | array[0..RLen-1]
|
---|
| 564 | RLen - RA lenght
|
---|
| 565 |
|
---|
| 566 | -- ALGLIB --
|
---|
| 567 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 568 | *************************************************************************/
|
---|
| 569 | public static void barycentricserialize(ref barycentricinterpolant b,
|
---|
| 570 | ref double[] ra,
|
---|
| 571 | ref int ralen)
|
---|
| 572 | {
|
---|
| 573 | int i_ = 0;
|
---|
| 574 | int i1_ = 0;
|
---|
| 575 |
|
---|
| 576 | ralen = 2+2+3*b.n;
|
---|
| 577 | ra = new double[ralen];
|
---|
| 578 | ra[0] = ralen;
|
---|
| 579 | ra[1] = brcvnum;
|
---|
| 580 | ra[2] = b.n;
|
---|
| 581 | ra[3] = b.sy;
|
---|
| 582 | i1_ = (0) - (4);
|
---|
| 583 | for(i_=4; i_<=4+b.n-1;i_++)
|
---|
| 584 | {
|
---|
| 585 | ra[i_] = b.x[i_+i1_];
|
---|
| 586 | }
|
---|
| 587 | i1_ = (0) - (4+b.n);
|
---|
| 588 | for(i_=4+b.n; i_<=4+2*b.n-1;i_++)
|
---|
| 589 | {
|
---|
| 590 | ra[i_] = b.y[i_+i1_];
|
---|
| 591 | }
|
---|
| 592 | i1_ = (0) - (4+2*b.n);
|
---|
| 593 | for(i_=4+2*b.n; i_<=4+3*b.n-1;i_++)
|
---|
| 594 | {
|
---|
| 595 | ra[i_] = b.w[i_+i1_];
|
---|
| 596 | }
|
---|
| 597 | }
|
---|
| 598 |
|
---|
| 599 |
|
---|
| 600 | /*************************************************************************
|
---|
| 601 | Unserialization of the barycentric interpolant
|
---|
| 602 |
|
---|
| 603 | INPUT PARAMETERS:
|
---|
| 604 | RA - array of real numbers which contains interpolant,
|
---|
| 605 |
|
---|
| 606 | OUTPUT PARAMETERS:
|
---|
| 607 | B - barycentric interpolant
|
---|
| 608 |
|
---|
| 609 | -- ALGLIB --
|
---|
| 610 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 611 | *************************************************************************/
|
---|
| 612 | public static void barycentricunserialize(ref double[] ra,
|
---|
| 613 | ref barycentricinterpolant b)
|
---|
| 614 | {
|
---|
| 615 | int i_ = 0;
|
---|
| 616 | int i1_ = 0;
|
---|
| 617 |
|
---|
| 618 | System.Diagnostics.Debug.Assert((int)Math.Round(ra[1])==brcvnum, "BarycentricUnserialize: corrupted array!");
|
---|
| 619 | b.n = (int)Math.Round(ra[2]);
|
---|
| 620 | b.sy = ra[3];
|
---|
| 621 | b.x = new double[b.n];
|
---|
| 622 | b.y = new double[b.n];
|
---|
| 623 | b.w = new double[b.n];
|
---|
| 624 | i1_ = (4) - (0);
|
---|
| 625 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 626 | {
|
---|
| 627 | b.x[i_] = ra[i_+i1_];
|
---|
| 628 | }
|
---|
| 629 | i1_ = (4+b.n) - (0);
|
---|
| 630 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 631 | {
|
---|
| 632 | b.y[i_] = ra[i_+i1_];
|
---|
| 633 | }
|
---|
| 634 | i1_ = (4+2*b.n) - (0);
|
---|
| 635 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 636 | {
|
---|
| 637 | b.w[i_] = ra[i_+i1_];
|
---|
| 638 | }
|
---|
| 639 | }
|
---|
| 640 |
|
---|
| 641 |
|
---|
| 642 | /*************************************************************************
|
---|
| 643 | Copying of the barycentric interpolant
|
---|
| 644 |
|
---|
| 645 | INPUT PARAMETERS:
|
---|
| 646 | B - barycentric interpolant
|
---|
| 647 |
|
---|
| 648 | OUTPUT PARAMETERS:
|
---|
| 649 | B2 - copy(B1)
|
---|
| 650 |
|
---|
| 651 | -- ALGLIB --
|
---|
| 652 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 653 | *************************************************************************/
|
---|
| 654 | public static void barycentriccopy(ref barycentricinterpolant b,
|
---|
| 655 | ref barycentricinterpolant b2)
|
---|
| 656 | {
|
---|
| 657 | int i_ = 0;
|
---|
| 658 |
|
---|
| 659 | b2.n = b.n;
|
---|
| 660 | b2.sy = b.sy;
|
---|
| 661 | b2.x = new double[b2.n];
|
---|
| 662 | b2.y = new double[b2.n];
|
---|
| 663 | b2.w = new double[b2.n];
|
---|
| 664 | for(i_=0; i_<=b2.n-1;i_++)
|
---|
| 665 | {
|
---|
| 666 | b2.x[i_] = b.x[i_];
|
---|
| 667 | }
|
---|
| 668 | for(i_=0; i_<=b2.n-1;i_++)
|
---|
| 669 | {
|
---|
| 670 | b2.y[i_] = b.y[i_];
|
---|
| 671 | }
|
---|
| 672 | for(i_=0; i_<=b2.n-1;i_++)
|
---|
| 673 | {
|
---|
| 674 | b2.w[i_] = b.w[i_];
|
---|
| 675 | }
|
---|
| 676 | }
|
---|
| 677 |
|
---|
| 678 |
|
---|
| 679 | /*************************************************************************
|
---|
| 680 | Rational interpolant from X/Y/W arrays
|
---|
| 681 |
|
---|
| 682 | F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i]))
|
---|
| 683 |
|
---|
| 684 | INPUT PARAMETERS:
|
---|
| 685 | X - interpolation nodes, array[0..N-1]
|
---|
| 686 | F - function values, array[0..N-1]
|
---|
| 687 | W - barycentric weights, array[0..N-1]
|
---|
| 688 | N - nodes count, N>0
|
---|
| 689 |
|
---|
| 690 | OUTPUT PARAMETERS:
|
---|
| 691 | B - barycentric interpolant built from (X, Y, W)
|
---|
| 692 |
|
---|
| 693 | -- ALGLIB --
|
---|
| 694 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 695 | *************************************************************************/
|
---|
| 696 | public static void barycentricbuildxyw(ref double[] x,
|
---|
| 697 | ref double[] y,
|
---|
| 698 | ref double[] w,
|
---|
| 699 | int n,
|
---|
| 700 | ref barycentricinterpolant b)
|
---|
| 701 | {
|
---|
| 702 | int i_ = 0;
|
---|
| 703 |
|
---|
| 704 | System.Diagnostics.Debug.Assert(n>0, "BarycentricBuildXYW: incorrect N!");
|
---|
| 705 |
|
---|
| 706 | //
|
---|
| 707 | // fill X/Y/W
|
---|
| 708 | //
|
---|
| 709 | b.x = new double[n];
|
---|
| 710 | b.y = new double[n];
|
---|
| 711 | b.w = new double[n];
|
---|
| 712 | for(i_=0; i_<=n-1;i_++)
|
---|
| 713 | {
|
---|
| 714 | b.x[i_] = x[i_];
|
---|
| 715 | }
|
---|
| 716 | for(i_=0; i_<=n-1;i_++)
|
---|
| 717 | {
|
---|
| 718 | b.y[i_] = y[i_];
|
---|
| 719 | }
|
---|
| 720 | for(i_=0; i_<=n-1;i_++)
|
---|
| 721 | {
|
---|
| 722 | b.w[i_] = w[i_];
|
---|
| 723 | }
|
---|
| 724 | b.n = n;
|
---|
| 725 |
|
---|
| 726 | //
|
---|
| 727 | // Normalize
|
---|
| 728 | //
|
---|
| 729 | barycentricnormalize(ref b);
|
---|
| 730 | }
|
---|
| 731 |
|
---|
| 732 |
|
---|
| 733 | /*************************************************************************
|
---|
| 734 | Rational interpolant without poles
|
---|
| 735 |
|
---|
| 736 | The subroutine constructs the rational interpolating function without real
|
---|
| 737 | poles (see 'Barycentric rational interpolation with no poles and high
|
---|
| 738 | rates of approximation', Michael S. Floater. and Kai Hormann, for more
|
---|
| 739 | information on this subject).
|
---|
| 740 |
|
---|
| 741 | Input parameters:
|
---|
| 742 | X - interpolation nodes, array[0..N-1].
|
---|
| 743 | Y - function values, array[0..N-1].
|
---|
| 744 | N - number of nodes, N>0.
|
---|
| 745 | D - order of the interpolation scheme, 0 <= D <= N-1.
|
---|
| 746 | D<0 will cause an error.
|
---|
| 747 | D>=N it will be replaced with D=N-1.
|
---|
| 748 | if you don't know what D to choose, use small value about 3-5.
|
---|
| 749 |
|
---|
| 750 | Output parameters:
|
---|
| 751 | B - barycentric interpolant.
|
---|
| 752 |
|
---|
| 753 | Note:
|
---|
| 754 | this algorithm always succeeds and calculates the weights with close
|
---|
| 755 | to machine precision.
|
---|
| 756 |
|
---|
| 757 | -- ALGLIB PROJECT --
|
---|
| 758 | Copyright 17.06.2007 by Bochkanov Sergey
|
---|
| 759 | *************************************************************************/
|
---|
| 760 | public static void barycentricbuildfloaterhormann(ref double[] x,
|
---|
| 761 | ref double[] y,
|
---|
| 762 | int n,
|
---|
| 763 | int d,
|
---|
| 764 | ref barycentricinterpolant b)
|
---|
| 765 | {
|
---|
| 766 | double s0 = 0;
|
---|
| 767 | double s = 0;
|
---|
| 768 | double v = 0;
|
---|
| 769 | int i = 0;
|
---|
| 770 | int j = 0;
|
---|
| 771 | int k = 0;
|
---|
| 772 | int[] perm = new int[0];
|
---|
| 773 | double[] wtemp = new double[0];
|
---|
| 774 | int i_ = 0;
|
---|
| 775 |
|
---|
| 776 | System.Diagnostics.Debug.Assert(n>0, "BarycentricFloaterHormann: N<=0!");
|
---|
| 777 | System.Diagnostics.Debug.Assert(d>=0, "BarycentricFloaterHormann: incorrect D!");
|
---|
| 778 |
|
---|
| 779 | //
|
---|
| 780 | // Prepare
|
---|
| 781 | //
|
---|
| 782 | if( d>n-1 )
|
---|
| 783 | {
|
---|
| 784 | d = n-1;
|
---|
| 785 | }
|
---|
| 786 | b.n = n;
|
---|
| 787 |
|
---|
| 788 | //
|
---|
| 789 | // special case: N=1
|
---|
| 790 | //
|
---|
| 791 | if( n==1 )
|
---|
| 792 | {
|
---|
| 793 | b.x = new double[n];
|
---|
| 794 | b.y = new double[n];
|
---|
| 795 | b.w = new double[n];
|
---|
| 796 | b.x[0] = x[0];
|
---|
| 797 | b.y[0] = y[0];
|
---|
| 798 | b.w[0] = 1;
|
---|
| 799 | barycentricnormalize(ref b);
|
---|
| 800 | return;
|
---|
| 801 | }
|
---|
| 802 |
|
---|
| 803 | //
|
---|
| 804 | // Fill X/Y
|
---|
| 805 | //
|
---|
| 806 | b.x = new double[n];
|
---|
| 807 | b.y = new double[n];
|
---|
| 808 | for(i_=0; i_<=n-1;i_++)
|
---|
| 809 | {
|
---|
| 810 | b.x[i_] = x[i_];
|
---|
| 811 | }
|
---|
| 812 | for(i_=0; i_<=n-1;i_++)
|
---|
| 813 | {
|
---|
| 814 | b.y[i_] = y[i_];
|
---|
| 815 | }
|
---|
| 816 | tsort.tagsortfastr(ref b.x, ref b.y, n);
|
---|
| 817 |
|
---|
| 818 | //
|
---|
| 819 | // Calculate Wk
|
---|
| 820 | //
|
---|
| 821 | b.w = new double[n];
|
---|
| 822 | s0 = 1;
|
---|
| 823 | for(k=1; k<=d; k++)
|
---|
| 824 | {
|
---|
| 825 | s0 = -s0;
|
---|
| 826 | }
|
---|
| 827 | for(k=0; k<=n-1; k++)
|
---|
| 828 | {
|
---|
| 829 |
|
---|
| 830 | //
|
---|
| 831 | // Wk
|
---|
| 832 | //
|
---|
| 833 | s = 0;
|
---|
| 834 | for(i=Math.Max(k-d, 0); i<=Math.Min(k, n-1-d); i++)
|
---|
| 835 | {
|
---|
| 836 | v = 1;
|
---|
| 837 | for(j=i; j<=i+d; j++)
|
---|
| 838 | {
|
---|
| 839 | if( j!=k )
|
---|
| 840 | {
|
---|
| 841 | v = v/Math.Abs(b.x[k]-b.x[j]);
|
---|
| 842 | }
|
---|
| 843 | }
|
---|
| 844 | s = s+v;
|
---|
| 845 | }
|
---|
| 846 | b.w[k] = s0*s;
|
---|
| 847 |
|
---|
| 848 | //
|
---|
| 849 | // Next S0
|
---|
| 850 | //
|
---|
| 851 | s0 = -s0;
|
---|
| 852 | }
|
---|
| 853 |
|
---|
| 854 | //
|
---|
| 855 | // Normalize
|
---|
| 856 | //
|
---|
| 857 | barycentricnormalize(ref b);
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 |
|
---|
| 861 | /*************************************************************************
|
---|
| 862 | Weghted rational least squares fitting using Floater-Hormann rational
|
---|
| 863 | functions with optimal D chosen from [0,9], with constraints and
|
---|
| 864 | individual weights.
|
---|
| 865 |
|
---|
| 866 | Equidistant grid with M node on [min(x),max(x)] is used to build basis
|
---|
| 867 | functions. Different values of D are tried, optimal D (least WEIGHTED root
|
---|
| 868 | mean square error) is chosen. Task is linear, so linear least squares
|
---|
| 869 | solver is used. Complexity of this computational scheme is O(N*M^2)
|
---|
| 870 | (mostly dominated by the least squares solver).
|
---|
| 871 |
|
---|
| 872 | SEE ALSO
|
---|
| 873 | * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual
|
---|
| 874 | weights and constraints.
|
---|
| 875 |
|
---|
| 876 | INPUT PARAMETERS:
|
---|
| 877 | X - points, array[0..N-1].
|
---|
| 878 | Y - function values, array[0..N-1].
|
---|
| 879 | W - weights, array[0..N-1]
|
---|
| 880 | Each summand in square sum of approximation deviations from
|
---|
| 881 | given values is multiplied by the square of corresponding
|
---|
| 882 | weight. Fill it by 1's if you don't want to solve weighted
|
---|
| 883 | task.
|
---|
| 884 | N - number of points, N>0.
|
---|
| 885 | XC - points where function values/derivatives are constrained,
|
---|
| 886 | array[0..K-1].
|
---|
| 887 | YC - values of constraints, array[0..K-1]
|
---|
| 888 | DC - array[0..K-1], types of constraints:
|
---|
| 889 | * DC[i]=0 means that S(XC[i])=YC[i]
|
---|
| 890 | * DC[i]=1 means that S'(XC[i])=YC[i]
|
---|
| 891 | SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
|
---|
| 892 | K - number of constraints, 0<=K<M.
|
---|
| 893 | K=0 means no constraints (XC/YC/DC are not used in such cases)
|
---|
| 894 | M - number of basis functions ( = number_of_nodes), M>=2.
|
---|
| 895 |
|
---|
| 896 | OUTPUT PARAMETERS:
|
---|
| 897 | Info- same format as in LSFitLinearWC() subroutine.
|
---|
| 898 | * Info>0 task is solved
|
---|
| 899 | * Info<=0 an error occured:
|
---|
| 900 | -4 means inconvergence of internal SVD
|
---|
| 901 | -3 means inconsistent constraints
|
---|
| 902 | -1 means another errors in parameters passed
|
---|
| 903 | (N<=0, for example)
|
---|
| 904 | B - barycentric interpolant.
|
---|
| 905 | Rep - report, same format as in LSFitLinearWC() subroutine.
|
---|
| 906 | Following fields are set:
|
---|
| 907 | * DBest best value of the D parameter
|
---|
| 908 | * RMSError rms error on the (X,Y).
|
---|
| 909 | * AvgError average error on the (X,Y).
|
---|
| 910 | * AvgRelError average relative error on the non-zero Y
|
---|
| 911 | * MaxError maximum error
|
---|
| 912 | NON-WEIGHTED ERRORS ARE CALCULATED
|
---|
| 913 |
|
---|
| 914 | IMPORTANT:
|
---|
| 915 | this subroitine doesn't calculate task's condition number for K<>0.
|
---|
| 916 |
|
---|
| 917 | SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:
|
---|
| 918 |
|
---|
| 919 | Setting constraints can lead to undesired results, like ill-conditioned
|
---|
| 920 | behavior, or inconsistency being detected. From the other side, it allows
|
---|
| 921 | us to improve quality of the fit. Here we summarize our experience with
|
---|
| 922 | constrained barycentric interpolants:
|
---|
| 923 | * excessive constraints can be inconsistent. Floater-Hormann basis
|
---|
| 924 | functions aren't as flexible as splines (although they are very smooth).
|
---|
| 925 | * the more evenly constraints are spread across [min(x),max(x)], the more
|
---|
| 926 | chances that they will be consistent
|
---|
| 927 | * the greater is M (given fixed constraints), the more chances that
|
---|
| 928 | constraints will be consistent
|
---|
| 929 | * in the general case, consistency of constraints IS NOT GUARANTEED.
|
---|
| 930 | * in the several special cases, however, we CAN guarantee consistency.
|
---|
| 931 | * one of this cases is constraints on the function VALUES at the interval
|
---|
| 932 | boundaries. Note that consustency of the constraints on the function
|
---|
| 933 | DERIVATIVES is NOT guaranteed (you can use in such cases cubic splines
|
---|
| 934 | which are more flexible).
|
---|
| 935 | * another special case is ONE constraint on the function value (OR, but
|
---|
| 936 | not AND, derivative) anywhere in the interval
|
---|
| 937 |
|
---|
| 938 | Our final recommendation is to use constraints WHEN AND ONLY WHEN you
|
---|
| 939 | can't solve your task without them. Anything beyond special cases given
|
---|
| 940 | above is not guaranteed and may result in inconsistency.
|
---|
| 941 |
|
---|
| 942 | -- ALGLIB PROJECT --
|
---|
| 943 | Copyright 18.08.2009 by Bochkanov Sergey
|
---|
| 944 | *************************************************************************/
|
---|
| 945 | public static void barycentricfitfloaterhormannwc(ref double[] x,
|
---|
| 946 | ref double[] y,
|
---|
| 947 | ref double[] w,
|
---|
| 948 | int n,
|
---|
| 949 | ref double[] xc,
|
---|
| 950 | ref double[] yc,
|
---|
| 951 | ref int[] dc,
|
---|
| 952 | int k,
|
---|
| 953 | int m,
|
---|
| 954 | ref int info,
|
---|
| 955 | ref barycentricinterpolant b,
|
---|
| 956 | ref barycentricfitreport rep)
|
---|
| 957 | {
|
---|
| 958 | int d = 0;
|
---|
| 959 | int i = 0;
|
---|
| 960 | double wrmscur = 0;
|
---|
| 961 | double wrmsbest = 0;
|
---|
| 962 | barycentricinterpolant locb = new barycentricinterpolant();
|
---|
| 963 | barycentricfitreport locrep = new barycentricfitreport();
|
---|
| 964 | int locinfo = 0;
|
---|
| 965 |
|
---|
| 966 | if( n<1 | m<2 | k<0 | k>=m )
|
---|
| 967 | {
|
---|
| 968 | info = -1;
|
---|
| 969 | return;
|
---|
| 970 | }
|
---|
| 971 |
|
---|
| 972 | //
|
---|
| 973 | // Find optimal D
|
---|
| 974 | //
|
---|
| 975 | // Info is -3 by default (degenerate constraints).
|
---|
| 976 | // If LocInfo will always be equal to -3, Info will remain equal to -3.
|
---|
| 977 | // If at least once LocInfo will be -4, Info will be -4.
|
---|
| 978 | //
|
---|
| 979 | wrmsbest = AP.Math.MaxRealNumber;
|
---|
| 980 | rep.dbest = -1;
|
---|
| 981 | info = -3;
|
---|
| 982 | for(d=0; d<=Math.Min(9, n-1); d++)
|
---|
| 983 | {
|
---|
| 984 | barycentricfitwcfixedd(x, y, ref w, n, xc, yc, ref dc, k, m, d, ref locinfo, ref locb, ref locrep);
|
---|
| 985 | System.Diagnostics.Debug.Assert(locinfo==-4 | locinfo==-3 | locinfo>0, "BarycentricFitFloaterHormannWC: unexpected result from BarycentricFitWCFixedD!");
|
---|
| 986 | if( locinfo>0 )
|
---|
| 987 | {
|
---|
| 988 |
|
---|
| 989 | //
|
---|
| 990 | // Calculate weghted RMS
|
---|
| 991 | //
|
---|
| 992 | wrmscur = 0;
|
---|
| 993 | for(i=0; i<=n-1; i++)
|
---|
| 994 | {
|
---|
| 995 | wrmscur = wrmscur+AP.Math.Sqr(w[i]*(y[i]-barycentriccalc(ref locb, x[i])));
|
---|
| 996 | }
|
---|
| 997 | wrmscur = Math.Sqrt(wrmscur/n);
|
---|
| 998 | if( (double)(wrmscur)<(double)(wrmsbest) | rep.dbest<0 )
|
---|
| 999 | {
|
---|
| 1000 | barycentriccopy(ref locb, ref b);
|
---|
| 1001 | rep.dbest = d;
|
---|
| 1002 | info = 1;
|
---|
| 1003 | rep.rmserror = locrep.rmserror;
|
---|
| 1004 | rep.avgerror = locrep.avgerror;
|
---|
| 1005 | rep.avgrelerror = locrep.avgrelerror;
|
---|
| 1006 | rep.maxerror = locrep.maxerror;
|
---|
| 1007 | rep.taskrcond = locrep.taskrcond;
|
---|
| 1008 | wrmsbest = wrmscur;
|
---|
| 1009 | }
|
---|
| 1010 | }
|
---|
| 1011 | else
|
---|
| 1012 | {
|
---|
| 1013 | if( locinfo!=-3 & info<0 )
|
---|
| 1014 | {
|
---|
| 1015 | info = locinfo;
|
---|
| 1016 | }
|
---|
| 1017 | }
|
---|
| 1018 | }
|
---|
| 1019 | }
|
---|
| 1020 |
|
---|
| 1021 |
|
---|
| 1022 | /*************************************************************************
|
---|
| 1023 | Rational least squares fitting, without weights and constraints.
|
---|
| 1024 |
|
---|
| 1025 | See BarycentricFitFloaterHormannWC() for more information.
|
---|
| 1026 |
|
---|
| 1027 | -- ALGLIB PROJECT --
|
---|
| 1028 | Copyright 18.08.2009 by Bochkanov Sergey
|
---|
| 1029 | *************************************************************************/
|
---|
| 1030 | public static void barycentricfitfloaterhormann(ref double[] x,
|
---|
| 1031 | ref double[] y,
|
---|
| 1032 | int n,
|
---|
| 1033 | int m,
|
---|
| 1034 | ref int info,
|
---|
| 1035 | ref barycentricinterpolant b,
|
---|
| 1036 | ref barycentricfitreport rep)
|
---|
| 1037 | {
|
---|
| 1038 | double[] w = new double[0];
|
---|
| 1039 | double[] xc = new double[0];
|
---|
| 1040 | double[] yc = new double[0];
|
---|
| 1041 | int[] dc = new int[0];
|
---|
| 1042 | int i = 0;
|
---|
| 1043 |
|
---|
| 1044 | if( n<1 )
|
---|
| 1045 | {
|
---|
| 1046 | info = -1;
|
---|
| 1047 | return;
|
---|
| 1048 | }
|
---|
| 1049 | w = new double[n];
|
---|
| 1050 | for(i=0; i<=n-1; i++)
|
---|
| 1051 | {
|
---|
| 1052 | w[i] = 1;
|
---|
| 1053 | }
|
---|
| 1054 | barycentricfitfloaterhormannwc(ref x, ref y, ref w, n, ref xc, ref yc, ref dc, 0, m, ref info, ref b, ref rep);
|
---|
| 1055 | }
|
---|
| 1056 |
|
---|
| 1057 |
|
---|
| 1058 | /*************************************************************************
|
---|
| 1059 | Normalization of barycentric interpolant:
|
---|
| 1060 | * B.N, B.X, B.Y and B.W are initialized
|
---|
| 1061 | * B.SY is NOT initialized
|
---|
| 1062 | * Y[] is normalized, scaling coefficient is stored in B.SY
|
---|
| 1063 | * W[] is normalized, no scaling coefficient is stored
|
---|
| 1064 | * X[] is sorted
|
---|
| 1065 |
|
---|
| 1066 | Internal subroutine.
|
---|
| 1067 | *************************************************************************/
|
---|
| 1068 | private static void barycentricnormalize(ref barycentricinterpolant b)
|
---|
| 1069 | {
|
---|
| 1070 | int[] p1 = new int[0];
|
---|
| 1071 | int[] p2 = new int[0];
|
---|
| 1072 | int i = 0;
|
---|
| 1073 | int j = 0;
|
---|
| 1074 | int j2 = 0;
|
---|
| 1075 | double v = 0;
|
---|
| 1076 | int i_ = 0;
|
---|
| 1077 |
|
---|
| 1078 |
|
---|
| 1079 | //
|
---|
| 1080 | // Normalize task: |Y|<=1, |W|<=1, sort X[]
|
---|
| 1081 | //
|
---|
| 1082 | b.sy = 0;
|
---|
| 1083 | for(i=0; i<=b.n-1; i++)
|
---|
| 1084 | {
|
---|
| 1085 | b.sy = Math.Max(b.sy, Math.Abs(b.y[i]));
|
---|
| 1086 | }
|
---|
| 1087 | if( (double)(b.sy)>(double)(0) & (double)(Math.Abs(b.sy-1))>(double)(10*AP.Math.MachineEpsilon) )
|
---|
| 1088 | {
|
---|
| 1089 | v = 1/b.sy;
|
---|
| 1090 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 1091 | {
|
---|
| 1092 | b.y[i_] = v*b.y[i_];
|
---|
| 1093 | }
|
---|
| 1094 | }
|
---|
| 1095 | v = 0;
|
---|
| 1096 | for(i=0; i<=b.n-1; i++)
|
---|
| 1097 | {
|
---|
| 1098 | v = Math.Max(v, Math.Abs(b.w[i]));
|
---|
| 1099 | }
|
---|
| 1100 | if( (double)(v)>(double)(0) & (double)(Math.Abs(v-1))>(double)(10*AP.Math.MachineEpsilon) )
|
---|
| 1101 | {
|
---|
| 1102 | v = 1/v;
|
---|
| 1103 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 1104 | {
|
---|
| 1105 | b.w[i_] = v*b.w[i_];
|
---|
| 1106 | }
|
---|
| 1107 | }
|
---|
| 1108 | for(i=0; i<=b.n-2; i++)
|
---|
| 1109 | {
|
---|
| 1110 | if( (double)(b.x[i+1])<(double)(b.x[i]) )
|
---|
| 1111 | {
|
---|
| 1112 | tsort.tagsort(ref b.x, b.n, ref p1, ref p2);
|
---|
| 1113 | for(j=0; j<=b.n-1; j++)
|
---|
| 1114 | {
|
---|
| 1115 | j2 = p2[j];
|
---|
| 1116 | v = b.y[j];
|
---|
| 1117 | b.y[j] = b.y[j2];
|
---|
| 1118 | b.y[j2] = v;
|
---|
| 1119 | v = b.w[j];
|
---|
| 1120 | b.w[j] = b.w[j2];
|
---|
| 1121 | b.w[j2] = v;
|
---|
| 1122 | }
|
---|
| 1123 | break;
|
---|
| 1124 | }
|
---|
| 1125 | }
|
---|
| 1126 | }
|
---|
| 1127 |
|
---|
| 1128 |
|
---|
| 1129 | /*************************************************************************
|
---|
| 1130 | Internal subroutine, calculates barycentric basis functions.
|
---|
| 1131 | Used for efficient simultaneous calculation of N basis functions.
|
---|
| 1132 |
|
---|
| 1133 | -- ALGLIB --
|
---|
| 1134 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 1135 | *************************************************************************/
|
---|
| 1136 | private static void barycentriccalcbasis(ref barycentricinterpolant b,
|
---|
| 1137 | double t,
|
---|
| 1138 | ref double[] y)
|
---|
| 1139 | {
|
---|
| 1140 | double s2 = 0;
|
---|
| 1141 | double s = 0;
|
---|
| 1142 | double v = 0;
|
---|
| 1143 | int i = 0;
|
---|
| 1144 | int j = 0;
|
---|
| 1145 | int i_ = 0;
|
---|
| 1146 |
|
---|
| 1147 |
|
---|
| 1148 | //
|
---|
| 1149 | // special case: N=1
|
---|
| 1150 | //
|
---|
| 1151 | if( b.n==1 )
|
---|
| 1152 | {
|
---|
| 1153 | y[0] = 1;
|
---|
| 1154 | return;
|
---|
| 1155 | }
|
---|
| 1156 |
|
---|
| 1157 | //
|
---|
| 1158 | // Here we assume that task is normalized, i.e.:
|
---|
| 1159 | // 1. abs(Y[i])<=1
|
---|
| 1160 | // 2. abs(W[i])<=1
|
---|
| 1161 | // 3. X[] is ordered
|
---|
| 1162 | //
|
---|
| 1163 | // First, we decide: should we use "safe" formula (guarded
|
---|
| 1164 | // against overflow) or fast one?
|
---|
| 1165 | //
|
---|
| 1166 | s = Math.Abs(t-b.x[0]);
|
---|
| 1167 | for(i=0; i<=b.n-1; i++)
|
---|
| 1168 | {
|
---|
| 1169 | v = b.x[i];
|
---|
| 1170 | if( (double)(v)==(double)(t) )
|
---|
| 1171 | {
|
---|
| 1172 | for(j=0; j<=b.n-1; j++)
|
---|
| 1173 | {
|
---|
| 1174 | y[j] = 0;
|
---|
| 1175 | }
|
---|
| 1176 | y[i] = 1;
|
---|
| 1177 | return;
|
---|
| 1178 | }
|
---|
| 1179 | v = Math.Abs(t-v);
|
---|
| 1180 | if( (double)(v)<(double)(s) )
|
---|
| 1181 | {
|
---|
| 1182 | s = v;
|
---|
| 1183 | }
|
---|
| 1184 | }
|
---|
| 1185 | s2 = 0;
|
---|
| 1186 | for(i=0; i<=b.n-1; i++)
|
---|
| 1187 | {
|
---|
| 1188 | v = s/(t-b.x[i]);
|
---|
| 1189 | v = v*b.w[i];
|
---|
| 1190 | y[i] = v;
|
---|
| 1191 | s2 = s2+v;
|
---|
| 1192 | }
|
---|
| 1193 | v = 1/s2;
|
---|
| 1194 | for(i_=0; i_<=b.n-1;i_++)
|
---|
| 1195 | {
|
---|
| 1196 | y[i_] = v*y[i_];
|
---|
| 1197 | }
|
---|
| 1198 | }
|
---|
| 1199 |
|
---|
| 1200 |
|
---|
| 1201 | /*************************************************************************
|
---|
| 1202 | Internal Floater-Hormann fitting subroutine for fixed D
|
---|
| 1203 | *************************************************************************/
|
---|
| 1204 | private static void barycentricfitwcfixedd(double[] x,
|
---|
| 1205 | double[] y,
|
---|
| 1206 | ref double[] w,
|
---|
| 1207 | int n,
|
---|
| 1208 | double[] xc,
|
---|
| 1209 | double[] yc,
|
---|
| 1210 | ref int[] dc,
|
---|
| 1211 | int k,
|
---|
| 1212 | int m,
|
---|
| 1213 | int d,
|
---|
| 1214 | ref int info,
|
---|
| 1215 | ref barycentricinterpolant b,
|
---|
| 1216 | ref barycentricfitreport rep)
|
---|
| 1217 | {
|
---|
| 1218 | double[,] fmatrix = new double[0,0];
|
---|
| 1219 | double[,] cmatrix = new double[0,0];
|
---|
| 1220 | double[] y2 = new double[0];
|
---|
| 1221 | double[] w2 = new double[0];
|
---|
| 1222 | double[] sx = new double[0];
|
---|
| 1223 | double[] sy = new double[0];
|
---|
| 1224 | double[] sbf = new double[0];
|
---|
| 1225 | double[] xoriginal = new double[0];
|
---|
| 1226 | double[] yoriginal = new double[0];
|
---|
| 1227 | double[] tmp = new double[0];
|
---|
| 1228 | lsfit.lsfitreport lrep = new lsfit.lsfitreport();
|
---|
| 1229 | double v0 = 0;
|
---|
| 1230 | double v1 = 0;
|
---|
| 1231 | double mx = 0;
|
---|
| 1232 | barycentricinterpolant b2 = new barycentricinterpolant();
|
---|
| 1233 | int i = 0;
|
---|
| 1234 | int j = 0;
|
---|
| 1235 | int relcnt = 0;
|
---|
| 1236 | double xa = 0;
|
---|
| 1237 | double xb = 0;
|
---|
| 1238 | double sa = 0;
|
---|
| 1239 | double sb = 0;
|
---|
| 1240 | double decay = 0;
|
---|
| 1241 | int i_ = 0;
|
---|
| 1242 |
|
---|
| 1243 | x = (double[])x.Clone();
|
---|
| 1244 | y = (double[])y.Clone();
|
---|
| 1245 | xc = (double[])xc.Clone();
|
---|
| 1246 | yc = (double[])yc.Clone();
|
---|
| 1247 |
|
---|
| 1248 | if( n<1 | m<2 | k<0 | k>=m )
|
---|
| 1249 | {
|
---|
| 1250 | info = -1;
|
---|
| 1251 | return;
|
---|
| 1252 | }
|
---|
| 1253 | for(i=0; i<=k-1; i++)
|
---|
| 1254 | {
|
---|
| 1255 | info = 0;
|
---|
| 1256 | if( dc[i]<0 )
|
---|
| 1257 | {
|
---|
| 1258 | info = -1;
|
---|
| 1259 | }
|
---|
| 1260 | if( dc[i]>1 )
|
---|
| 1261 | {
|
---|
| 1262 | info = -1;
|
---|
| 1263 | }
|
---|
| 1264 | if( info<0 )
|
---|
| 1265 | {
|
---|
| 1266 | return;
|
---|
| 1267 | }
|
---|
| 1268 | }
|
---|
| 1269 |
|
---|
| 1270 | //
|
---|
| 1271 | // weight decay for correct handling of task which becomes
|
---|
| 1272 | // degenerate after constraints are applied
|
---|
| 1273 | //
|
---|
| 1274 | decay = 10000*AP.Math.MachineEpsilon;
|
---|
| 1275 |
|
---|
| 1276 | //
|
---|
| 1277 | // Scale X, Y, XC, YC
|
---|
| 1278 | //
|
---|
| 1279 | lsfit.lsfitscalexy(ref x, ref y, n, ref xc, ref yc, ref dc, k, ref xa, ref xb, ref sa, ref sb, ref xoriginal, ref yoriginal);
|
---|
| 1280 |
|
---|
| 1281 | //
|
---|
| 1282 | // allocate space, initialize:
|
---|
| 1283 | // * FMatrix- values of basis functions at X[]
|
---|
| 1284 | // * CMatrix- values (derivatives) of basis functions at XC[]
|
---|
| 1285 | //
|
---|
| 1286 | y2 = new double[n+m];
|
---|
| 1287 | w2 = new double[n+m];
|
---|
| 1288 | fmatrix = new double[n+m, m];
|
---|
| 1289 | if( k>0 )
|
---|
| 1290 | {
|
---|
| 1291 | cmatrix = new double[k, m+1];
|
---|
| 1292 | }
|
---|
| 1293 | y2 = new double[n+m];
|
---|
| 1294 | w2 = new double[n+m];
|
---|
| 1295 |
|
---|
| 1296 | //
|
---|
| 1297 | // Prepare design and constraints matrices:
|
---|
| 1298 | // * fill constraints matrix
|
---|
| 1299 | // * fill first N rows of design matrix with values
|
---|
| 1300 | // * fill next M rows of design matrix with regularizing term
|
---|
| 1301 | // * append M zeros to Y
|
---|
| 1302 | // * append M elements, mean(abs(W)) each, to W
|
---|
| 1303 | //
|
---|
| 1304 | sx = new double[m];
|
---|
| 1305 | sy = new double[m];
|
---|
| 1306 | sbf = new double[m];
|
---|
| 1307 | for(j=0; j<=m-1; j++)
|
---|
| 1308 | {
|
---|
| 1309 | sx[j] = (double)(2*j)/((double)(m-1))-1;
|
---|
| 1310 | }
|
---|
| 1311 | for(i=0; i<=m-1; i++)
|
---|
| 1312 | {
|
---|
| 1313 | sy[i] = 1;
|
---|
| 1314 | }
|
---|
| 1315 | barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b2);
|
---|
| 1316 | mx = 0;
|
---|
| 1317 | for(i=0; i<=n-1; i++)
|
---|
| 1318 | {
|
---|
| 1319 | barycentriccalcbasis(ref b2, x[i], ref sbf);
|
---|
| 1320 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1321 | {
|
---|
| 1322 | fmatrix[i,i_] = sbf[i_];
|
---|
| 1323 | }
|
---|
| 1324 | y2[i] = y[i];
|
---|
| 1325 | w2[i] = w[i];
|
---|
| 1326 | mx = mx+Math.Abs(w[i])/n;
|
---|
| 1327 | }
|
---|
| 1328 | for(i=0; i<=m-1; i++)
|
---|
| 1329 | {
|
---|
| 1330 | for(j=0; j<=m-1; j++)
|
---|
| 1331 | {
|
---|
| 1332 | if( i==j )
|
---|
| 1333 | {
|
---|
| 1334 | fmatrix[n+i,j] = decay;
|
---|
| 1335 | }
|
---|
| 1336 | else
|
---|
| 1337 | {
|
---|
| 1338 | fmatrix[n+i,j] = 0;
|
---|
| 1339 | }
|
---|
| 1340 | }
|
---|
| 1341 | y2[n+i] = 0;
|
---|
| 1342 | w2[n+i] = mx;
|
---|
| 1343 | }
|
---|
| 1344 | if( k>0 )
|
---|
| 1345 | {
|
---|
| 1346 | for(j=0; j<=m-1; j++)
|
---|
| 1347 | {
|
---|
| 1348 | for(i=0; i<=m-1; i++)
|
---|
| 1349 | {
|
---|
| 1350 | sy[i] = 0;
|
---|
| 1351 | }
|
---|
| 1352 | sy[j] = 1;
|
---|
| 1353 | barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b2);
|
---|
| 1354 | for(i=0; i<=k-1; i++)
|
---|
| 1355 | {
|
---|
| 1356 | System.Diagnostics.Debug.Assert(dc[i]>=0 & dc[i]<=1, "BarycentricFit: internal error!");
|
---|
| 1357 | barycentricdiff1(ref b2, xc[i], ref v0, ref v1);
|
---|
| 1358 | if( dc[i]==0 )
|
---|
| 1359 | {
|
---|
| 1360 | cmatrix[i,j] = v0;
|
---|
| 1361 | }
|
---|
| 1362 | if( dc[i]==1 )
|
---|
| 1363 | {
|
---|
| 1364 | cmatrix[i,j] = v1;
|
---|
| 1365 | }
|
---|
| 1366 | }
|
---|
| 1367 | }
|
---|
| 1368 | for(i=0; i<=k-1; i++)
|
---|
| 1369 | {
|
---|
| 1370 | cmatrix[i,m] = yc[i];
|
---|
| 1371 | }
|
---|
| 1372 | }
|
---|
| 1373 |
|
---|
| 1374 | //
|
---|
| 1375 | // Solve constrained task
|
---|
| 1376 | //
|
---|
| 1377 | if( k>0 )
|
---|
| 1378 | {
|
---|
| 1379 |
|
---|
| 1380 | //
|
---|
| 1381 | // solve using regularization
|
---|
| 1382 | //
|
---|
| 1383 | lsfit.lsfitlinearwc(y2, ref w2, ref fmatrix, cmatrix, n+m, m, k, ref info, ref tmp, ref lrep);
|
---|
| 1384 | }
|
---|
| 1385 | else
|
---|
| 1386 | {
|
---|
| 1387 |
|
---|
| 1388 | //
|
---|
| 1389 | // no constraints, no regularization needed
|
---|
| 1390 | //
|
---|
| 1391 | lsfit.lsfitlinearwc(y, ref w, ref fmatrix, cmatrix, n, m, k, ref info, ref tmp, ref lrep);
|
---|
| 1392 | }
|
---|
| 1393 | if( info<0 )
|
---|
| 1394 | {
|
---|
| 1395 | return;
|
---|
| 1396 | }
|
---|
| 1397 |
|
---|
| 1398 | //
|
---|
| 1399 | // Generate interpolant and scale it
|
---|
| 1400 | //
|
---|
| 1401 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1402 | {
|
---|
| 1403 | sy[i_] = tmp[i_];
|
---|
| 1404 | }
|
---|
| 1405 | barycentricbuildfloaterhormann(ref sx, ref sy, m, d, ref b);
|
---|
| 1406 | barycentriclintransx(ref b, 2/(xb-xa), -((xa+xb)/(xb-xa)));
|
---|
| 1407 | barycentriclintransy(ref b, sb-sa, sa);
|
---|
| 1408 |
|
---|
| 1409 | //
|
---|
| 1410 | // Scale absolute errors obtained from LSFitLinearW.
|
---|
| 1411 | // Relative error should be calculated separately
|
---|
| 1412 | // (because of shifting/scaling of the task)
|
---|
| 1413 | //
|
---|
| 1414 | rep.taskrcond = lrep.taskrcond;
|
---|
| 1415 | rep.rmserror = lrep.rmserror*(sb-sa);
|
---|
| 1416 | rep.avgerror = lrep.avgerror*(sb-sa);
|
---|
| 1417 | rep.maxerror = lrep.maxerror*(sb-sa);
|
---|
| 1418 | rep.avgrelerror = 0;
|
---|
| 1419 | relcnt = 0;
|
---|
| 1420 | for(i=0; i<=n-1; i++)
|
---|
| 1421 | {
|
---|
| 1422 | if( (double)(yoriginal[i])!=(double)(0) )
|
---|
| 1423 | {
|
---|
| 1424 | rep.avgrelerror = rep.avgrelerror+Math.Abs(barycentriccalc(ref b, xoriginal[i])-yoriginal[i])/Math.Abs(yoriginal[i]);
|
---|
| 1425 | relcnt = relcnt+1;
|
---|
| 1426 | }
|
---|
| 1427 | }
|
---|
| 1428 | if( relcnt!=0 )
|
---|
| 1429 | {
|
---|
| 1430 | rep.avgrelerror = rep.avgrelerror/relcnt;
|
---|
| 1431 | }
|
---|
| 1432 | }
|
---|
| 1433 | }
|
---|
| 1434 | }
|
---|