1 | /*************************************************************************
|
---|
2 | Copyright (c) 2010, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class nearestneighbor
|
---|
26 | {
|
---|
27 | public struct kdtree
|
---|
28 | {
|
---|
29 | public int n;
|
---|
30 | public int nx;
|
---|
31 | public int ny;
|
---|
32 | public int normtype;
|
---|
33 | public int distmatrixtype;
|
---|
34 | public double[,] xy;
|
---|
35 | public int[] tags;
|
---|
36 | public double[] boxmin;
|
---|
37 | public double[] boxmax;
|
---|
38 | public double[] curboxmin;
|
---|
39 | public double[] curboxmax;
|
---|
40 | public double curdist;
|
---|
41 | public int[] nodes;
|
---|
42 | public double[] splits;
|
---|
43 | public double[] x;
|
---|
44 | public int kneeded;
|
---|
45 | public double rneeded;
|
---|
46 | public bool selfmatch;
|
---|
47 | public double approxf;
|
---|
48 | public int kcur;
|
---|
49 | public int[] idx;
|
---|
50 | public double[] r;
|
---|
51 | public double[] buf;
|
---|
52 | public int debugcounter;
|
---|
53 | };
|
---|
54 |
|
---|
55 |
|
---|
56 |
|
---|
57 |
|
---|
58 | public const int splitnodesize = 6;
|
---|
59 |
|
---|
60 |
|
---|
61 | /*************************************************************************
|
---|
62 | KD-tree creation
|
---|
63 |
|
---|
64 | This subroutine creates KD-tree from set of X-values and optional Y-values
|
---|
65 |
|
---|
66 | INPUT PARAMETERS
|
---|
67 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
68 | one row corresponds to one point.
|
---|
69 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
70 | columns may contain associated Y-values
|
---|
71 | N - number of points, N>=1
|
---|
72 | NX - space dimension, NX>=1.
|
---|
73 | NY - number of optional Y-values, NY>=0.
|
---|
74 | NormType- norm type:
|
---|
75 | * 0 denotes infinity-norm
|
---|
76 | * 1 denotes 1-norm
|
---|
77 | * 2 denotes 2-norm (Euclidean norm)
|
---|
78 |
|
---|
79 | OUTPUT PARAMETERS
|
---|
80 | KDT - KD-tree
|
---|
81 |
|
---|
82 |
|
---|
83 | NOTES
|
---|
84 |
|
---|
85 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
86 | requirements.
|
---|
87 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
88 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
89 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
90 | inefficient case, because simple binary search (without additional
|
---|
91 | structures) is much more efficient in such tasks than KD-trees.
|
---|
92 |
|
---|
93 | -- ALGLIB --
|
---|
94 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
95 | *************************************************************************/
|
---|
96 | public static void kdtreebuild(ref double[,] xy,
|
---|
97 | int n,
|
---|
98 | int nx,
|
---|
99 | int ny,
|
---|
100 | int normtype,
|
---|
101 | ref kdtree kdt)
|
---|
102 | {
|
---|
103 | int[] tags = new int[0];
|
---|
104 | int i = 0;
|
---|
105 |
|
---|
106 | System.Diagnostics.Debug.Assert(n>=1, "KDTreeBuild: N<1!");
|
---|
107 | System.Diagnostics.Debug.Assert(nx>=1, "KDTreeBuild: NX<1!");
|
---|
108 | System.Diagnostics.Debug.Assert(ny>=0, "KDTreeBuild: NY<0!");
|
---|
109 | System.Diagnostics.Debug.Assert(normtype>=0 & normtype<=2, "KDTreeBuild: incorrect NormType!");
|
---|
110 | tags = new int[n];
|
---|
111 | for(i=0; i<=n-1; i++)
|
---|
112 | {
|
---|
113 | tags[i] = 0;
|
---|
114 | }
|
---|
115 | kdtreebuildtagged(ref xy, ref tags, n, nx, ny, normtype, ref kdt);
|
---|
116 | }
|
---|
117 |
|
---|
118 |
|
---|
119 | /*************************************************************************
|
---|
120 | KD-tree creation
|
---|
121 |
|
---|
122 | This subroutine creates KD-tree from set of X-values, integer tags and
|
---|
123 | optional Y-values
|
---|
124 |
|
---|
125 | INPUT PARAMETERS
|
---|
126 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
127 | one row corresponds to one point.
|
---|
128 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
129 | columns may contain associated Y-values
|
---|
130 | Tags - tags, array[0..N-1], contains integer tags associated
|
---|
131 | with points.
|
---|
132 | N - number of points, N>=1
|
---|
133 | NX - space dimension, NX>=1.
|
---|
134 | NY - number of optional Y-values, NY>=0.
|
---|
135 | NormType- norm type:
|
---|
136 | * 0 denotes infinity-norm
|
---|
137 | * 1 denotes 1-norm
|
---|
138 | * 2 denotes 2-norm (Euclidean norm)
|
---|
139 |
|
---|
140 | OUTPUT PARAMETERS
|
---|
141 | KDT - KD-tree
|
---|
142 |
|
---|
143 | NOTES
|
---|
144 |
|
---|
145 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
146 | requirements.
|
---|
147 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
148 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
149 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
150 | inefficient case, because simple binary search (without additional
|
---|
151 | structures) is much more efficient in such tasks than KD-trees.
|
---|
152 |
|
---|
153 | -- ALGLIB --
|
---|
154 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
155 | *************************************************************************/
|
---|
156 | public static void kdtreebuildtagged(ref double[,] xy,
|
---|
157 | ref int[] tags,
|
---|
158 | int n,
|
---|
159 | int nx,
|
---|
160 | int ny,
|
---|
161 | int normtype,
|
---|
162 | ref kdtree kdt)
|
---|
163 | {
|
---|
164 | int i = 0;
|
---|
165 | int j = 0;
|
---|
166 | int maxnodes = 0;
|
---|
167 | int nodesoffs = 0;
|
---|
168 | int splitsoffs = 0;
|
---|
169 | int i_ = 0;
|
---|
170 | int i1_ = 0;
|
---|
171 |
|
---|
172 | System.Diagnostics.Debug.Assert(n>=1, "KDTreeBuildTagged: N<1!");
|
---|
173 | System.Diagnostics.Debug.Assert(nx>=1, "KDTreeBuildTagged: NX<1!");
|
---|
174 | System.Diagnostics.Debug.Assert(ny>=0, "KDTreeBuildTagged: NY<0!");
|
---|
175 | System.Diagnostics.Debug.Assert(normtype>=0 & normtype<=2, "KDTreeBuildTagged: incorrect NormType!");
|
---|
176 |
|
---|
177 | //
|
---|
178 | // initialize
|
---|
179 | //
|
---|
180 | kdt.n = n;
|
---|
181 | kdt.nx = nx;
|
---|
182 | kdt.ny = ny;
|
---|
183 | kdt.normtype = normtype;
|
---|
184 | kdt.distmatrixtype = 0;
|
---|
185 | kdt.xy = new double[n, 2*nx+ny];
|
---|
186 | kdt.tags = new int[n];
|
---|
187 | kdt.idx = new int[n];
|
---|
188 | kdt.r = new double[n];
|
---|
189 | kdt.x = new double[nx];
|
---|
190 | kdt.buf = new double[Math.Max(n, nx)];
|
---|
191 |
|
---|
192 | //
|
---|
193 | // Initial fill
|
---|
194 | //
|
---|
195 | for(i=0; i<=n-1; i++)
|
---|
196 | {
|
---|
197 | for(i_=0; i_<=nx-1;i_++)
|
---|
198 | {
|
---|
199 | kdt.xy[i,i_] = xy[i,i_];
|
---|
200 | }
|
---|
201 | i1_ = (0) - (nx);
|
---|
202 | for(i_=nx; i_<=2*nx+ny-1;i_++)
|
---|
203 | {
|
---|
204 | kdt.xy[i,i_] = xy[i,i_+i1_];
|
---|
205 | }
|
---|
206 | kdt.tags[i] = tags[i];
|
---|
207 | }
|
---|
208 |
|
---|
209 | //
|
---|
210 | // Determine bounding box
|
---|
211 | //
|
---|
212 | kdt.boxmin = new double[nx];
|
---|
213 | kdt.boxmax = new double[nx];
|
---|
214 | kdt.curboxmin = new double[nx];
|
---|
215 | kdt.curboxmax = new double[nx];
|
---|
216 | for(i_=0; i_<=nx-1;i_++)
|
---|
217 | {
|
---|
218 | kdt.boxmin[i_] = kdt.xy[0,i_];
|
---|
219 | }
|
---|
220 | for(i_=0; i_<=nx-1;i_++)
|
---|
221 | {
|
---|
222 | kdt.boxmax[i_] = kdt.xy[0,i_];
|
---|
223 | }
|
---|
224 | for(i=1; i<=n-1; i++)
|
---|
225 | {
|
---|
226 | for(j=0; j<=nx-1; j++)
|
---|
227 | {
|
---|
228 | kdt.boxmin[j] = Math.Min(kdt.boxmin[j], kdt.xy[i,j]);
|
---|
229 | kdt.boxmax[j] = Math.Max(kdt.boxmax[j], kdt.xy[i,j]);
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | //
|
---|
234 | // prepare tree structure
|
---|
235 | // * MaxNodes=N because we guarantee no trivial splits, i.e.
|
---|
236 | // every split will generate two non-empty boxes
|
---|
237 | //
|
---|
238 | maxnodes = n;
|
---|
239 | kdt.nodes = new int[splitnodesize*2*maxnodes];
|
---|
240 | kdt.splits = new double[2*maxnodes];
|
---|
241 | nodesoffs = 0;
|
---|
242 | splitsoffs = 0;
|
---|
243 | for(i_=0; i_<=nx-1;i_++)
|
---|
244 | {
|
---|
245 | kdt.curboxmin[i_] = kdt.boxmin[i_];
|
---|
246 | }
|
---|
247 | for(i_=0; i_<=nx-1;i_++)
|
---|
248 | {
|
---|
249 | kdt.curboxmax[i_] = kdt.boxmax[i_];
|
---|
250 | }
|
---|
251 | kdtreegeneratetreerec(ref kdt, ref nodesoffs, ref splitsoffs, 0, n, 8);
|
---|
252 |
|
---|
253 | //
|
---|
254 | // Set current query size to 0
|
---|
255 | //
|
---|
256 | kdt.kcur = 0;
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | /*************************************************************************
|
---|
261 | K-NN query: K nearest neighbors
|
---|
262 |
|
---|
263 | INPUT PARAMETERS
|
---|
264 | KDT - KD-tree
|
---|
265 | X - point, array[0..NX-1].
|
---|
266 | K - number of neighbors to return, K>=1
|
---|
267 | SelfMatch - whether self-matches are allowed:
|
---|
268 | * if True, nearest neighbor may be the point itself
|
---|
269 | (if it exists in original dataset)
|
---|
270 | * if False, then only points with non-zero distance
|
---|
271 | are returned
|
---|
272 |
|
---|
273 | RESULT
|
---|
274 | number of actual neighbors found (either K or N, if K>N).
|
---|
275 |
|
---|
276 | This subroutine performs query and stores its result in the internal
|
---|
277 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
278 | these results:
|
---|
279 | * KDTreeQueryResultsX() to get X-values
|
---|
280 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
281 | * KDTreeQueryResultsTags() to get tag values
|
---|
282 | * KDTreeQueryResultsDistances() to get distances
|
---|
283 |
|
---|
284 | -- ALGLIB --
|
---|
285 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
286 | *************************************************************************/
|
---|
287 | public static int kdtreequeryknn(ref kdtree kdt,
|
---|
288 | ref double[] x,
|
---|
289 | int k,
|
---|
290 | bool selfmatch)
|
---|
291 | {
|
---|
292 | int result = 0;
|
---|
293 |
|
---|
294 | result = kdtreequeryaknn(ref kdt, ref x, k, selfmatch, 0.0);
|
---|
295 | return result;
|
---|
296 | }
|
---|
297 |
|
---|
298 |
|
---|
299 | /*************************************************************************
|
---|
300 | R-NN query: all points within R-sphere centered at X
|
---|
301 |
|
---|
302 | INPUT PARAMETERS
|
---|
303 | KDT - KD-tree
|
---|
304 | X - point, array[0..NX-1].
|
---|
305 | R - radius of sphere (in corresponding norm), R>0
|
---|
306 | SelfMatch - whether self-matches are allowed:
|
---|
307 | * if True, nearest neighbor may be the point itself
|
---|
308 | (if it exists in original dataset)
|
---|
309 | * if False, then only points with non-zero distance
|
---|
310 | are returned
|
---|
311 |
|
---|
312 | RESULT
|
---|
313 | number of neighbors found, >=0
|
---|
314 |
|
---|
315 | This subroutine performs query and stores its result in the internal
|
---|
316 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
317 | actual results:
|
---|
318 | * KDTreeQueryResultsX() to get X-values
|
---|
319 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
320 | * KDTreeQueryResultsTags() to get tag values
|
---|
321 | * KDTreeQueryResultsDistances() to get distances
|
---|
322 |
|
---|
323 | -- ALGLIB --
|
---|
324 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
325 | *************************************************************************/
|
---|
326 | public static int kdtreequeryrnn(ref kdtree kdt,
|
---|
327 | ref double[] x,
|
---|
328 | double r,
|
---|
329 | bool selfmatch)
|
---|
330 | {
|
---|
331 | int result = 0;
|
---|
332 | int i = 0;
|
---|
333 | int j = 0;
|
---|
334 | double vx = 0;
|
---|
335 | double vmin = 0;
|
---|
336 | double vmax = 0;
|
---|
337 |
|
---|
338 | System.Diagnostics.Debug.Assert((double)(r)>(double)(0), "KDTreeQueryRNN: incorrect R!");
|
---|
339 |
|
---|
340 | //
|
---|
341 | // Prepare parameters
|
---|
342 | //
|
---|
343 | kdt.kneeded = 0;
|
---|
344 | if( kdt.normtype!=2 )
|
---|
345 | {
|
---|
346 | kdt.rneeded = r;
|
---|
347 | }
|
---|
348 | else
|
---|
349 | {
|
---|
350 | kdt.rneeded = AP.Math.Sqr(r);
|
---|
351 | }
|
---|
352 | kdt.selfmatch = selfmatch;
|
---|
353 | kdt.approxf = 1;
|
---|
354 | kdt.kcur = 0;
|
---|
355 |
|
---|
356 | //
|
---|
357 | // calculate distance from point to current bounding box
|
---|
358 | //
|
---|
359 | kdtreeinitbox(ref kdt, ref x);
|
---|
360 |
|
---|
361 | //
|
---|
362 | // call recursive search
|
---|
363 | // results are returned as heap
|
---|
364 | //
|
---|
365 | kdtreequerynnrec(ref kdt, 0);
|
---|
366 |
|
---|
367 | //
|
---|
368 | // pop from heap to generate ordered representation
|
---|
369 | //
|
---|
370 | // last element is non pop'ed because it is already in
|
---|
371 | // its place
|
---|
372 | //
|
---|
373 | result = kdt.kcur;
|
---|
374 | j = kdt.kcur;
|
---|
375 | for(i=kdt.kcur; i>=2; i--)
|
---|
376 | {
|
---|
377 | tsort.tagheappopi(ref kdt.r, ref kdt.idx, ref j);
|
---|
378 | }
|
---|
379 | return result;
|
---|
380 | }
|
---|
381 |
|
---|
382 |
|
---|
383 | /*************************************************************************
|
---|
384 | K-NN query: approximate K nearest neighbors
|
---|
385 |
|
---|
386 | INPUT PARAMETERS
|
---|
387 | KDT - KD-tree
|
---|
388 | X - point, array[0..NX-1].
|
---|
389 | K - number of neighbors to return, K>=1
|
---|
390 | SelfMatch - whether self-matches are allowed:
|
---|
391 | * if True, nearest neighbor may be the point itself
|
---|
392 | (if it exists in original dataset)
|
---|
393 | * if False, then only points with non-zero distance
|
---|
394 | are returned
|
---|
395 | Eps - approximation factor, Eps>=0. eps-approximate nearest
|
---|
396 | neighbor is a neighbor whose distance from X is at
|
---|
397 | most (1+eps) times distance of true nearest neighbor.
|
---|
398 |
|
---|
399 | RESULT
|
---|
400 | number of actual neighbors found (either K or N, if K>N).
|
---|
401 |
|
---|
402 | NOTES
|
---|
403 | significant performance gain may be achieved only when Eps is is on
|
---|
404 | the order of magnitude of 1 or larger.
|
---|
405 |
|
---|
406 | This subroutine performs query and stores its result in the internal
|
---|
407 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
408 | these results:
|
---|
409 | * KDTreeQueryResultsX() to get X-values
|
---|
410 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
411 | * KDTreeQueryResultsTags() to get tag values
|
---|
412 | * KDTreeQueryResultsDistances() to get distances
|
---|
413 |
|
---|
414 | -- ALGLIB --
|
---|
415 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
416 | *************************************************************************/
|
---|
417 | public static int kdtreequeryaknn(ref kdtree kdt,
|
---|
418 | ref double[] x,
|
---|
419 | int k,
|
---|
420 | bool selfmatch,
|
---|
421 | double eps)
|
---|
422 | {
|
---|
423 | int result = 0;
|
---|
424 | int i = 0;
|
---|
425 | int j = 0;
|
---|
426 | double vx = 0;
|
---|
427 | double vmin = 0;
|
---|
428 | double vmax = 0;
|
---|
429 |
|
---|
430 | System.Diagnostics.Debug.Assert(k>0, "KDTreeQueryKNN: incorrect K!");
|
---|
431 | System.Diagnostics.Debug.Assert((double)(eps)>=(double)(0), "KDTreeQueryKNN: incorrect Eps!");
|
---|
432 |
|
---|
433 | //
|
---|
434 | // Prepare parameters
|
---|
435 | //
|
---|
436 | k = Math.Min(k, kdt.n);
|
---|
437 | kdt.kneeded = k;
|
---|
438 | kdt.rneeded = 0;
|
---|
439 | kdt.selfmatch = selfmatch;
|
---|
440 | if( kdt.normtype==2 )
|
---|
441 | {
|
---|
442 | kdt.approxf = 1/AP.Math.Sqr(1+eps);
|
---|
443 | }
|
---|
444 | else
|
---|
445 | {
|
---|
446 | kdt.approxf = 1/(1+eps);
|
---|
447 | }
|
---|
448 | kdt.kcur = 0;
|
---|
449 |
|
---|
450 | //
|
---|
451 | // calculate distance from point to current bounding box
|
---|
452 | //
|
---|
453 | kdtreeinitbox(ref kdt, ref x);
|
---|
454 |
|
---|
455 | //
|
---|
456 | // call recursive search
|
---|
457 | // results are returned as heap
|
---|
458 | //
|
---|
459 | kdtreequerynnrec(ref kdt, 0);
|
---|
460 |
|
---|
461 | //
|
---|
462 | // pop from heap to generate ordered representation
|
---|
463 | //
|
---|
464 | // last element is non pop'ed because it is already in
|
---|
465 | // its place
|
---|
466 | //
|
---|
467 | result = kdt.kcur;
|
---|
468 | j = kdt.kcur;
|
---|
469 | for(i=kdt.kcur; i>=2; i--)
|
---|
470 | {
|
---|
471 | tsort.tagheappopi(ref kdt.r, ref kdt.idx, ref j);
|
---|
472 | }
|
---|
473 | return result;
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | /*************************************************************************
|
---|
478 | X-values from last query
|
---|
479 |
|
---|
480 | INPUT PARAMETERS
|
---|
481 | KDT - KD-tree
|
---|
482 | X - pre-allocated array, at least K rows, at least NX columns
|
---|
483 |
|
---|
484 | OUTPUT PARAMETERS
|
---|
485 | X - K rows are filled with X-values
|
---|
486 | K - number of points
|
---|
487 |
|
---|
488 | NOTE
|
---|
489 | points are ordered by distance from the query point (first = closest)
|
---|
490 |
|
---|
491 | SEE ALSO
|
---|
492 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
493 | * KDTreeQueryResultsTags() tag values
|
---|
494 | * KDTreeQueryResultsDistances() distances
|
---|
495 |
|
---|
496 | -- ALGLIB --
|
---|
497 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
498 | *************************************************************************/
|
---|
499 | public static void kdtreequeryresultsx(ref kdtree kdt,
|
---|
500 | ref double[,] x,
|
---|
501 | ref int k)
|
---|
502 | {
|
---|
503 | int i = 0;
|
---|
504 | int i_ = 0;
|
---|
505 | int i1_ = 0;
|
---|
506 |
|
---|
507 | k = kdt.kcur;
|
---|
508 | for(i=0; i<=k-1; i++)
|
---|
509 | {
|
---|
510 | i1_ = (kdt.nx) - (0);
|
---|
511 | for(i_=0; i_<=kdt.nx-1;i_++)
|
---|
512 | {
|
---|
513 | x[i,i_] = kdt.xy[kdt.idx[i],i_+i1_];
|
---|
514 | }
|
---|
515 | }
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | /*************************************************************************
|
---|
520 | X- and Y-values from last query
|
---|
521 |
|
---|
522 | INPUT PARAMETERS
|
---|
523 | KDT - KD-tree
|
---|
524 | XY - pre-allocated array, at least K rows, at least NX+NY columns
|
---|
525 |
|
---|
526 | OUTPUT PARAMETERS
|
---|
527 | X - K rows are filled with points: first NX columns with
|
---|
528 | X-values, next NY columns - with Y-values.
|
---|
529 | K - number of points
|
---|
530 |
|
---|
531 | NOTE
|
---|
532 | points are ordered by distance from the query point (first = closest)
|
---|
533 |
|
---|
534 | SEE ALSO
|
---|
535 | * KDTreeQueryResultsX() X-values
|
---|
536 | * KDTreeQueryResultsTags() tag values
|
---|
537 | * KDTreeQueryResultsDistances() distances
|
---|
538 |
|
---|
539 | -- ALGLIB --
|
---|
540 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
541 | *************************************************************************/
|
---|
542 | public static void kdtreequeryresultsxy(ref kdtree kdt,
|
---|
543 | ref double[,] xy,
|
---|
544 | ref int k)
|
---|
545 | {
|
---|
546 | int i = 0;
|
---|
547 | int i_ = 0;
|
---|
548 | int i1_ = 0;
|
---|
549 |
|
---|
550 | k = kdt.kcur;
|
---|
551 | for(i=0; i<=k-1; i++)
|
---|
552 | {
|
---|
553 | i1_ = (kdt.nx) - (0);
|
---|
554 | for(i_=0; i_<=kdt.nx+kdt.ny-1;i_++)
|
---|
555 | {
|
---|
556 | xy[i,i_] = kdt.xy[kdt.idx[i],i_+i1_];
|
---|
557 | }
|
---|
558 | }
|
---|
559 | }
|
---|
560 |
|
---|
561 |
|
---|
562 | /*************************************************************************
|
---|
563 | point tags from last query
|
---|
564 |
|
---|
565 | INPUT PARAMETERS
|
---|
566 | KDT - KD-tree
|
---|
567 | Tags - pre-allocated array, at least K elements
|
---|
568 |
|
---|
569 | OUTPUT PARAMETERS
|
---|
570 | Tags - first K elements are filled with tags associated with points,
|
---|
571 | or, when no tags were supplied, with zeros
|
---|
572 | K - number of points
|
---|
573 |
|
---|
574 | NOTE
|
---|
575 | points are ordered by distance from the query point (first = closest)
|
---|
576 |
|
---|
577 | SEE ALSO
|
---|
578 | * KDTreeQueryResultsX() X-values
|
---|
579 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
580 | * KDTreeQueryResultsDistances() distances
|
---|
581 |
|
---|
582 | -- ALGLIB --
|
---|
583 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
584 | *************************************************************************/
|
---|
585 | public static void kdtreequeryresultstags(ref kdtree kdt,
|
---|
586 | ref int[] tags,
|
---|
587 | ref int k)
|
---|
588 | {
|
---|
589 | int i = 0;
|
---|
590 |
|
---|
591 | k = kdt.kcur;
|
---|
592 | for(i=0; i<=k-1; i++)
|
---|
593 | {
|
---|
594 | tags[i] = kdt.tags[kdt.idx[i]];
|
---|
595 | }
|
---|
596 | }
|
---|
597 |
|
---|
598 |
|
---|
599 | /*************************************************************************
|
---|
600 | Distances from last query
|
---|
601 |
|
---|
602 | INPUT PARAMETERS
|
---|
603 | KDT - KD-tree
|
---|
604 | R - pre-allocated array, at least K elements
|
---|
605 |
|
---|
606 | OUTPUT PARAMETERS
|
---|
607 | R - first K elements are filled with distances
|
---|
608 | (in corresponding norm)
|
---|
609 | K - number of points
|
---|
610 |
|
---|
611 | NOTE
|
---|
612 | points are ordered by distance from the query point (first = closest)
|
---|
613 |
|
---|
614 | SEE ALSO
|
---|
615 | * KDTreeQueryResultsX() X-values
|
---|
616 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
617 | * KDTreeQueryResultsTags() tag values
|
---|
618 |
|
---|
619 | -- ALGLIB --
|
---|
620 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
621 | *************************************************************************/
|
---|
622 | public static void kdtreequeryresultsdistances(ref kdtree kdt,
|
---|
623 | ref double[] r,
|
---|
624 | ref int k)
|
---|
625 | {
|
---|
626 | int i = 0;
|
---|
627 |
|
---|
628 | k = kdt.kcur;
|
---|
629 |
|
---|
630 | //
|
---|
631 | // unload norms
|
---|
632 | //
|
---|
633 | // Abs() call is used to handle cases with negative norms
|
---|
634 | // (generated during KFN requests)
|
---|
635 | //
|
---|
636 | if( kdt.normtype==0 )
|
---|
637 | {
|
---|
638 | for(i=0; i<=k-1; i++)
|
---|
639 | {
|
---|
640 | r[i] = Math.Abs(kdt.r[i]);
|
---|
641 | }
|
---|
642 | }
|
---|
643 | if( kdt.normtype==1 )
|
---|
644 | {
|
---|
645 | for(i=0; i<=k-1; i++)
|
---|
646 | {
|
---|
647 | r[i] = Math.Abs(kdt.r[i]);
|
---|
648 | }
|
---|
649 | }
|
---|
650 | if( kdt.normtype==2 )
|
---|
651 | {
|
---|
652 | for(i=0; i<=k-1; i++)
|
---|
653 | {
|
---|
654 | r[i] = Math.Sqrt(Math.Abs(kdt.r[i]));
|
---|
655 | }
|
---|
656 | }
|
---|
657 | }
|
---|
658 |
|
---|
659 |
|
---|
660 | /*************************************************************************
|
---|
661 | Rearranges nodes [I1,I2) using partition in D-th dimension with S as threshold.
|
---|
662 | Returns split position I3: [I1,I3) and [I3,I2) are created as result.
|
---|
663 |
|
---|
664 | This subroutine doesn't create tree structures, just rearranges nodes.
|
---|
665 | *************************************************************************/
|
---|
666 | private static void kdtreesplit(ref kdtree kdt,
|
---|
667 | int i1,
|
---|
668 | int i2,
|
---|
669 | int d,
|
---|
670 | double s,
|
---|
671 | ref int i3)
|
---|
672 | {
|
---|
673 | int i = 0;
|
---|
674 | int j = 0;
|
---|
675 | int ileft = 0;
|
---|
676 | int iright = 0;
|
---|
677 | double v = 0;
|
---|
678 |
|
---|
679 |
|
---|
680 | //
|
---|
681 | // split XY/Tags in two parts:
|
---|
682 | // * [ILeft,IRight] is non-processed part of XY/Tags
|
---|
683 | //
|
---|
684 | // After cycle is done, we have Ileft=IRight. We deal with
|
---|
685 | // this element separately.
|
---|
686 | //
|
---|
687 | // After this, [I1,ILeft) contains left part, and [ILeft,I2)
|
---|
688 | // contains right part.
|
---|
689 | //
|
---|
690 | ileft = i1;
|
---|
691 | iright = i2-1;
|
---|
692 | while( ileft<iright )
|
---|
693 | {
|
---|
694 | if( (double)(kdt.xy[ileft,d])<=(double)(s) )
|
---|
695 | {
|
---|
696 |
|
---|
697 | //
|
---|
698 | // XY[ILeft] is on its place.
|
---|
699 | // Advance ILeft.
|
---|
700 | //
|
---|
701 | ileft = ileft+1;
|
---|
702 | }
|
---|
703 | else
|
---|
704 | {
|
---|
705 |
|
---|
706 | //
|
---|
707 | // XY[ILeft,..] must be at IRight.
|
---|
708 | // Swap and advance IRight.
|
---|
709 | //
|
---|
710 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
711 | {
|
---|
712 | v = kdt.xy[ileft,i];
|
---|
713 | kdt.xy[ileft,i] = kdt.xy[iright,i];
|
---|
714 | kdt.xy[iright,i] = v;
|
---|
715 | }
|
---|
716 | j = kdt.tags[ileft];
|
---|
717 | kdt.tags[ileft] = kdt.tags[iright];
|
---|
718 | kdt.tags[iright] = j;
|
---|
719 | iright = iright-1;
|
---|
720 | }
|
---|
721 | }
|
---|
722 | if( (double)(kdt.xy[ileft,d])<=(double)(s) )
|
---|
723 | {
|
---|
724 | ileft = ileft+1;
|
---|
725 | }
|
---|
726 | else
|
---|
727 | {
|
---|
728 | iright = iright-1;
|
---|
729 | }
|
---|
730 | i3 = ileft;
|
---|
731 | }
|
---|
732 |
|
---|
733 |
|
---|
734 | /*************************************************************************
|
---|
735 | Recursive kd-tree generation subroutine.
|
---|
736 |
|
---|
737 | PARAMETERS
|
---|
738 | KDT tree
|
---|
739 | NodesOffs unused part of Nodes[] which must be filled by tree
|
---|
740 | SplitsOffs unused part of Splits[]
|
---|
741 | I1, I2 points from [I1,I2) are processed
|
---|
742 |
|
---|
743 | NodesOffs[] and SplitsOffs[] must be large enough.
|
---|
744 |
|
---|
745 | -- ALGLIB --
|
---|
746 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
747 | *************************************************************************/
|
---|
748 | private static void kdtreegeneratetreerec(ref kdtree kdt,
|
---|
749 | ref int nodesoffs,
|
---|
750 | ref int splitsoffs,
|
---|
751 | int i1,
|
---|
752 | int i2,
|
---|
753 | int maxleafsize)
|
---|
754 | {
|
---|
755 | int n = 0;
|
---|
756 | int nx = 0;
|
---|
757 | int ny = 0;
|
---|
758 | int i = 0;
|
---|
759 | int j = 0;
|
---|
760 | int oldoffs = 0;
|
---|
761 | int i3 = 0;
|
---|
762 | int cntless = 0;
|
---|
763 | int cntgreater = 0;
|
---|
764 | double minv = 0;
|
---|
765 | double maxv = 0;
|
---|
766 | int minidx = 0;
|
---|
767 | int maxidx = 0;
|
---|
768 | int d = 0;
|
---|
769 | double ds = 0;
|
---|
770 | double s = 0;
|
---|
771 | double v = 0;
|
---|
772 | int i_ = 0;
|
---|
773 | int i1_ = 0;
|
---|
774 |
|
---|
775 | System.Diagnostics.Debug.Assert(i2>i1, "KDTreeGenerateTreeRec: internal error");
|
---|
776 |
|
---|
777 | //
|
---|
778 | // Generate leaf if needed
|
---|
779 | //
|
---|
780 | if( i2-i1<=maxleafsize )
|
---|
781 | {
|
---|
782 | kdt.nodes[nodesoffs+0] = i2-i1;
|
---|
783 | kdt.nodes[nodesoffs+1] = i1;
|
---|
784 | nodesoffs = nodesoffs+2;
|
---|
785 | return;
|
---|
786 | }
|
---|
787 |
|
---|
788 | //
|
---|
789 | // Load values for easier access
|
---|
790 | //
|
---|
791 | nx = kdt.nx;
|
---|
792 | ny = kdt.ny;
|
---|
793 |
|
---|
794 | //
|
---|
795 | // select dimension to split:
|
---|
796 | // * D is a dimension number
|
---|
797 | //
|
---|
798 | d = 0;
|
---|
799 | ds = kdt.curboxmax[0]-kdt.curboxmin[0];
|
---|
800 | for(i=1; i<=nx-1; i++)
|
---|
801 | {
|
---|
802 | v = kdt.curboxmax[i]-kdt.curboxmin[i];
|
---|
803 | if( (double)(v)>(double)(ds) )
|
---|
804 | {
|
---|
805 | ds = v;
|
---|
806 | d = i;
|
---|
807 | }
|
---|
808 | }
|
---|
809 |
|
---|
810 | //
|
---|
811 | // Select split position S using sliding midpoint rule,
|
---|
812 | // rearrange points into [I1,I3) and [I3,I2)
|
---|
813 | //
|
---|
814 | s = kdt.curboxmin[d]+0.5*ds;
|
---|
815 | i1_ = (i1) - (0);
|
---|
816 | for(i_=0; i_<=i2-i1-1;i_++)
|
---|
817 | {
|
---|
818 | kdt.buf[i_] = kdt.xy[i_+i1_,d];
|
---|
819 | }
|
---|
820 | n = i2-i1;
|
---|
821 | cntless = 0;
|
---|
822 | cntgreater = 0;
|
---|
823 | minv = kdt.buf[0];
|
---|
824 | maxv = kdt.buf[0];
|
---|
825 | minidx = i1;
|
---|
826 | maxidx = i1;
|
---|
827 | for(i=0; i<=n-1; i++)
|
---|
828 | {
|
---|
829 | v = kdt.buf[i];
|
---|
830 | if( (double)(v)<(double)(minv) )
|
---|
831 | {
|
---|
832 | minv = v;
|
---|
833 | minidx = i1+i;
|
---|
834 | }
|
---|
835 | if( (double)(v)>(double)(maxv) )
|
---|
836 | {
|
---|
837 | maxv = v;
|
---|
838 | maxidx = i1+i;
|
---|
839 | }
|
---|
840 | if( (double)(v)<(double)(s) )
|
---|
841 | {
|
---|
842 | cntless = cntless+1;
|
---|
843 | }
|
---|
844 | if( (double)(v)>(double)(s) )
|
---|
845 | {
|
---|
846 | cntgreater = cntgreater+1;
|
---|
847 | }
|
---|
848 | }
|
---|
849 | if( cntless>0 & cntgreater>0 )
|
---|
850 | {
|
---|
851 |
|
---|
852 | //
|
---|
853 | // normal midpoint split
|
---|
854 | //
|
---|
855 | kdtreesplit(ref kdt, i1, i2, d, s, ref i3);
|
---|
856 | }
|
---|
857 | else
|
---|
858 | {
|
---|
859 |
|
---|
860 | //
|
---|
861 | // sliding midpoint
|
---|
862 | //
|
---|
863 | if( cntless==0 )
|
---|
864 | {
|
---|
865 |
|
---|
866 | //
|
---|
867 | // 1. move split to MinV,
|
---|
868 | // 2. place one point to the left bin (move to I1),
|
---|
869 | // others - to the right bin
|
---|
870 | //
|
---|
871 | s = minv;
|
---|
872 | if( minidx!=i1 )
|
---|
873 | {
|
---|
874 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
875 | {
|
---|
876 | v = kdt.xy[minidx,i];
|
---|
877 | kdt.xy[minidx,i] = kdt.xy[i1,i];
|
---|
878 | kdt.xy[i1,i] = v;
|
---|
879 | }
|
---|
880 | j = kdt.tags[minidx];
|
---|
881 | kdt.tags[minidx] = kdt.tags[i1];
|
---|
882 | kdt.tags[i1] = j;
|
---|
883 | }
|
---|
884 | i3 = i1+1;
|
---|
885 | }
|
---|
886 | else
|
---|
887 | {
|
---|
888 |
|
---|
889 | //
|
---|
890 | // 1. move split to MaxV,
|
---|
891 | // 2. place one point to the right bin (move to I2-1),
|
---|
892 | // others - to the left bin
|
---|
893 | //
|
---|
894 | s = maxv;
|
---|
895 | if( maxidx!=i2-1 )
|
---|
896 | {
|
---|
897 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
898 | {
|
---|
899 | v = kdt.xy[maxidx,i];
|
---|
900 | kdt.xy[maxidx,i] = kdt.xy[i2-1,i];
|
---|
901 | kdt.xy[i2-1,i] = v;
|
---|
902 | }
|
---|
903 | j = kdt.tags[maxidx];
|
---|
904 | kdt.tags[maxidx] = kdt.tags[i2-1];
|
---|
905 | kdt.tags[i2-1] = j;
|
---|
906 | }
|
---|
907 | i3 = i2-1;
|
---|
908 | }
|
---|
909 | }
|
---|
910 |
|
---|
911 | //
|
---|
912 | // Generate 'split' node
|
---|
913 | //
|
---|
914 | kdt.nodes[nodesoffs+0] = 0;
|
---|
915 | kdt.nodes[nodesoffs+1] = d;
|
---|
916 | kdt.nodes[nodesoffs+2] = splitsoffs;
|
---|
917 | kdt.splits[splitsoffs+0] = s;
|
---|
918 | oldoffs = nodesoffs;
|
---|
919 | nodesoffs = nodesoffs+splitnodesize;
|
---|
920 | splitsoffs = splitsoffs+1;
|
---|
921 |
|
---|
922 | //
|
---|
923 | // Recirsive generation:
|
---|
924 | // * update CurBox
|
---|
925 | // * call subroutine
|
---|
926 | // * restore CurBox
|
---|
927 | //
|
---|
928 | kdt.nodes[oldoffs+3] = nodesoffs;
|
---|
929 | v = kdt.curboxmax[d];
|
---|
930 | kdt.curboxmax[d] = s;
|
---|
931 | kdtreegeneratetreerec(ref kdt, ref nodesoffs, ref splitsoffs, i1, i3, maxleafsize);
|
---|
932 | kdt.curboxmax[d] = v;
|
---|
933 | kdt.nodes[oldoffs+4] = nodesoffs;
|
---|
934 | v = kdt.curboxmin[d];
|
---|
935 | kdt.curboxmin[d] = s;
|
---|
936 | kdtreegeneratetreerec(ref kdt, ref nodesoffs, ref splitsoffs, i3, i2, maxleafsize);
|
---|
937 | kdt.curboxmin[d] = v;
|
---|
938 | }
|
---|
939 |
|
---|
940 |
|
---|
941 | /*************************************************************************
|
---|
942 | Recursive subroutine for NN queries.
|
---|
943 |
|
---|
944 | -- ALGLIB --
|
---|
945 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
946 | *************************************************************************/
|
---|
947 | private static void kdtreequerynnrec(ref kdtree kdt,
|
---|
948 | int offs)
|
---|
949 | {
|
---|
950 | double ptdist = 0;
|
---|
951 | int i = 0;
|
---|
952 | int j = 0;
|
---|
953 | int k = 0;
|
---|
954 | int ti = 0;
|
---|
955 | int nx = 0;
|
---|
956 | int i1 = 0;
|
---|
957 | int i2 = 0;
|
---|
958 | int k1 = 0;
|
---|
959 | int k2 = 0;
|
---|
960 | double r1 = 0;
|
---|
961 | double r2 = 0;
|
---|
962 | int d = 0;
|
---|
963 | double s = 0;
|
---|
964 | double v = 0;
|
---|
965 | double t1 = 0;
|
---|
966 | int childbestoffs = 0;
|
---|
967 | int childworstoffs = 0;
|
---|
968 | int childoffs = 0;
|
---|
969 | double prevdist = 0;
|
---|
970 | bool todive = new bool();
|
---|
971 | bool bestisleft = new bool();
|
---|
972 | bool updatemin = new bool();
|
---|
973 |
|
---|
974 |
|
---|
975 | //
|
---|
976 | // Leaf node.
|
---|
977 | // Process points.
|
---|
978 | //
|
---|
979 | if( kdt.nodes[offs]>0 )
|
---|
980 | {
|
---|
981 | i1 = kdt.nodes[offs+1];
|
---|
982 | i2 = i1+kdt.nodes[offs];
|
---|
983 | for(i=i1; i<=i2-1; i++)
|
---|
984 | {
|
---|
985 |
|
---|
986 | //
|
---|
987 | // Calculate distance
|
---|
988 | //
|
---|
989 | ptdist = 0;
|
---|
990 | nx = kdt.nx;
|
---|
991 | if( kdt.normtype==0 )
|
---|
992 | {
|
---|
993 | for(j=0; j<=nx-1; j++)
|
---|
994 | {
|
---|
995 | ptdist = Math.Max(ptdist, Math.Abs(kdt.xy[i,j]-kdt.x[j]));
|
---|
996 | }
|
---|
997 | }
|
---|
998 | if( kdt.normtype==1 )
|
---|
999 | {
|
---|
1000 | for(j=0; j<=nx-1; j++)
|
---|
1001 | {
|
---|
1002 | ptdist = ptdist+Math.Abs(kdt.xy[i,j]-kdt.x[j]);
|
---|
1003 | }
|
---|
1004 | }
|
---|
1005 | if( kdt.normtype==2 )
|
---|
1006 | {
|
---|
1007 | for(j=0; j<=nx-1; j++)
|
---|
1008 | {
|
---|
1009 | ptdist = ptdist+AP.Math.Sqr(kdt.xy[i,j]-kdt.x[j]);
|
---|
1010 | }
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | //
|
---|
1014 | // Skip points with zero distance if self-matches are turned off
|
---|
1015 | //
|
---|
1016 | if( (double)(ptdist)==(double)(0) & !kdt.selfmatch )
|
---|
1017 | {
|
---|
1018 | continue;
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | //
|
---|
1022 | // We CAN'T process point if R-criterion isn't satisfied,
|
---|
1023 | // i.e. (RNeeded<>0) AND (PtDist>R).
|
---|
1024 | //
|
---|
1025 | if( (double)(kdt.rneeded)==(double)(0) | (double)(ptdist)<=(double)(kdt.rneeded) )
|
---|
1026 | {
|
---|
1027 |
|
---|
1028 | //
|
---|
1029 | // R-criterion is satisfied, we must either:
|
---|
1030 | // * replace worst point, if (KNeeded<>0) AND (KCur=KNeeded)
|
---|
1031 | // (or skip, if worst point is better)
|
---|
1032 | // * add point without replacement otherwise
|
---|
1033 | //
|
---|
1034 | if( kdt.kcur<kdt.kneeded | kdt.kneeded==0 )
|
---|
1035 | {
|
---|
1036 |
|
---|
1037 | //
|
---|
1038 | // add current point to heap without replacement
|
---|
1039 | //
|
---|
1040 | tsort.tagheappushi(ref kdt.r, ref kdt.idx, ref kdt.kcur, ptdist, i);
|
---|
1041 | }
|
---|
1042 | else
|
---|
1043 | {
|
---|
1044 |
|
---|
1045 | //
|
---|
1046 | // New points are added or not, depending on their distance.
|
---|
1047 | // If added, they replace element at the top of the heap
|
---|
1048 | //
|
---|
1049 | if( (double)(ptdist)<(double)(kdt.r[0]) )
|
---|
1050 | {
|
---|
1051 | if( kdt.kneeded==1 )
|
---|
1052 | {
|
---|
1053 | kdt.idx[0] = i;
|
---|
1054 | kdt.r[0] = ptdist;
|
---|
1055 | }
|
---|
1056 | else
|
---|
1057 | {
|
---|
1058 | tsort.tagheapreplacetopi(ref kdt.r, ref kdt.idx, kdt.kneeded, ptdist, i);
|
---|
1059 | }
|
---|
1060 | }
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 | }
|
---|
1064 | return;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | //
|
---|
1068 | // Simple split
|
---|
1069 | //
|
---|
1070 | if( kdt.nodes[offs]==0 )
|
---|
1071 | {
|
---|
1072 |
|
---|
1073 | //
|
---|
1074 | // Load:
|
---|
1075 | // * D dimension to split
|
---|
1076 | // * S split position
|
---|
1077 | //
|
---|
1078 | d = kdt.nodes[offs+1];
|
---|
1079 | s = kdt.splits[kdt.nodes[offs+2]];
|
---|
1080 |
|
---|
1081 | //
|
---|
1082 | // Calculate:
|
---|
1083 | // * ChildBestOffs child box with best chances
|
---|
1084 | // * ChildWorstOffs child box with worst chances
|
---|
1085 | //
|
---|
1086 | if( (double)(kdt.x[d])<=(double)(s) )
|
---|
1087 | {
|
---|
1088 | childbestoffs = kdt.nodes[offs+3];
|
---|
1089 | childworstoffs = kdt.nodes[offs+4];
|
---|
1090 | bestisleft = true;
|
---|
1091 | }
|
---|
1092 | else
|
---|
1093 | {
|
---|
1094 | childbestoffs = kdt.nodes[offs+4];
|
---|
1095 | childworstoffs = kdt.nodes[offs+3];
|
---|
1096 | bestisleft = false;
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | //
|
---|
1100 | // Navigate through childs
|
---|
1101 | //
|
---|
1102 | for(i=0; i<=1; i++)
|
---|
1103 | {
|
---|
1104 |
|
---|
1105 | //
|
---|
1106 | // Select child to process:
|
---|
1107 | // * ChildOffs current child offset in Nodes[]
|
---|
1108 | // * UpdateMin whether minimum or maximum value
|
---|
1109 | // of bounding box is changed on update
|
---|
1110 | //
|
---|
1111 | if( i==0 )
|
---|
1112 | {
|
---|
1113 | childoffs = childbestoffs;
|
---|
1114 | updatemin = !bestisleft;
|
---|
1115 | }
|
---|
1116 | else
|
---|
1117 | {
|
---|
1118 | updatemin = bestisleft;
|
---|
1119 | childoffs = childworstoffs;
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | //
|
---|
1123 | // Update bounding box and current distance
|
---|
1124 | //
|
---|
1125 | if( updatemin )
|
---|
1126 | {
|
---|
1127 | prevdist = kdt.curdist;
|
---|
1128 | t1 = kdt.x[d];
|
---|
1129 | v = kdt.curboxmin[d];
|
---|
1130 | if( (double)(t1)<=(double)(s) )
|
---|
1131 | {
|
---|
1132 | if( kdt.normtype==0 )
|
---|
1133 | {
|
---|
1134 | kdt.curdist = Math.Max(kdt.curdist, s-t1);
|
---|
1135 | }
|
---|
1136 | if( kdt.normtype==1 )
|
---|
1137 | {
|
---|
1138 | kdt.curdist = kdt.curdist-Math.Max(v-t1, 0)+s-t1;
|
---|
1139 | }
|
---|
1140 | if( kdt.normtype==2 )
|
---|
1141 | {
|
---|
1142 | kdt.curdist = kdt.curdist-AP.Math.Sqr(Math.Max(v-t1, 0))+AP.Math.Sqr(s-t1);
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 | kdt.curboxmin[d] = s;
|
---|
1146 | }
|
---|
1147 | else
|
---|
1148 | {
|
---|
1149 | prevdist = kdt.curdist;
|
---|
1150 | t1 = kdt.x[d];
|
---|
1151 | v = kdt.curboxmax[d];
|
---|
1152 | if( (double)(t1)>=(double)(s) )
|
---|
1153 | {
|
---|
1154 | if( kdt.normtype==0 )
|
---|
1155 | {
|
---|
1156 | kdt.curdist = Math.Max(kdt.curdist, t1-s);
|
---|
1157 | }
|
---|
1158 | if( kdt.normtype==1 )
|
---|
1159 | {
|
---|
1160 | kdt.curdist = kdt.curdist-Math.Max(t1-v, 0)+t1-s;
|
---|
1161 | }
|
---|
1162 | if( kdt.normtype==2 )
|
---|
1163 | {
|
---|
1164 | kdt.curdist = kdt.curdist-AP.Math.Sqr(Math.Max(t1-v, 0))+AP.Math.Sqr(t1-s);
|
---|
1165 | }
|
---|
1166 | }
|
---|
1167 | kdt.curboxmax[d] = s;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | //
|
---|
1171 | // Decide: to dive into cell or not to dive
|
---|
1172 | //
|
---|
1173 | if( (double)(kdt.rneeded)!=(double)(0) & (double)(kdt.curdist)>(double)(kdt.rneeded) )
|
---|
1174 | {
|
---|
1175 | todive = false;
|
---|
1176 | }
|
---|
1177 | else
|
---|
1178 | {
|
---|
1179 | if( kdt.kcur<kdt.kneeded | kdt.kneeded==0 )
|
---|
1180 | {
|
---|
1181 |
|
---|
1182 | //
|
---|
1183 | // KCur<KNeeded (i.e. not all points are found)
|
---|
1184 | //
|
---|
1185 | todive = true;
|
---|
1186 | }
|
---|
1187 | else
|
---|
1188 | {
|
---|
1189 |
|
---|
1190 | //
|
---|
1191 | // KCur=KNeeded, decide to dive or not to dive
|
---|
1192 | // using point position relative to bounding box.
|
---|
1193 | //
|
---|
1194 | todive = (double)(kdt.curdist)<=(double)(kdt.r[0]*kdt.approxf);
|
---|
1195 | }
|
---|
1196 | }
|
---|
1197 | if( todive )
|
---|
1198 | {
|
---|
1199 | kdtreequerynnrec(ref kdt, childoffs);
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 | //
|
---|
1203 | // Restore bounding box and distance
|
---|
1204 | //
|
---|
1205 | if( updatemin )
|
---|
1206 | {
|
---|
1207 | kdt.curboxmin[d] = v;
|
---|
1208 | }
|
---|
1209 | else
|
---|
1210 | {
|
---|
1211 | kdt.curboxmax[d] = v;
|
---|
1212 | }
|
---|
1213 | kdt.curdist = prevdist;
|
---|
1214 | }
|
---|
1215 | return;
|
---|
1216 | }
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 |
|
---|
1220 | /*************************************************************************
|
---|
1221 | Copies X[] to KDT.X[]
|
---|
1222 | Loads distance from X[] to bounding box.
|
---|
1223 | Initializes CurBox[].
|
---|
1224 |
|
---|
1225 | -- ALGLIB --
|
---|
1226 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
1227 | *************************************************************************/
|
---|
1228 | private static void kdtreeinitbox(ref kdtree kdt,
|
---|
1229 | ref double[] x)
|
---|
1230 | {
|
---|
1231 | int i = 0;
|
---|
1232 | double vx = 0;
|
---|
1233 | double vmin = 0;
|
---|
1234 | double vmax = 0;
|
---|
1235 |
|
---|
1236 |
|
---|
1237 | //
|
---|
1238 | // calculate distance from point to current bounding box
|
---|
1239 | //
|
---|
1240 | kdt.curdist = 0;
|
---|
1241 | if( kdt.normtype==0 )
|
---|
1242 | {
|
---|
1243 | for(i=0; i<=kdt.nx-1; i++)
|
---|
1244 | {
|
---|
1245 | vx = x[i];
|
---|
1246 | vmin = kdt.boxmin[i];
|
---|
1247 | vmax = kdt.boxmax[i];
|
---|
1248 | kdt.x[i] = vx;
|
---|
1249 | kdt.curboxmin[i] = vmin;
|
---|
1250 | kdt.curboxmax[i] = vmax;
|
---|
1251 | if( (double)(vx)<(double)(vmin) )
|
---|
1252 | {
|
---|
1253 | kdt.curdist = Math.Max(kdt.curdist, vmin-vx);
|
---|
1254 | }
|
---|
1255 | else
|
---|
1256 | {
|
---|
1257 | if( (double)(vx)>(double)(vmax) )
|
---|
1258 | {
|
---|
1259 | kdt.curdist = Math.Max(kdt.curdist, vx-vmax);
|
---|
1260 | }
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 | if( kdt.normtype==1 )
|
---|
1265 | {
|
---|
1266 | for(i=0; i<=kdt.nx-1; i++)
|
---|
1267 | {
|
---|
1268 | vx = x[i];
|
---|
1269 | vmin = kdt.boxmin[i];
|
---|
1270 | vmax = kdt.boxmax[i];
|
---|
1271 | kdt.x[i] = vx;
|
---|
1272 | kdt.curboxmin[i] = vmin;
|
---|
1273 | kdt.curboxmax[i] = vmax;
|
---|
1274 | if( (double)(vx)<(double)(vmin) )
|
---|
1275 | {
|
---|
1276 | kdt.curdist = kdt.curdist+vmin-vx;
|
---|
1277 | }
|
---|
1278 | else
|
---|
1279 | {
|
---|
1280 | if( (double)(vx)>(double)(vmax) )
|
---|
1281 | {
|
---|
1282 | kdt.curdist = kdt.curdist+vx-vmax;
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 | }
|
---|
1286 | }
|
---|
1287 | if( kdt.normtype==2 )
|
---|
1288 | {
|
---|
1289 | for(i=0; i<=kdt.nx-1; i++)
|
---|
1290 | {
|
---|
1291 | vx = x[i];
|
---|
1292 | vmin = kdt.boxmin[i];
|
---|
1293 | vmax = kdt.boxmax[i];
|
---|
1294 | kdt.x[i] = vx;
|
---|
1295 | kdt.curboxmin[i] = vmin;
|
---|
1296 | kdt.curboxmax[i] = vmax;
|
---|
1297 | if( (double)(vx)<(double)(vmin) )
|
---|
1298 | {
|
---|
1299 | kdt.curdist = kdt.curdist+AP.Math.Sqr(vmin-vx);
|
---|
1300 | }
|
---|
1301 | else
|
---|
1302 | {
|
---|
1303 | if( (double)(vx)>(double)(vmax) )
|
---|
1304 | {
|
---|
1305 | kdt.curdist = kdt.curdist+AP.Math.Sqr(vx-vmax);
|
---|
1306 | }
|
---|
1307 | }
|
---|
1308 | }
|
---|
1309 | }
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 |
|
---|
1313 | /*************************************************************************
|
---|
1314 | Returns norm_k(x)^k (root-free = faster, but preserves ordering)
|
---|
1315 |
|
---|
1316 | -- ALGLIB --
|
---|
1317 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
1318 | *************************************************************************/
|
---|
1319 | private static double vrootfreenorm(ref double[] x,
|
---|
1320 | int n,
|
---|
1321 | int normtype)
|
---|
1322 | {
|
---|
1323 | double result = 0;
|
---|
1324 | int i = 0;
|
---|
1325 |
|
---|
1326 | result = 0;
|
---|
1327 | if( normtype==0 )
|
---|
1328 | {
|
---|
1329 | result = 0;
|
---|
1330 | for(i=0; i<=n-1; i++)
|
---|
1331 | {
|
---|
1332 | result = Math.Max(result, Math.Abs(x[i]));
|
---|
1333 | }
|
---|
1334 | return result;
|
---|
1335 | }
|
---|
1336 | if( normtype==1 )
|
---|
1337 | {
|
---|
1338 | result = 0;
|
---|
1339 | for(i=0; i<=n-1; i++)
|
---|
1340 | {
|
---|
1341 | result = result+Math.Abs(x[i]);
|
---|
1342 | }
|
---|
1343 | return result;
|
---|
1344 | }
|
---|
1345 | if( normtype==2 )
|
---|
1346 | {
|
---|
1347 | result = 0;
|
---|
1348 | for(i=0; i<=n-1; i++)
|
---|
1349 | {
|
---|
1350 | result = result+AP.Math.Sqr(x[i]);
|
---|
1351 | }
|
---|
1352 | return result;
|
---|
1353 | }
|
---|
1354 | return result;
|
---|
1355 | }
|
---|
1356 |
|
---|
1357 |
|
---|
1358 | /*************************************************************************
|
---|
1359 | Returns norm_k(x)^k (root-free = faster, but preserves ordering)
|
---|
1360 |
|
---|
1361 | -- ALGLIB --
|
---|
1362 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
1363 | *************************************************************************/
|
---|
1364 | private static double vrootfreecomponentnorm(double x,
|
---|
1365 | int normtype)
|
---|
1366 | {
|
---|
1367 | double result = 0;
|
---|
1368 |
|
---|
1369 | result = 0;
|
---|
1370 | if( normtype==0 )
|
---|
1371 | {
|
---|
1372 | result = Math.Abs(x);
|
---|
1373 | }
|
---|
1374 | if( normtype==1 )
|
---|
1375 | {
|
---|
1376 | result = Math.Abs(x);
|
---|
1377 | }
|
---|
1378 | if( normtype==2 )
|
---|
1379 | {
|
---|
1380 | result = AP.Math.Sqr(x);
|
---|
1381 | }
|
---|
1382 | return result;
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 |
|
---|
1386 | /*************************************************************************
|
---|
1387 | Returns range distance: distance from X to [A,B]
|
---|
1388 |
|
---|
1389 | -- ALGLIB --
|
---|
1390 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
1391 | *************************************************************************/
|
---|
1392 | private static double vrangedist(double x,
|
---|
1393 | double a,
|
---|
1394 | double b)
|
---|
1395 | {
|
---|
1396 | double result = 0;
|
---|
1397 |
|
---|
1398 | if( (double)(x)<(double)(a) )
|
---|
1399 | {
|
---|
1400 | result = a-x;
|
---|
1401 | }
|
---|
1402 | else
|
---|
1403 | {
|
---|
1404 | if( (double)(x)>(double)(b) )
|
---|
1405 | {
|
---|
1406 | result = x-b;
|
---|
1407 | }
|
---|
1408 | else
|
---|
1409 | {
|
---|
1410 | result = 0;
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 | return result;
|
---|
1414 | }
|
---|
1415 | }
|
---|
1416 | }
|
---|