1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class minlm
|
---|
26 | {
|
---|
27 | public struct minlmstate
|
---|
28 | {
|
---|
29 | public bool wrongparams;
|
---|
30 | public int n;
|
---|
31 | public int m;
|
---|
32 | public double epsg;
|
---|
33 | public double epsf;
|
---|
34 | public double epsx;
|
---|
35 | public int maxits;
|
---|
36 | public bool xrep;
|
---|
37 | public double stpmax;
|
---|
38 | public int flags;
|
---|
39 | public int usermode;
|
---|
40 | public double[] x;
|
---|
41 | public double f;
|
---|
42 | public double[] fi;
|
---|
43 | public double[,] j;
|
---|
44 | public double[,] h;
|
---|
45 | public double[] g;
|
---|
46 | public bool needf;
|
---|
47 | public bool needfg;
|
---|
48 | public bool needfgh;
|
---|
49 | public bool needfij;
|
---|
50 | public bool xupdated;
|
---|
51 | public minlbfgs.minlbfgsstate internalstate;
|
---|
52 | public minlbfgs.minlbfgsreport internalrep;
|
---|
53 | public double[] xprec;
|
---|
54 | public double[] xbase;
|
---|
55 | public double[] xdir;
|
---|
56 | public double[] gbase;
|
---|
57 | public double[] xprev;
|
---|
58 | public double fprev;
|
---|
59 | public double[,] rawmodel;
|
---|
60 | public double[,] model;
|
---|
61 | public double[] work;
|
---|
62 | public AP.rcommstate rstate;
|
---|
63 | public int repiterationscount;
|
---|
64 | public int repterminationtype;
|
---|
65 | public int repnfunc;
|
---|
66 | public int repnjac;
|
---|
67 | public int repngrad;
|
---|
68 | public int repnhess;
|
---|
69 | public int repncholesky;
|
---|
70 | public int solverinfo;
|
---|
71 | public densesolver.densesolverreport solverrep;
|
---|
72 | public int invinfo;
|
---|
73 | public matinv.matinvreport invrep;
|
---|
74 | };
|
---|
75 |
|
---|
76 |
|
---|
77 | public struct minlmreport
|
---|
78 | {
|
---|
79 | public int iterationscount;
|
---|
80 | public int terminationtype;
|
---|
81 | public int nfunc;
|
---|
82 | public int njac;
|
---|
83 | public int ngrad;
|
---|
84 | public int nhess;
|
---|
85 | public int ncholesky;
|
---|
86 | };
|
---|
87 |
|
---|
88 |
|
---|
89 |
|
---|
90 |
|
---|
91 | public const int lmmodefj = 0;
|
---|
92 | public const int lmmodefgj = 1;
|
---|
93 | public const int lmmodefgh = 2;
|
---|
94 | public const int lmflagnoprelbfgs = 1;
|
---|
95 | public const int lmflagnointlbfgs = 2;
|
---|
96 | public const int lmprelbfgsm = 5;
|
---|
97 | public const int lmintlbfgsits = 5;
|
---|
98 | public const int lbfgsnorealloc = 1;
|
---|
99 |
|
---|
100 |
|
---|
101 | /*************************************************************************
|
---|
102 | LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
103 |
|
---|
104 | Optimization using function gradient and Hessian. Algorithm - Levenberg-
|
---|
105 | Marquardt modification with L-BFGS pre-optimization and internal
|
---|
106 | pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
---|
107 |
|
---|
108 | Function F has general form (not "sum-of-squares"):
|
---|
109 |
|
---|
110 | F = F(x[0], ..., x[n-1])
|
---|
111 |
|
---|
112 | EXAMPLE
|
---|
113 |
|
---|
114 | See HTML-documentation.
|
---|
115 |
|
---|
116 | INPUT PARAMETERS:
|
---|
117 | N - dimension, N>1
|
---|
118 | X - initial solution, array[0..N-1]
|
---|
119 |
|
---|
120 | OUTPUT PARAMETERS:
|
---|
121 | State - structure which stores algorithm state between subsequent
|
---|
122 | calls of MinLMIteration. Used for reverse communication.
|
---|
123 | This structure should be passed to MinLMIteration subroutine.
|
---|
124 |
|
---|
125 | See also MinLMIteration, MinLMResults.
|
---|
126 |
|
---|
127 | NOTES:
|
---|
128 |
|
---|
129 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
130 | 2. if target function contains exp() or other fast growing functions, and
|
---|
131 | optimization algorithm makes too large steps which leads to overflow,
|
---|
132 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
133 |
|
---|
134 | -- ALGLIB --
|
---|
135 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
136 | *************************************************************************/
|
---|
137 | public static void minlmcreatefgh(int n,
|
---|
138 | ref double[] x,
|
---|
139 | ref minlmstate state)
|
---|
140 | {
|
---|
141 | int i_ = 0;
|
---|
142 |
|
---|
143 |
|
---|
144 | //
|
---|
145 | // Prepare RComm
|
---|
146 | //
|
---|
147 | state.rstate.ia = new int[3+1];
|
---|
148 | state.rstate.ba = new bool[0+1];
|
---|
149 | state.rstate.ra = new double[7+1];
|
---|
150 | state.rstate.stage = -1;
|
---|
151 |
|
---|
152 | //
|
---|
153 | // prepare internal structures
|
---|
154 | //
|
---|
155 | lmprepare(n, 0, true, ref state);
|
---|
156 |
|
---|
157 | //
|
---|
158 | // initialize, check parameters
|
---|
159 | //
|
---|
160 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
161 | minlmsetxrep(ref state, false);
|
---|
162 | minlmsetstpmax(ref state, 0);
|
---|
163 | state.n = n;
|
---|
164 | state.m = 0;
|
---|
165 | state.flags = 0;
|
---|
166 | state.usermode = lmmodefgh;
|
---|
167 | state.wrongparams = false;
|
---|
168 | if( n<1 )
|
---|
169 | {
|
---|
170 | state.wrongparams = true;
|
---|
171 | return;
|
---|
172 | }
|
---|
173 | for(i_=0; i_<=n-1;i_++)
|
---|
174 | {
|
---|
175 | state.x[i_] = x[i_];
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | /*************************************************************************
|
---|
181 | LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
182 |
|
---|
183 | Optimization using function gradient and Jacobian. Algorithm - Levenberg-
|
---|
184 | Marquardt modification with L-BFGS pre-optimization and internal
|
---|
185 | pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
---|
186 |
|
---|
187 | Function F is represented as sum of squares:
|
---|
188 |
|
---|
189 | F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
---|
190 |
|
---|
191 | EXAMPLE
|
---|
192 |
|
---|
193 | See HTML-documentation.
|
---|
194 |
|
---|
195 | INPUT PARAMETERS:
|
---|
196 | N - dimension, N>1
|
---|
197 | M - number of functions f[i]
|
---|
198 | X - initial solution, array[0..N-1]
|
---|
199 |
|
---|
200 | OUTPUT PARAMETERS:
|
---|
201 | State - structure which stores algorithm state between subsequent
|
---|
202 | calls of MinLMIteration. Used for reverse communication.
|
---|
203 | This structure should be passed to MinLMIteration subroutine.
|
---|
204 |
|
---|
205 | See also MinLMIteration, MinLMResults.
|
---|
206 |
|
---|
207 | NOTES:
|
---|
208 |
|
---|
209 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
210 | 2. if target function contains exp() or other fast growing functions, and
|
---|
211 | optimization algorithm makes too large steps which leads to overflow,
|
---|
212 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
213 |
|
---|
214 | -- ALGLIB --
|
---|
215 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
216 | *************************************************************************/
|
---|
217 | public static void minlmcreatefgj(int n,
|
---|
218 | int m,
|
---|
219 | ref double[] x,
|
---|
220 | ref minlmstate state)
|
---|
221 | {
|
---|
222 | int i_ = 0;
|
---|
223 |
|
---|
224 |
|
---|
225 | //
|
---|
226 | // Prepare RComm
|
---|
227 | //
|
---|
228 | state.rstate.ia = new int[3+1];
|
---|
229 | state.rstate.ba = new bool[0+1];
|
---|
230 | state.rstate.ra = new double[7+1];
|
---|
231 | state.rstate.stage = -1;
|
---|
232 |
|
---|
233 | //
|
---|
234 | // prepare internal structures
|
---|
235 | //
|
---|
236 | lmprepare(n, m, true, ref state);
|
---|
237 |
|
---|
238 | //
|
---|
239 | // initialize, check parameters
|
---|
240 | //
|
---|
241 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
242 | minlmsetxrep(ref state, false);
|
---|
243 | minlmsetstpmax(ref state, 0);
|
---|
244 | state.n = n;
|
---|
245 | state.m = m;
|
---|
246 | state.flags = 0;
|
---|
247 | state.usermode = lmmodefgj;
|
---|
248 | state.wrongparams = false;
|
---|
249 | if( n<1 )
|
---|
250 | {
|
---|
251 | state.wrongparams = true;
|
---|
252 | return;
|
---|
253 | }
|
---|
254 | for(i_=0; i_<=n-1;i_++)
|
---|
255 | {
|
---|
256 | state.x[i_] = x[i_];
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | /*************************************************************************
|
---|
262 | CLASSIC LEVENBERG-MARQUARDT METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
263 |
|
---|
264 | Optimization using Jacobi matrix. Algorithm - classic Levenberg-Marquardt
|
---|
265 | method.
|
---|
266 |
|
---|
267 | Function F is represented as sum of squares:
|
---|
268 |
|
---|
269 | F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
---|
270 |
|
---|
271 | EXAMPLE
|
---|
272 |
|
---|
273 | See HTML-documentation.
|
---|
274 |
|
---|
275 | INPUT PARAMETERS:
|
---|
276 | N - dimension, N>1
|
---|
277 | M - number of functions f[i]
|
---|
278 | X - initial solution, array[0..N-1]
|
---|
279 |
|
---|
280 | OUTPUT PARAMETERS:
|
---|
281 | State - structure which stores algorithm state between subsequent
|
---|
282 | calls of MinLMIteration. Used for reverse communication.
|
---|
283 | This structure should be passed to MinLMIteration subroutine.
|
---|
284 |
|
---|
285 | See also MinLMIteration, MinLMResults.
|
---|
286 |
|
---|
287 | NOTES:
|
---|
288 |
|
---|
289 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
290 | 2. if target function contains exp() or other fast growing functions, and
|
---|
291 | optimization algorithm makes too large steps which leads to overflow,
|
---|
292 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
293 |
|
---|
294 | -- ALGLIB --
|
---|
295 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
296 | *************************************************************************/
|
---|
297 | public static void minlmcreatefj(int n,
|
---|
298 | int m,
|
---|
299 | ref double[] x,
|
---|
300 | ref minlmstate state)
|
---|
301 | {
|
---|
302 | int i_ = 0;
|
---|
303 |
|
---|
304 |
|
---|
305 | //
|
---|
306 | // Prepare RComm
|
---|
307 | //
|
---|
308 | state.rstate.ia = new int[3+1];
|
---|
309 | state.rstate.ba = new bool[0+1];
|
---|
310 | state.rstate.ra = new double[7+1];
|
---|
311 | state.rstate.stage = -1;
|
---|
312 |
|
---|
313 | //
|
---|
314 | // prepare internal structures
|
---|
315 | //
|
---|
316 | lmprepare(n, m, true, ref state);
|
---|
317 |
|
---|
318 | //
|
---|
319 | // initialize, check parameters
|
---|
320 | //
|
---|
321 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
322 | minlmsetxrep(ref state, false);
|
---|
323 | minlmsetstpmax(ref state, 0);
|
---|
324 | state.n = n;
|
---|
325 | state.m = m;
|
---|
326 | state.flags = 0;
|
---|
327 | state.usermode = lmmodefj;
|
---|
328 | state.wrongparams = false;
|
---|
329 | if( n<1 )
|
---|
330 | {
|
---|
331 | state.wrongparams = true;
|
---|
332 | return;
|
---|
333 | }
|
---|
334 | for(i_=0; i_<=n-1;i_++)
|
---|
335 | {
|
---|
336 | state.x[i_] = x[i_];
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 |
|
---|
341 | /*************************************************************************
|
---|
342 | This function sets stopping conditions for Levenberg-Marquardt optimization
|
---|
343 | algorithm.
|
---|
344 |
|
---|
345 | INPUT PARAMETERS:
|
---|
346 | State - structure which stores algorithm state between calls and
|
---|
347 | which is used for reverse communication. Must be initialized
|
---|
348 | with MinLMCreate???()
|
---|
349 | EpsG - >=0
|
---|
350 | The subroutine finishes its work if the condition
|
---|
351 | ||G||<EpsG is satisfied, where ||.|| means Euclidian norm,
|
---|
352 | G - gradient.
|
---|
353 | EpsF - >=0
|
---|
354 | The subroutine finishes its work if on k+1-th iteration
|
---|
355 | the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
|
---|
356 | is satisfied.
|
---|
357 | EpsX - >=0
|
---|
358 | The subroutine finishes its work if on k+1-th iteration
|
---|
359 | the condition |X(k+1)-X(k)| <= EpsX is fulfilled.
|
---|
360 | MaxIts - maximum number of iterations. If MaxIts=0, the number of
|
---|
361 | iterations is unlimited. Only Levenberg-Marquardt
|
---|
362 | iterations are counted (L-BFGS/CG iterations are NOT
|
---|
363 | counted because their cost is very low copared to that of
|
---|
364 | LM).
|
---|
365 |
|
---|
366 | Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
|
---|
367 | automatic stopping criterion selection (small EpsX).
|
---|
368 |
|
---|
369 | -- ALGLIB --
|
---|
370 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
371 | *************************************************************************/
|
---|
372 | public static void minlmsetcond(ref minlmstate state,
|
---|
373 | double epsg,
|
---|
374 | double epsf,
|
---|
375 | double epsx,
|
---|
376 | int maxits)
|
---|
377 | {
|
---|
378 | System.Diagnostics.Debug.Assert((double)(epsg)>=(double)(0), "MinLMSetCond: negative EpsG!");
|
---|
379 | System.Diagnostics.Debug.Assert((double)(epsf)>=(double)(0), "MinLMSetCond: negative EpsF!");
|
---|
380 | System.Diagnostics.Debug.Assert((double)(epsx)>=(double)(0), "MinLMSetCond: negative EpsX!");
|
---|
381 | System.Diagnostics.Debug.Assert(maxits>=0, "MinLMSetCond: negative MaxIts!");
|
---|
382 | if( (double)(epsg)==(double)(0) & (double)(epsf)==(double)(0) & (double)(epsx)==(double)(0) & maxits==0 )
|
---|
383 | {
|
---|
384 | epsx = 1.0E-6;
|
---|
385 | }
|
---|
386 | state.epsg = epsg;
|
---|
387 | state.epsf = epsf;
|
---|
388 | state.epsx = epsx;
|
---|
389 | state.maxits = maxits;
|
---|
390 | }
|
---|
391 |
|
---|
392 |
|
---|
393 | /*************************************************************************
|
---|
394 | This function turns on/off reporting.
|
---|
395 |
|
---|
396 | INPUT PARAMETERS:
|
---|
397 | State - structure which stores algorithm state between calls and
|
---|
398 | which is used for reverse communication. Must be
|
---|
399 | initialized with MinLMCreate???()
|
---|
400 | NeedXRep- whether iteration reports are needed or not
|
---|
401 |
|
---|
402 | Usually algorithm returns from MinLMIteration() only when it needs
|
---|
403 | function/gradient/Hessian. However, with this function we can let it stop
|
---|
404 | after each iteration (one iteration may include more than one function
|
---|
405 | evaluation), which is indicated by XUpdated field.
|
---|
406 |
|
---|
407 | Both Levenberg-Marquardt and L-BFGS iterations are reported.
|
---|
408 |
|
---|
409 |
|
---|
410 | -- ALGLIB --
|
---|
411 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
412 | *************************************************************************/
|
---|
413 | public static void minlmsetxrep(ref minlmstate state,
|
---|
414 | bool needxrep)
|
---|
415 | {
|
---|
416 | state.xrep = needxrep;
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | /*************************************************************************
|
---|
421 | This function sets maximum step length
|
---|
422 |
|
---|
423 | INPUT PARAMETERS:
|
---|
424 | State - structure which stores algorithm state between calls and
|
---|
425 | which is used for reverse communication. Must be
|
---|
426 | initialized with MinCGCreate???()
|
---|
427 | StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
|
---|
428 | want to limit step length.
|
---|
429 |
|
---|
430 | Use this subroutine when you optimize target function which contains exp()
|
---|
431 | or other fast growing functions, and optimization algorithm makes too
|
---|
432 | large steps which leads to overflow. This function allows us to reject
|
---|
433 | steps that are too large (and therefore expose us to the possible
|
---|
434 | overflow) without actually calculating function value at the x+stp*d.
|
---|
435 |
|
---|
436 | NOTE: non-zero StpMax leads to moderate performance degradation because
|
---|
437 | intermediate step of preconditioned L-BFGS optimization is incompatible
|
---|
438 | with limits on step size.
|
---|
439 |
|
---|
440 | -- ALGLIB --
|
---|
441 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
442 | *************************************************************************/
|
---|
443 | public static void minlmsetstpmax(ref minlmstate state,
|
---|
444 | double stpmax)
|
---|
445 | {
|
---|
446 | System.Diagnostics.Debug.Assert((double)(stpmax)>=(double)(0), "MinLMSetStpMax: StpMax<0!");
|
---|
447 | state.stpmax = stpmax;
|
---|
448 | }
|
---|
449 |
|
---|
450 |
|
---|
451 | /*************************************************************************
|
---|
452 | One Levenberg-Marquardt iteration.
|
---|
453 |
|
---|
454 | Called after inialization of State structure with MinLMXXX subroutine.
|
---|
455 | See HTML docs for examples.
|
---|
456 |
|
---|
457 | Input parameters:
|
---|
458 | State - structure which stores algorithm state between subsequent
|
---|
459 | calls and which is used for reverse communication. Must be
|
---|
460 | initialized with MinLMXXX call first.
|
---|
461 |
|
---|
462 | If subroutine returned False, iterative algorithm has converged.
|
---|
463 |
|
---|
464 | If subroutine returned True, then:
|
---|
465 | * if State.NeedF=True, - function value F at State.X[0..N-1]
|
---|
466 | is required
|
---|
467 | * if State.NeedFG=True - function value F and gradient G
|
---|
468 | are required
|
---|
469 | * if State.NeedFiJ=True - function vector f[i] and Jacobi matrix J
|
---|
470 | are required
|
---|
471 | * if State.NeedFGH=True - function value F, gradient G and Hesian H
|
---|
472 | are required
|
---|
473 | * if State.XUpdated=True - algorithm reports about new iteration,
|
---|
474 | State.X contains current point,
|
---|
475 | State.F contains function value.
|
---|
476 |
|
---|
477 | One and only one of this fields can be set at time.
|
---|
478 |
|
---|
479 | Results are stored:
|
---|
480 | * function value - in MinLMState.F
|
---|
481 | * gradient - in MinLMState.G[0..N-1]
|
---|
482 | * Jacobi matrix - in MinLMState.J[0..M-1,0..N-1]
|
---|
483 | * Hessian - in MinLMState.H[0..N-1,0..N-1]
|
---|
484 |
|
---|
485 | -- ALGLIB --
|
---|
486 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
487 | *************************************************************************/
|
---|
488 | public static bool minlmiteration(ref minlmstate state)
|
---|
489 | {
|
---|
490 | bool result = new bool();
|
---|
491 | int n = 0;
|
---|
492 | int m = 0;
|
---|
493 | int i = 0;
|
---|
494 | double stepnorm = 0;
|
---|
495 | bool spd = new bool();
|
---|
496 | double fbase = 0;
|
---|
497 | double fnew = 0;
|
---|
498 | double lambda = 0;
|
---|
499 | double nu = 0;
|
---|
500 | double lambdaup = 0;
|
---|
501 | double lambdadown = 0;
|
---|
502 | int lbfgsflags = 0;
|
---|
503 | double v = 0;
|
---|
504 | int i_ = 0;
|
---|
505 |
|
---|
506 |
|
---|
507 | //
|
---|
508 | // Reverse communication preparations
|
---|
509 | // I know it looks ugly, but it works the same way
|
---|
510 | // anywhere from C++ to Python.
|
---|
511 | //
|
---|
512 | // This code initializes locals by:
|
---|
513 | // * random values determined during code
|
---|
514 | // generation - on first subroutine call
|
---|
515 | // * values from previous call - on subsequent calls
|
---|
516 | //
|
---|
517 | if( state.rstate.stage>=0 )
|
---|
518 | {
|
---|
519 | n = state.rstate.ia[0];
|
---|
520 | m = state.rstate.ia[1];
|
---|
521 | i = state.rstate.ia[2];
|
---|
522 | lbfgsflags = state.rstate.ia[3];
|
---|
523 | spd = state.rstate.ba[0];
|
---|
524 | stepnorm = state.rstate.ra[0];
|
---|
525 | fbase = state.rstate.ra[1];
|
---|
526 | fnew = state.rstate.ra[2];
|
---|
527 | lambda = state.rstate.ra[3];
|
---|
528 | nu = state.rstate.ra[4];
|
---|
529 | lambdaup = state.rstate.ra[5];
|
---|
530 | lambdadown = state.rstate.ra[6];
|
---|
531 | v = state.rstate.ra[7];
|
---|
532 | }
|
---|
533 | else
|
---|
534 | {
|
---|
535 | n = -983;
|
---|
536 | m = -989;
|
---|
537 | i = -834;
|
---|
538 | lbfgsflags = 900;
|
---|
539 | spd = true;
|
---|
540 | stepnorm = 364;
|
---|
541 | fbase = 214;
|
---|
542 | fnew = -338;
|
---|
543 | lambda = -686;
|
---|
544 | nu = 912;
|
---|
545 | lambdaup = 585;
|
---|
546 | lambdadown = 497;
|
---|
547 | v = -271;
|
---|
548 | }
|
---|
549 | if( state.rstate.stage==0 )
|
---|
550 | {
|
---|
551 | goto lbl_0;
|
---|
552 | }
|
---|
553 | if( state.rstate.stage==1 )
|
---|
554 | {
|
---|
555 | goto lbl_1;
|
---|
556 | }
|
---|
557 | if( state.rstate.stage==2 )
|
---|
558 | {
|
---|
559 | goto lbl_2;
|
---|
560 | }
|
---|
561 | if( state.rstate.stage==3 )
|
---|
562 | {
|
---|
563 | goto lbl_3;
|
---|
564 | }
|
---|
565 | if( state.rstate.stage==4 )
|
---|
566 | {
|
---|
567 | goto lbl_4;
|
---|
568 | }
|
---|
569 | if( state.rstate.stage==5 )
|
---|
570 | {
|
---|
571 | goto lbl_5;
|
---|
572 | }
|
---|
573 | if( state.rstate.stage==6 )
|
---|
574 | {
|
---|
575 | goto lbl_6;
|
---|
576 | }
|
---|
577 | if( state.rstate.stage==7 )
|
---|
578 | {
|
---|
579 | goto lbl_7;
|
---|
580 | }
|
---|
581 | if( state.rstate.stage==8 )
|
---|
582 | {
|
---|
583 | goto lbl_8;
|
---|
584 | }
|
---|
585 | if( state.rstate.stage==9 )
|
---|
586 | {
|
---|
587 | goto lbl_9;
|
---|
588 | }
|
---|
589 | if( state.rstate.stage==10 )
|
---|
590 | {
|
---|
591 | goto lbl_10;
|
---|
592 | }
|
---|
593 | if( state.rstate.stage==11 )
|
---|
594 | {
|
---|
595 | goto lbl_11;
|
---|
596 | }
|
---|
597 | if( state.rstate.stage==12 )
|
---|
598 | {
|
---|
599 | goto lbl_12;
|
---|
600 | }
|
---|
601 | if( state.rstate.stage==13 )
|
---|
602 | {
|
---|
603 | goto lbl_13;
|
---|
604 | }
|
---|
605 | if( state.rstate.stage==14 )
|
---|
606 | {
|
---|
607 | goto lbl_14;
|
---|
608 | }
|
---|
609 | if( state.rstate.stage==15 )
|
---|
610 | {
|
---|
611 | goto lbl_15;
|
---|
612 | }
|
---|
613 |
|
---|
614 | //
|
---|
615 | // Routine body
|
---|
616 | //
|
---|
617 | System.Diagnostics.Debug.Assert(state.usermode==lmmodefj | state.usermode==lmmodefgj | state.usermode==lmmodefgh, "LM: internal error");
|
---|
618 | if( state.wrongparams )
|
---|
619 | {
|
---|
620 | state.repterminationtype = -1;
|
---|
621 | result = false;
|
---|
622 | return result;
|
---|
623 | }
|
---|
624 |
|
---|
625 | //
|
---|
626 | // prepare params
|
---|
627 | //
|
---|
628 | n = state.n;
|
---|
629 | m = state.m;
|
---|
630 | lambdaup = 20;
|
---|
631 | lambdadown = 0.5;
|
---|
632 | nu = 1;
|
---|
633 | lbfgsflags = 0;
|
---|
634 |
|
---|
635 | //
|
---|
636 | // if we have F and G
|
---|
637 | //
|
---|
638 | if( ! ((state.usermode==lmmodefgj | state.usermode==lmmodefgh) & state.flags/lmflagnoprelbfgs%2==0) )
|
---|
639 | {
|
---|
640 | goto lbl_16;
|
---|
641 | }
|
---|
642 |
|
---|
643 | //
|
---|
644 | // First stage of the hybrid algorithm: LBFGS
|
---|
645 | //
|
---|
646 | minlbfgs.minlbfgscreate(n, Math.Min(n, lmprelbfgsm), ref state.x, ref state.internalstate);
|
---|
647 | minlbfgs.minlbfgssetcond(ref state.internalstate, 0, 0, 0, Math.Max(5, n));
|
---|
648 | minlbfgs.minlbfgssetxrep(ref state.internalstate, state.xrep);
|
---|
649 | minlbfgs.minlbfgssetstpmax(ref state.internalstate, state.stpmax);
|
---|
650 | lbl_18:
|
---|
651 | if( ! minlbfgs.minlbfgsiteration(ref state.internalstate) )
|
---|
652 | {
|
---|
653 | goto lbl_19;
|
---|
654 | }
|
---|
655 | if( ! state.internalstate.needfg )
|
---|
656 | {
|
---|
657 | goto lbl_20;
|
---|
658 | }
|
---|
659 |
|
---|
660 | //
|
---|
661 | // RComm
|
---|
662 | //
|
---|
663 | for(i_=0; i_<=n-1;i_++)
|
---|
664 | {
|
---|
665 | state.x[i_] = state.internalstate.x[i_];
|
---|
666 | }
|
---|
667 | lmclearrequestfields(ref state);
|
---|
668 | state.needfg = true;
|
---|
669 | state.rstate.stage = 0;
|
---|
670 | goto lbl_rcomm;
|
---|
671 | lbl_0:
|
---|
672 | state.repnfunc = state.repnfunc+1;
|
---|
673 | state.repngrad = state.repngrad+1;
|
---|
674 |
|
---|
675 | //
|
---|
676 | // Call LBFGS
|
---|
677 | //
|
---|
678 | state.internalstate.f = state.f;
|
---|
679 | for(i_=0; i_<=n-1;i_++)
|
---|
680 | {
|
---|
681 | state.internalstate.g[i_] = state.g[i_];
|
---|
682 | }
|
---|
683 | lbl_20:
|
---|
684 | if( ! (state.internalstate.xupdated & state.xrep) )
|
---|
685 | {
|
---|
686 | goto lbl_22;
|
---|
687 | }
|
---|
688 | lmclearrequestfields(ref state);
|
---|
689 | state.f = state.internalstate.f;
|
---|
690 | for(i_=0; i_<=n-1;i_++)
|
---|
691 | {
|
---|
692 | state.x[i_] = state.internalstate.x[i_];
|
---|
693 | }
|
---|
694 | state.xupdated = true;
|
---|
695 | state.rstate.stage = 1;
|
---|
696 | goto lbl_rcomm;
|
---|
697 | lbl_1:
|
---|
698 | lbl_22:
|
---|
699 | goto lbl_18;
|
---|
700 | lbl_19:
|
---|
701 | minlbfgs.minlbfgsresults(ref state.internalstate, ref state.x, ref state.internalrep);
|
---|
702 | goto lbl_17;
|
---|
703 | lbl_16:
|
---|
704 |
|
---|
705 | //
|
---|
706 | // No first stage.
|
---|
707 | // However, we may need to report initial point
|
---|
708 | //
|
---|
709 | if( ! state.xrep )
|
---|
710 | {
|
---|
711 | goto lbl_24;
|
---|
712 | }
|
---|
713 | lmclearrequestfields(ref state);
|
---|
714 | state.needf = true;
|
---|
715 | state.rstate.stage = 2;
|
---|
716 | goto lbl_rcomm;
|
---|
717 | lbl_2:
|
---|
718 | lmclearrequestfields(ref state);
|
---|
719 | state.xupdated = true;
|
---|
720 | state.rstate.stage = 3;
|
---|
721 | goto lbl_rcomm;
|
---|
722 | lbl_3:
|
---|
723 | lbl_24:
|
---|
724 | lbl_17:
|
---|
725 |
|
---|
726 | //
|
---|
727 | // Second stage of the hybrid algorithm: LM
|
---|
728 | // Initialize quadratic model.
|
---|
729 | //
|
---|
730 | if( state.usermode!=lmmodefgh )
|
---|
731 | {
|
---|
732 | goto lbl_26;
|
---|
733 | }
|
---|
734 |
|
---|
735 | //
|
---|
736 | // RComm
|
---|
737 | //
|
---|
738 | lmclearrequestfields(ref state);
|
---|
739 | state.needfgh = true;
|
---|
740 | state.rstate.stage = 4;
|
---|
741 | goto lbl_rcomm;
|
---|
742 | lbl_4:
|
---|
743 | state.repnfunc = state.repnfunc+1;
|
---|
744 | state.repngrad = state.repngrad+1;
|
---|
745 | state.repnhess = state.repnhess+1;
|
---|
746 |
|
---|
747 | //
|
---|
748 | // generate raw quadratic model
|
---|
749 | //
|
---|
750 | ablas.rmatrixcopy(n, n, ref state.h, 0, 0, ref state.rawmodel, 0, 0);
|
---|
751 | for(i_=0; i_<=n-1;i_++)
|
---|
752 | {
|
---|
753 | state.gbase[i_] = state.g[i_];
|
---|
754 | }
|
---|
755 | fbase = state.f;
|
---|
756 | lbl_26:
|
---|
757 | if( ! (state.usermode==lmmodefgj | state.usermode==lmmodefj) )
|
---|
758 | {
|
---|
759 | goto lbl_28;
|
---|
760 | }
|
---|
761 |
|
---|
762 | //
|
---|
763 | // RComm
|
---|
764 | //
|
---|
765 | lmclearrequestfields(ref state);
|
---|
766 | state.needfij = true;
|
---|
767 | state.rstate.stage = 5;
|
---|
768 | goto lbl_rcomm;
|
---|
769 | lbl_5:
|
---|
770 | state.repnfunc = state.repnfunc+1;
|
---|
771 | state.repnjac = state.repnjac+1;
|
---|
772 |
|
---|
773 | //
|
---|
774 | // generate raw quadratic model
|
---|
775 | //
|
---|
776 | ablas.rmatrixgemm(n, n, m, 2.0, ref state.j, 0, 0, 1, ref state.j, 0, 0, 0, 0.0, ref state.rawmodel, 0, 0);
|
---|
777 | ablas.rmatrixmv(n, m, ref state.j, 0, 0, 1, ref state.fi, 0, ref state.gbase, 0);
|
---|
778 | for(i_=0; i_<=n-1;i_++)
|
---|
779 | {
|
---|
780 | state.gbase[i_] = 2*state.gbase[i_];
|
---|
781 | }
|
---|
782 | fbase = 0.0;
|
---|
783 | for(i_=0; i_<=m-1;i_++)
|
---|
784 | {
|
---|
785 | fbase += state.fi[i_]*state.fi[i_];
|
---|
786 | }
|
---|
787 | lbl_28:
|
---|
788 | lambda = 0.001;
|
---|
789 | lbl_30:
|
---|
790 | if( false )
|
---|
791 | {
|
---|
792 | goto lbl_31;
|
---|
793 | }
|
---|
794 |
|
---|
795 | //
|
---|
796 | // 1. Model = RawModel+lambda*I
|
---|
797 | // 2. Try to solve (RawModel+Lambda*I)*dx = -g.
|
---|
798 | // Increase lambda if left part is not positive definite.
|
---|
799 | //
|
---|
800 | for(i=0; i<=n-1; i++)
|
---|
801 | {
|
---|
802 | for(i_=0; i_<=n-1;i_++)
|
---|
803 | {
|
---|
804 | state.model[i,i_] = state.rawmodel[i,i_];
|
---|
805 | }
|
---|
806 | state.model[i,i] = state.model[i,i]+lambda;
|
---|
807 | }
|
---|
808 | spd = trfac.spdmatrixcholesky(ref state.model, n, true);
|
---|
809 | state.repncholesky = state.repncholesky+1;
|
---|
810 | if( spd )
|
---|
811 | {
|
---|
812 | goto lbl_32;
|
---|
813 | }
|
---|
814 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
815 | {
|
---|
816 | goto lbl_34;
|
---|
817 | }
|
---|
818 | goto lbl_30;
|
---|
819 | goto lbl_35;
|
---|
820 | lbl_34:
|
---|
821 | state.repterminationtype = 7;
|
---|
822 | lmclearrequestfields(ref state);
|
---|
823 | state.needf = true;
|
---|
824 | state.rstate.stage = 6;
|
---|
825 | goto lbl_rcomm;
|
---|
826 | lbl_6:
|
---|
827 | goto lbl_31;
|
---|
828 | lbl_35:
|
---|
829 | lbl_32:
|
---|
830 | densesolver.spdmatrixcholeskysolve(ref state.model, n, true, ref state.gbase, ref state.solverinfo, ref state.solverrep, ref state.xdir);
|
---|
831 | if( state.solverinfo>=0 )
|
---|
832 | {
|
---|
833 | goto lbl_36;
|
---|
834 | }
|
---|
835 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
836 | {
|
---|
837 | goto lbl_38;
|
---|
838 | }
|
---|
839 | goto lbl_30;
|
---|
840 | goto lbl_39;
|
---|
841 | lbl_38:
|
---|
842 | state.repterminationtype = 7;
|
---|
843 | lmclearrequestfields(ref state);
|
---|
844 | state.needf = true;
|
---|
845 | state.rstate.stage = 7;
|
---|
846 | goto lbl_rcomm;
|
---|
847 | lbl_7:
|
---|
848 | goto lbl_31;
|
---|
849 | lbl_39:
|
---|
850 | lbl_36:
|
---|
851 | for(i_=0; i_<=n-1;i_++)
|
---|
852 | {
|
---|
853 | state.xdir[i_] = -1*state.xdir[i_];
|
---|
854 | }
|
---|
855 |
|
---|
856 | //
|
---|
857 | // Candidate lambda is found.
|
---|
858 | // 1. Save old w in WBase
|
---|
859 | // 1. Test some stopping criterions
|
---|
860 | // 2. If error(w+wdir)>error(w), increase lambda
|
---|
861 | //
|
---|
862 | for(i_=0; i_<=n-1;i_++)
|
---|
863 | {
|
---|
864 | state.xprev[i_] = state.x[i_];
|
---|
865 | }
|
---|
866 | state.fprev = state.f;
|
---|
867 | for(i_=0; i_<=n-1;i_++)
|
---|
868 | {
|
---|
869 | state.xbase[i_] = state.x[i_];
|
---|
870 | }
|
---|
871 | for(i_=0; i_<=n-1;i_++)
|
---|
872 | {
|
---|
873 | state.x[i_] = state.x[i_] + state.xdir[i_];
|
---|
874 | }
|
---|
875 | stepnorm = 0.0;
|
---|
876 | for(i_=0; i_<=n-1;i_++)
|
---|
877 | {
|
---|
878 | stepnorm += state.xdir[i_]*state.xdir[i_];
|
---|
879 | }
|
---|
880 | stepnorm = Math.Sqrt(stepnorm);
|
---|
881 | if( ! ((double)(state.stpmax)>(double)(0) & (double)(stepnorm)>(double)(state.stpmax)) )
|
---|
882 | {
|
---|
883 | goto lbl_40;
|
---|
884 | }
|
---|
885 |
|
---|
886 | //
|
---|
887 | // Step is larger than the limit,
|
---|
888 | // larger lambda is needed
|
---|
889 | //
|
---|
890 | for(i_=0; i_<=n-1;i_++)
|
---|
891 | {
|
---|
892 | state.x[i_] = state.xbase[i_];
|
---|
893 | }
|
---|
894 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
895 | {
|
---|
896 | goto lbl_42;
|
---|
897 | }
|
---|
898 | goto lbl_30;
|
---|
899 | goto lbl_43;
|
---|
900 | lbl_42:
|
---|
901 | state.repterminationtype = 7;
|
---|
902 | for(i_=0; i_<=n-1;i_++)
|
---|
903 | {
|
---|
904 | state.x[i_] = state.xprev[i_];
|
---|
905 | }
|
---|
906 | lmclearrequestfields(ref state);
|
---|
907 | state.needf = true;
|
---|
908 | state.rstate.stage = 8;
|
---|
909 | goto lbl_rcomm;
|
---|
910 | lbl_8:
|
---|
911 | goto lbl_31;
|
---|
912 | lbl_43:
|
---|
913 | lbl_40:
|
---|
914 | lmclearrequestfields(ref state);
|
---|
915 | state.needf = true;
|
---|
916 | state.rstate.stage = 9;
|
---|
917 | goto lbl_rcomm;
|
---|
918 | lbl_9:
|
---|
919 | state.repnfunc = state.repnfunc+1;
|
---|
920 | fnew = state.f;
|
---|
921 | if( (double)(fnew)<=(double)(fbase) )
|
---|
922 | {
|
---|
923 | goto lbl_44;
|
---|
924 | }
|
---|
925 |
|
---|
926 | //
|
---|
927 | // restore state and continue search for lambda
|
---|
928 | //
|
---|
929 | for(i_=0; i_<=n-1;i_++)
|
---|
930 | {
|
---|
931 | state.x[i_] = state.xbase[i_];
|
---|
932 | }
|
---|
933 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
934 | {
|
---|
935 | goto lbl_46;
|
---|
936 | }
|
---|
937 | goto lbl_30;
|
---|
938 | goto lbl_47;
|
---|
939 | lbl_46:
|
---|
940 | state.repterminationtype = 7;
|
---|
941 | for(i_=0; i_<=n-1;i_++)
|
---|
942 | {
|
---|
943 | state.x[i_] = state.xprev[i_];
|
---|
944 | }
|
---|
945 | lmclearrequestfields(ref state);
|
---|
946 | state.needf = true;
|
---|
947 | state.rstate.stage = 10;
|
---|
948 | goto lbl_rcomm;
|
---|
949 | lbl_10:
|
---|
950 | goto lbl_31;
|
---|
951 | lbl_47:
|
---|
952 | lbl_44:
|
---|
953 | if( ! ((double)(state.stpmax)==(double)(0) & (state.usermode==lmmodefgj | state.usermode==lmmodefgh) & state.flags/lmflagnointlbfgs%2==0) )
|
---|
954 | {
|
---|
955 | goto lbl_48;
|
---|
956 | }
|
---|
957 |
|
---|
958 | //
|
---|
959 | // Optimize using LBFGS, with inv(cholesky(H)) as preconditioner.
|
---|
960 | //
|
---|
961 | // It is possible only when StpMax=0, because we can't guarantee
|
---|
962 | // that step remains bounded when preconditioner is used (we need
|
---|
963 | // SVD decomposition to do that, which is too slow).
|
---|
964 | //
|
---|
965 | matinv.rmatrixtrinverse(ref state.model, n, true, false, ref state.invinfo, ref state.invrep);
|
---|
966 | if( state.invinfo<=0 )
|
---|
967 | {
|
---|
968 | goto lbl_50;
|
---|
969 | }
|
---|
970 |
|
---|
971 | //
|
---|
972 | // if matrix can be inverted, use it.
|
---|
973 | // just silently move to next iteration otherwise.
|
---|
974 | // (will be very, very rare, mostly for specially
|
---|
975 | // designed near-degenerate tasks)
|
---|
976 | //
|
---|
977 | for(i_=0; i_<=n-1;i_++)
|
---|
978 | {
|
---|
979 | state.xbase[i_] = state.x[i_];
|
---|
980 | }
|
---|
981 | for(i=0; i<=n-1; i++)
|
---|
982 | {
|
---|
983 | state.xprec[i] = 0;
|
---|
984 | }
|
---|
985 | minlbfgs.minlbfgscreatex(n, Math.Min(n, lmintlbfgsits), ref state.xprec, lbfgsflags, ref state.internalstate);
|
---|
986 | minlbfgs.minlbfgssetcond(ref state.internalstate, 0, 0, 0, lmintlbfgsits);
|
---|
987 | lbl_52:
|
---|
988 | if( ! minlbfgs.minlbfgsiteration(ref state.internalstate) )
|
---|
989 | {
|
---|
990 | goto lbl_53;
|
---|
991 | }
|
---|
992 |
|
---|
993 | //
|
---|
994 | // convert XPrec to unpreconditioned form, then call RComm.
|
---|
995 | //
|
---|
996 | for(i=0; i<=n-1; i++)
|
---|
997 | {
|
---|
998 | v = 0.0;
|
---|
999 | for(i_=i; i_<=n-1;i_++)
|
---|
1000 | {
|
---|
1001 | v += state.internalstate.x[i_]*state.model[i,i_];
|
---|
1002 | }
|
---|
1003 | state.x[i] = state.xbase[i]+v;
|
---|
1004 | }
|
---|
1005 | lmclearrequestfields(ref state);
|
---|
1006 | state.needfg = true;
|
---|
1007 | state.rstate.stage = 11;
|
---|
1008 | goto lbl_rcomm;
|
---|
1009 | lbl_11:
|
---|
1010 | state.repnfunc = state.repnfunc+1;
|
---|
1011 | state.repngrad = state.repngrad+1;
|
---|
1012 |
|
---|
1013 | //
|
---|
1014 | // 1. pass State.F to State.InternalState.F
|
---|
1015 | // 2. convert gradient back to preconditioned form
|
---|
1016 | //
|
---|
1017 | state.internalstate.f = state.f;
|
---|
1018 | for(i=0; i<=n-1; i++)
|
---|
1019 | {
|
---|
1020 | state.internalstate.g[i] = 0;
|
---|
1021 | }
|
---|
1022 | for(i=0; i<=n-1; i++)
|
---|
1023 | {
|
---|
1024 | v = state.g[i];
|
---|
1025 | for(i_=i; i_<=n-1;i_++)
|
---|
1026 | {
|
---|
1027 | state.internalstate.g[i_] = state.internalstate.g[i_] + v*state.model[i,i_];
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 | //
|
---|
1032 | // next iteration
|
---|
1033 | //
|
---|
1034 | goto lbl_52;
|
---|
1035 | lbl_53:
|
---|
1036 |
|
---|
1037 | //
|
---|
1038 | // change LBFGS flags to NoRealloc.
|
---|
1039 | // L-BFGS subroutine will use memory allocated from previous run.
|
---|
1040 | // it is possible since all subsequent calls will be with same N/M.
|
---|
1041 | //
|
---|
1042 | lbfgsflags = lbfgsnorealloc;
|
---|
1043 |
|
---|
1044 | //
|
---|
1045 | // back to unpreconditioned X
|
---|
1046 | //
|
---|
1047 | minlbfgs.minlbfgsresults(ref state.internalstate, ref state.xprec, ref state.internalrep);
|
---|
1048 | for(i=0; i<=n-1; i++)
|
---|
1049 | {
|
---|
1050 | v = 0.0;
|
---|
1051 | for(i_=i; i_<=n-1;i_++)
|
---|
1052 | {
|
---|
1053 | v += state.xprec[i_]*state.model[i,i_];
|
---|
1054 | }
|
---|
1055 | state.x[i] = state.xbase[i]+v;
|
---|
1056 | }
|
---|
1057 | lbl_50:
|
---|
1058 | lbl_48:
|
---|
1059 |
|
---|
1060 | //
|
---|
1061 | // Composite iteration is almost over:
|
---|
1062 | // * accept new position.
|
---|
1063 | // * rebuild quadratic model
|
---|
1064 | //
|
---|
1065 | state.repiterationscount = state.repiterationscount+1;
|
---|
1066 | if( state.usermode!=lmmodefgh )
|
---|
1067 | {
|
---|
1068 | goto lbl_54;
|
---|
1069 | }
|
---|
1070 | lmclearrequestfields(ref state);
|
---|
1071 | state.needfgh = true;
|
---|
1072 | state.rstate.stage = 12;
|
---|
1073 | goto lbl_rcomm;
|
---|
1074 | lbl_12:
|
---|
1075 | state.repnfunc = state.repnfunc+1;
|
---|
1076 | state.repngrad = state.repngrad+1;
|
---|
1077 | state.repnhess = state.repnhess+1;
|
---|
1078 | ablas.rmatrixcopy(n, n, ref state.h, 0, 0, ref state.rawmodel, 0, 0);
|
---|
1079 | for(i_=0; i_<=n-1;i_++)
|
---|
1080 | {
|
---|
1081 | state.gbase[i_] = state.g[i_];
|
---|
1082 | }
|
---|
1083 | fnew = state.f;
|
---|
1084 | lbl_54:
|
---|
1085 | if( ! (state.usermode==lmmodefgj | state.usermode==lmmodefj) )
|
---|
1086 | {
|
---|
1087 | goto lbl_56;
|
---|
1088 | }
|
---|
1089 | lmclearrequestfields(ref state);
|
---|
1090 | state.needfij = true;
|
---|
1091 | state.rstate.stage = 13;
|
---|
1092 | goto lbl_rcomm;
|
---|
1093 | lbl_13:
|
---|
1094 | state.repnfunc = state.repnfunc+1;
|
---|
1095 | state.repnjac = state.repnjac+1;
|
---|
1096 | ablas.rmatrixgemm(n, n, m, 2.0, ref state.j, 0, 0, 1, ref state.j, 0, 0, 0, 0.0, ref state.rawmodel, 0, 0);
|
---|
1097 | ablas.rmatrixmv(n, m, ref state.j, 0, 0, 1, ref state.fi, 0, ref state.gbase, 0);
|
---|
1098 | for(i_=0; i_<=n-1;i_++)
|
---|
1099 | {
|
---|
1100 | state.gbase[i_] = 2*state.gbase[i_];
|
---|
1101 | }
|
---|
1102 | fnew = 0.0;
|
---|
1103 | for(i_=0; i_<=m-1;i_++)
|
---|
1104 | {
|
---|
1105 | fnew += state.fi[i_]*state.fi[i_];
|
---|
1106 | }
|
---|
1107 | lbl_56:
|
---|
1108 |
|
---|
1109 | //
|
---|
1110 | // Stopping conditions
|
---|
1111 | //
|
---|
1112 | for(i_=0; i_<=n-1;i_++)
|
---|
1113 | {
|
---|
1114 | state.work[i_] = state.xprev[i_];
|
---|
1115 | }
|
---|
1116 | for(i_=0; i_<=n-1;i_++)
|
---|
1117 | {
|
---|
1118 | state.work[i_] = state.work[i_] - state.x[i_];
|
---|
1119 | }
|
---|
1120 | stepnorm = 0.0;
|
---|
1121 | for(i_=0; i_<=n-1;i_++)
|
---|
1122 | {
|
---|
1123 | stepnorm += state.work[i_]*state.work[i_];
|
---|
1124 | }
|
---|
1125 | stepnorm = Math.Sqrt(stepnorm);
|
---|
1126 | if( (double)(stepnorm)<=(double)(state.epsx) )
|
---|
1127 | {
|
---|
1128 | state.repterminationtype = 2;
|
---|
1129 | goto lbl_31;
|
---|
1130 | }
|
---|
1131 | if( state.repiterationscount>=state.maxits & state.maxits>0 )
|
---|
1132 | {
|
---|
1133 | state.repterminationtype = 5;
|
---|
1134 | goto lbl_31;
|
---|
1135 | }
|
---|
1136 | v = 0.0;
|
---|
1137 | for(i_=0; i_<=n-1;i_++)
|
---|
1138 | {
|
---|
1139 | v += state.gbase[i_]*state.gbase[i_];
|
---|
1140 | }
|
---|
1141 | v = Math.Sqrt(v);
|
---|
1142 | if( (double)(v)<=(double)(state.epsg) )
|
---|
1143 | {
|
---|
1144 | state.repterminationtype = 4;
|
---|
1145 | goto lbl_31;
|
---|
1146 | }
|
---|
1147 | if( (double)(Math.Abs(fnew-fbase))<=(double)(state.epsf*Math.Max(1, Math.Max(Math.Abs(fnew), Math.Abs(fbase)))) )
|
---|
1148 | {
|
---|
1149 | state.repterminationtype = 1;
|
---|
1150 | goto lbl_31;
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 | //
|
---|
1154 | // Now, iteration is finally over:
|
---|
1155 | // * update FBase
|
---|
1156 | // * decrease lambda
|
---|
1157 | // * report new iteration
|
---|
1158 | //
|
---|
1159 | if( ! state.xrep )
|
---|
1160 | {
|
---|
1161 | goto lbl_58;
|
---|
1162 | }
|
---|
1163 | lmclearrequestfields(ref state);
|
---|
1164 | state.xupdated = true;
|
---|
1165 | state.f = fnew;
|
---|
1166 | state.rstate.stage = 14;
|
---|
1167 | goto lbl_rcomm;
|
---|
1168 | lbl_14:
|
---|
1169 | lbl_58:
|
---|
1170 | fbase = fnew;
|
---|
1171 | decreaselambda(ref lambda, ref nu, lambdadown);
|
---|
1172 | goto lbl_30;
|
---|
1173 | lbl_31:
|
---|
1174 |
|
---|
1175 | //
|
---|
1176 | // final point is reported
|
---|
1177 | //
|
---|
1178 | if( ! state.xrep )
|
---|
1179 | {
|
---|
1180 | goto lbl_60;
|
---|
1181 | }
|
---|
1182 | lmclearrequestfields(ref state);
|
---|
1183 | state.xupdated = true;
|
---|
1184 | state.f = fnew;
|
---|
1185 | state.rstate.stage = 15;
|
---|
1186 | goto lbl_rcomm;
|
---|
1187 | lbl_15:
|
---|
1188 | lbl_60:
|
---|
1189 | result = false;
|
---|
1190 | return result;
|
---|
1191 |
|
---|
1192 | //
|
---|
1193 | // Saving state
|
---|
1194 | //
|
---|
1195 | lbl_rcomm:
|
---|
1196 | result = true;
|
---|
1197 | state.rstate.ia[0] = n;
|
---|
1198 | state.rstate.ia[1] = m;
|
---|
1199 | state.rstate.ia[2] = i;
|
---|
1200 | state.rstate.ia[3] = lbfgsflags;
|
---|
1201 | state.rstate.ba[0] = spd;
|
---|
1202 | state.rstate.ra[0] = stepnorm;
|
---|
1203 | state.rstate.ra[1] = fbase;
|
---|
1204 | state.rstate.ra[2] = fnew;
|
---|
1205 | state.rstate.ra[3] = lambda;
|
---|
1206 | state.rstate.ra[4] = nu;
|
---|
1207 | state.rstate.ra[5] = lambdaup;
|
---|
1208 | state.rstate.ra[6] = lambdadown;
|
---|
1209 | state.rstate.ra[7] = v;
|
---|
1210 | return result;
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 |
|
---|
1214 | /*************************************************************************
|
---|
1215 | Levenberg-Marquardt algorithm results
|
---|
1216 |
|
---|
1217 | Called after MinLMIteration returned False.
|
---|
1218 |
|
---|
1219 | Input parameters:
|
---|
1220 | State - algorithm state (used by MinLMIteration).
|
---|
1221 |
|
---|
1222 | Output parameters:
|
---|
1223 | X - array[0..N-1], solution
|
---|
1224 | Rep - optimization report:
|
---|
1225 | * Rep.TerminationType completetion code:
|
---|
1226 | * -1 incorrect parameters were specified
|
---|
1227 | * 1 relative function improvement is no more than
|
---|
1228 | EpsF.
|
---|
1229 | * 2 relative step is no more than EpsX.
|
---|
1230 | * 4 gradient is no more than EpsG.
|
---|
1231 | * 5 MaxIts steps was taken
|
---|
1232 | * 7 stopping conditions are too stringent,
|
---|
1233 | further improvement is impossible
|
---|
1234 | * Rep.IterationsCount contains iterations count
|
---|
1235 | * Rep.NFunc - number of function calculations
|
---|
1236 | * Rep.NJac - number of Jacobi matrix calculations
|
---|
1237 | * Rep.NGrad - number of gradient calculations
|
---|
1238 | * Rep.NHess - number of Hessian calculations
|
---|
1239 | * Rep.NCholesky - number of Cholesky decomposition calculations
|
---|
1240 |
|
---|
1241 | -- ALGLIB --
|
---|
1242 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
1243 | *************************************************************************/
|
---|
1244 | public static void minlmresults(ref minlmstate state,
|
---|
1245 | ref double[] x,
|
---|
1246 | ref minlmreport rep)
|
---|
1247 | {
|
---|
1248 | int i_ = 0;
|
---|
1249 |
|
---|
1250 | x = new double[state.n-1+1];
|
---|
1251 | for(i_=0; i_<=state.n-1;i_++)
|
---|
1252 | {
|
---|
1253 | x[i_] = state.x[i_];
|
---|
1254 | }
|
---|
1255 | rep.iterationscount = state.repiterationscount;
|
---|
1256 | rep.terminationtype = state.repterminationtype;
|
---|
1257 | rep.nfunc = state.repnfunc;
|
---|
1258 | rep.njac = state.repnjac;
|
---|
1259 | rep.ngrad = state.repngrad;
|
---|
1260 | rep.nhess = state.repnhess;
|
---|
1261 | rep.ncholesky = state.repncholesky;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 |
|
---|
1265 | /*************************************************************************
|
---|
1266 | Prepare internal structures (except for RComm).
|
---|
1267 |
|
---|
1268 | Note: M must be zero for FGH mode, non-zero for FJ/FGJ mode.
|
---|
1269 | *************************************************************************/
|
---|
1270 | private static void lmprepare(int n,
|
---|
1271 | int m,
|
---|
1272 | bool havegrad,
|
---|
1273 | ref minlmstate state)
|
---|
1274 | {
|
---|
1275 | state.repiterationscount = 0;
|
---|
1276 | state.repterminationtype = 0;
|
---|
1277 | state.repnfunc = 0;
|
---|
1278 | state.repnjac = 0;
|
---|
1279 | state.repngrad = 0;
|
---|
1280 | state.repnhess = 0;
|
---|
1281 | state.repncholesky = 0;
|
---|
1282 | if( n<=0 | m<0 )
|
---|
1283 | {
|
---|
1284 | return;
|
---|
1285 | }
|
---|
1286 | if( havegrad )
|
---|
1287 | {
|
---|
1288 | state.g = new double[n-1+1];
|
---|
1289 | }
|
---|
1290 | if( m!=0 )
|
---|
1291 | {
|
---|
1292 | state.j = new double[m-1+1, n-1+1];
|
---|
1293 | state.fi = new double[m-1+1];
|
---|
1294 | state.h = new double[0+1, 0+1];
|
---|
1295 | }
|
---|
1296 | else
|
---|
1297 | {
|
---|
1298 | state.j = new double[0+1, 0+1];
|
---|
1299 | state.fi = new double[0+1];
|
---|
1300 | state.h = new double[n-1+1, n-1+1];
|
---|
1301 | }
|
---|
1302 | state.x = new double[n-1+1];
|
---|
1303 | state.rawmodel = new double[n-1+1, n-1+1];
|
---|
1304 | state.model = new double[n-1+1, n-1+1];
|
---|
1305 | state.xbase = new double[n-1+1];
|
---|
1306 | state.xprec = new double[n-1+1];
|
---|
1307 | state.gbase = new double[n-1+1];
|
---|
1308 | state.xdir = new double[n-1+1];
|
---|
1309 | state.xprev = new double[n-1+1];
|
---|
1310 | state.work = new double[Math.Max(n, m)+1];
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 |
|
---|
1314 | /*************************************************************************
|
---|
1315 | Clears request fileds (to be sure that we don't forgot to clear something)
|
---|
1316 | *************************************************************************/
|
---|
1317 | private static void lmclearrequestfields(ref minlmstate state)
|
---|
1318 | {
|
---|
1319 | state.needf = false;
|
---|
1320 | state.needfg = false;
|
---|
1321 | state.needfgh = false;
|
---|
1322 | state.needfij = false;
|
---|
1323 | state.xupdated = false;
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 |
|
---|
1327 | /*************************************************************************
|
---|
1328 | Increases lambda, returns False when there is a danger of overflow
|
---|
1329 | *************************************************************************/
|
---|
1330 | private static bool increaselambda(ref double lambda,
|
---|
1331 | ref double nu,
|
---|
1332 | double lambdaup)
|
---|
1333 | {
|
---|
1334 | bool result = new bool();
|
---|
1335 | double lnlambda = 0;
|
---|
1336 | double lnnu = 0;
|
---|
1337 | double lnlambdaup = 0;
|
---|
1338 | double lnmax = 0;
|
---|
1339 |
|
---|
1340 | result = false;
|
---|
1341 | lnlambda = Math.Log(lambda);
|
---|
1342 | lnlambdaup = Math.Log(lambdaup);
|
---|
1343 | lnnu = Math.Log(nu);
|
---|
1344 | lnmax = Math.Log(AP.Math.MaxRealNumber);
|
---|
1345 | if( (double)(lnlambda+lnlambdaup+lnnu)>(double)(lnmax) )
|
---|
1346 | {
|
---|
1347 | return result;
|
---|
1348 | }
|
---|
1349 | if( (double)(lnnu+Math.Log(2))>(double)(lnmax) )
|
---|
1350 | {
|
---|
1351 | return result;
|
---|
1352 | }
|
---|
1353 | lambda = lambda*lambdaup*nu;
|
---|
1354 | nu = nu*2;
|
---|
1355 | result = true;
|
---|
1356 | return result;
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 |
|
---|
1360 | /*************************************************************************
|
---|
1361 | Decreases lambda, but leaves it unchanged when there is danger of underflow.
|
---|
1362 | *************************************************************************/
|
---|
1363 | private static void decreaselambda(ref double lambda,
|
---|
1364 | ref double nu,
|
---|
1365 | double lambdadown)
|
---|
1366 | {
|
---|
1367 | nu = 1;
|
---|
1368 | if( (double)(Math.Log(lambda)+Math.Log(lambdadown))<(double)(Math.Log(AP.Math.MinRealNumber)) )
|
---|
1369 | {
|
---|
1370 | lambda = AP.Math.MinRealNumber;
|
---|
1371 | }
|
---|
1372 | else
|
---|
1373 | {
|
---|
1374 | lambda = lambda*lambdadown;
|
---|
1375 | }
|
---|
1376 | }
|
---|
1377 | }
|
---|
1378 | }
|
---|