[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class minlm
|
---|
| 26 | {
|
---|
| 27 | public struct minlmstate
|
---|
| 28 | {
|
---|
| 29 | public bool wrongparams;
|
---|
| 30 | public int n;
|
---|
| 31 | public int m;
|
---|
| 32 | public double epsg;
|
---|
| 33 | public double epsf;
|
---|
| 34 | public double epsx;
|
---|
| 35 | public int maxits;
|
---|
| 36 | public bool xrep;
|
---|
| 37 | public double stpmax;
|
---|
| 38 | public int flags;
|
---|
| 39 | public int usermode;
|
---|
| 40 | public double[] x;
|
---|
| 41 | public double f;
|
---|
| 42 | public double[] fi;
|
---|
| 43 | public double[,] j;
|
---|
| 44 | public double[,] h;
|
---|
| 45 | public double[] g;
|
---|
| 46 | public bool needf;
|
---|
| 47 | public bool needfg;
|
---|
| 48 | public bool needfgh;
|
---|
| 49 | public bool needfij;
|
---|
| 50 | public bool xupdated;
|
---|
| 51 | public minlbfgs.minlbfgsstate internalstate;
|
---|
| 52 | public minlbfgs.minlbfgsreport internalrep;
|
---|
| 53 | public double[] xprec;
|
---|
| 54 | public double[] xbase;
|
---|
| 55 | public double[] xdir;
|
---|
| 56 | public double[] gbase;
|
---|
| 57 | public double[] xprev;
|
---|
| 58 | public double fprev;
|
---|
| 59 | public double[,] rawmodel;
|
---|
| 60 | public double[,] model;
|
---|
| 61 | public double[] work;
|
---|
| 62 | public AP.rcommstate rstate;
|
---|
| 63 | public int repiterationscount;
|
---|
| 64 | public int repterminationtype;
|
---|
| 65 | public int repnfunc;
|
---|
| 66 | public int repnjac;
|
---|
| 67 | public int repngrad;
|
---|
| 68 | public int repnhess;
|
---|
| 69 | public int repncholesky;
|
---|
| 70 | public int solverinfo;
|
---|
| 71 | public densesolver.densesolverreport solverrep;
|
---|
| 72 | public int invinfo;
|
---|
| 73 | public matinv.matinvreport invrep;
|
---|
| 74 | };
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | public struct minlmreport
|
---|
| 78 | {
|
---|
| 79 | public int iterationscount;
|
---|
| 80 | public int terminationtype;
|
---|
| 81 | public int nfunc;
|
---|
| 82 | public int njac;
|
---|
| 83 | public int ngrad;
|
---|
| 84 | public int nhess;
|
---|
| 85 | public int ncholesky;
|
---|
| 86 | };
|
---|
| 87 |
|
---|
| 88 |
|
---|
| 89 |
|
---|
| 90 |
|
---|
| 91 | public const int lmmodefj = 0;
|
---|
| 92 | public const int lmmodefgj = 1;
|
---|
| 93 | public const int lmmodefgh = 2;
|
---|
| 94 | public const int lmflagnoprelbfgs = 1;
|
---|
| 95 | public const int lmflagnointlbfgs = 2;
|
---|
| 96 | public const int lmprelbfgsm = 5;
|
---|
| 97 | public const int lmintlbfgsits = 5;
|
---|
| 98 | public const int lbfgsnorealloc = 1;
|
---|
| 99 |
|
---|
| 100 |
|
---|
| 101 | /*************************************************************************
|
---|
| 102 | LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
| 103 |
|
---|
| 104 | Optimization using function gradient and Hessian. Algorithm - Levenberg-
|
---|
| 105 | Marquardt modification with L-BFGS pre-optimization and internal
|
---|
| 106 | pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
---|
| 107 |
|
---|
| 108 | Function F has general form (not "sum-of-squares"):
|
---|
| 109 |
|
---|
| 110 | F = F(x[0], ..., x[n-1])
|
---|
| 111 |
|
---|
| 112 | EXAMPLE
|
---|
| 113 |
|
---|
| 114 | See HTML-documentation.
|
---|
| 115 |
|
---|
| 116 | INPUT PARAMETERS:
|
---|
| 117 | N - dimension, N>1
|
---|
| 118 | X - initial solution, array[0..N-1]
|
---|
| 119 |
|
---|
| 120 | OUTPUT PARAMETERS:
|
---|
| 121 | State - structure which stores algorithm state between subsequent
|
---|
| 122 | calls of MinLMIteration. Used for reverse communication.
|
---|
| 123 | This structure should be passed to MinLMIteration subroutine.
|
---|
| 124 |
|
---|
| 125 | See also MinLMIteration, MinLMResults.
|
---|
| 126 |
|
---|
| 127 | NOTES:
|
---|
| 128 |
|
---|
| 129 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
| 130 | 2. if target function contains exp() or other fast growing functions, and
|
---|
| 131 | optimization algorithm makes too large steps which leads to overflow,
|
---|
| 132 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
| 133 |
|
---|
| 134 | -- ALGLIB --
|
---|
| 135 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
| 136 | *************************************************************************/
|
---|
| 137 | public static void minlmcreatefgh(int n,
|
---|
| 138 | ref double[] x,
|
---|
| 139 | ref minlmstate state)
|
---|
| 140 | {
|
---|
| 141 | int i_ = 0;
|
---|
| 142 |
|
---|
| 143 |
|
---|
| 144 | //
|
---|
| 145 | // Prepare RComm
|
---|
| 146 | //
|
---|
| 147 | state.rstate.ia = new int[3+1];
|
---|
| 148 | state.rstate.ba = new bool[0+1];
|
---|
| 149 | state.rstate.ra = new double[7+1];
|
---|
| 150 | state.rstate.stage = -1;
|
---|
| 151 |
|
---|
| 152 | //
|
---|
| 153 | // prepare internal structures
|
---|
| 154 | //
|
---|
| 155 | lmprepare(n, 0, true, ref state);
|
---|
| 156 |
|
---|
| 157 | //
|
---|
| 158 | // initialize, check parameters
|
---|
| 159 | //
|
---|
| 160 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
| 161 | minlmsetxrep(ref state, false);
|
---|
| 162 | minlmsetstpmax(ref state, 0);
|
---|
| 163 | state.n = n;
|
---|
| 164 | state.m = 0;
|
---|
| 165 | state.flags = 0;
|
---|
| 166 | state.usermode = lmmodefgh;
|
---|
| 167 | state.wrongparams = false;
|
---|
| 168 | if( n<1 )
|
---|
| 169 | {
|
---|
| 170 | state.wrongparams = true;
|
---|
| 171 | return;
|
---|
| 172 | }
|
---|
| 173 | for(i_=0; i_<=n-1;i_++)
|
---|
| 174 | {
|
---|
| 175 | state.x[i_] = x[i_];
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 |
|
---|
| 180 | /*************************************************************************
|
---|
| 181 | LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
| 182 |
|
---|
| 183 | Optimization using function gradient and Jacobian. Algorithm - Levenberg-
|
---|
| 184 | Marquardt modification with L-BFGS pre-optimization and internal
|
---|
| 185 | pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step.
|
---|
| 186 |
|
---|
| 187 | Function F is represented as sum of squares:
|
---|
| 188 |
|
---|
| 189 | F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
---|
| 190 |
|
---|
| 191 | EXAMPLE
|
---|
| 192 |
|
---|
| 193 | See HTML-documentation.
|
---|
| 194 |
|
---|
| 195 | INPUT PARAMETERS:
|
---|
| 196 | N - dimension, N>1
|
---|
| 197 | M - number of functions f[i]
|
---|
| 198 | X - initial solution, array[0..N-1]
|
---|
| 199 |
|
---|
| 200 | OUTPUT PARAMETERS:
|
---|
| 201 | State - structure which stores algorithm state between subsequent
|
---|
| 202 | calls of MinLMIteration. Used for reverse communication.
|
---|
| 203 | This structure should be passed to MinLMIteration subroutine.
|
---|
| 204 |
|
---|
| 205 | See also MinLMIteration, MinLMResults.
|
---|
| 206 |
|
---|
| 207 | NOTES:
|
---|
| 208 |
|
---|
| 209 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
| 210 | 2. if target function contains exp() or other fast growing functions, and
|
---|
| 211 | optimization algorithm makes too large steps which leads to overflow,
|
---|
| 212 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
| 213 |
|
---|
| 214 | -- ALGLIB --
|
---|
| 215 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
| 216 | *************************************************************************/
|
---|
| 217 | public static void minlmcreatefgj(int n,
|
---|
| 218 | int m,
|
---|
| 219 | ref double[] x,
|
---|
| 220 | ref minlmstate state)
|
---|
| 221 | {
|
---|
| 222 | int i_ = 0;
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | //
|
---|
| 226 | // Prepare RComm
|
---|
| 227 | //
|
---|
| 228 | state.rstate.ia = new int[3+1];
|
---|
| 229 | state.rstate.ba = new bool[0+1];
|
---|
| 230 | state.rstate.ra = new double[7+1];
|
---|
| 231 | state.rstate.stage = -1;
|
---|
| 232 |
|
---|
| 233 | //
|
---|
| 234 | // prepare internal structures
|
---|
| 235 | //
|
---|
| 236 | lmprepare(n, m, true, ref state);
|
---|
| 237 |
|
---|
| 238 | //
|
---|
| 239 | // initialize, check parameters
|
---|
| 240 | //
|
---|
| 241 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
| 242 | minlmsetxrep(ref state, false);
|
---|
| 243 | minlmsetstpmax(ref state, 0);
|
---|
| 244 | state.n = n;
|
---|
| 245 | state.m = m;
|
---|
| 246 | state.flags = 0;
|
---|
| 247 | state.usermode = lmmodefgj;
|
---|
| 248 | state.wrongparams = false;
|
---|
| 249 | if( n<1 )
|
---|
| 250 | {
|
---|
| 251 | state.wrongparams = true;
|
---|
| 252 | return;
|
---|
| 253 | }
|
---|
| 254 | for(i_=0; i_<=n-1;i_++)
|
---|
| 255 | {
|
---|
| 256 | state.x[i_] = x[i_];
|
---|
| 257 | }
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 |
|
---|
| 261 | /*************************************************************************
|
---|
| 262 | CLASSIC LEVENBERG-MARQUARDT METHOD FOR NON-LINEAR OPTIMIZATION
|
---|
| 263 |
|
---|
| 264 | Optimization using Jacobi matrix. Algorithm - classic Levenberg-Marquardt
|
---|
| 265 | method.
|
---|
| 266 |
|
---|
| 267 | Function F is represented as sum of squares:
|
---|
| 268 |
|
---|
| 269 | F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
|
---|
| 270 |
|
---|
| 271 | EXAMPLE
|
---|
| 272 |
|
---|
| 273 | See HTML-documentation.
|
---|
| 274 |
|
---|
| 275 | INPUT PARAMETERS:
|
---|
| 276 | N - dimension, N>1
|
---|
| 277 | M - number of functions f[i]
|
---|
| 278 | X - initial solution, array[0..N-1]
|
---|
| 279 |
|
---|
| 280 | OUTPUT PARAMETERS:
|
---|
| 281 | State - structure which stores algorithm state between subsequent
|
---|
| 282 | calls of MinLMIteration. Used for reverse communication.
|
---|
| 283 | This structure should be passed to MinLMIteration subroutine.
|
---|
| 284 |
|
---|
| 285 | See also MinLMIteration, MinLMResults.
|
---|
| 286 |
|
---|
| 287 | NOTES:
|
---|
| 288 |
|
---|
| 289 | 1. you may tune stopping conditions with MinLMSetCond() function
|
---|
| 290 | 2. if target function contains exp() or other fast growing functions, and
|
---|
| 291 | optimization algorithm makes too large steps which leads to overflow,
|
---|
| 292 | use MinLMSetStpMax() function to bound algorithm's steps.
|
---|
| 293 |
|
---|
| 294 | -- ALGLIB --
|
---|
| 295 | Copyright 30.03.2009 by Bochkanov Sergey
|
---|
| 296 | *************************************************************************/
|
---|
| 297 | public static void minlmcreatefj(int n,
|
---|
| 298 | int m,
|
---|
| 299 | ref double[] x,
|
---|
| 300 | ref minlmstate state)
|
---|
| 301 | {
|
---|
| 302 | int i_ = 0;
|
---|
| 303 |
|
---|
| 304 |
|
---|
| 305 | //
|
---|
| 306 | // Prepare RComm
|
---|
| 307 | //
|
---|
| 308 | state.rstate.ia = new int[3+1];
|
---|
| 309 | state.rstate.ba = new bool[0+1];
|
---|
| 310 | state.rstate.ra = new double[7+1];
|
---|
| 311 | state.rstate.stage = -1;
|
---|
| 312 |
|
---|
| 313 | //
|
---|
| 314 | // prepare internal structures
|
---|
| 315 | //
|
---|
| 316 | lmprepare(n, m, true, ref state);
|
---|
| 317 |
|
---|
| 318 | //
|
---|
| 319 | // initialize, check parameters
|
---|
| 320 | //
|
---|
| 321 | minlmsetcond(ref state, 0, 0, 0, 0);
|
---|
| 322 | minlmsetxrep(ref state, false);
|
---|
| 323 | minlmsetstpmax(ref state, 0);
|
---|
| 324 | state.n = n;
|
---|
| 325 | state.m = m;
|
---|
| 326 | state.flags = 0;
|
---|
| 327 | state.usermode = lmmodefj;
|
---|
| 328 | state.wrongparams = false;
|
---|
| 329 | if( n<1 )
|
---|
| 330 | {
|
---|
| 331 | state.wrongparams = true;
|
---|
| 332 | return;
|
---|
| 333 | }
|
---|
| 334 | for(i_=0; i_<=n-1;i_++)
|
---|
| 335 | {
|
---|
| 336 | state.x[i_] = x[i_];
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 |
|
---|
| 341 | /*************************************************************************
|
---|
| 342 | This function sets stopping conditions for Levenberg-Marquardt optimization
|
---|
| 343 | algorithm.
|
---|
| 344 |
|
---|
| 345 | INPUT PARAMETERS:
|
---|
| 346 | State - structure which stores algorithm state between calls and
|
---|
| 347 | which is used for reverse communication. Must be initialized
|
---|
| 348 | with MinLMCreate???()
|
---|
| 349 | EpsG - >=0
|
---|
| 350 | The subroutine finishes its work if the condition
|
---|
| 351 | ||G||<EpsG is satisfied, where ||.|| means Euclidian norm,
|
---|
| 352 | G - gradient.
|
---|
| 353 | EpsF - >=0
|
---|
| 354 | The subroutine finishes its work if on k+1-th iteration
|
---|
| 355 | the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
|
---|
| 356 | is satisfied.
|
---|
| 357 | EpsX - >=0
|
---|
| 358 | The subroutine finishes its work if on k+1-th iteration
|
---|
| 359 | the condition |X(k+1)-X(k)| <= EpsX is fulfilled.
|
---|
| 360 | MaxIts - maximum number of iterations. If MaxIts=0, the number of
|
---|
| 361 | iterations is unlimited. Only Levenberg-Marquardt
|
---|
| 362 | iterations are counted (L-BFGS/CG iterations are NOT
|
---|
| 363 | counted because their cost is very low copared to that of
|
---|
| 364 | LM).
|
---|
| 365 |
|
---|
| 366 | Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
|
---|
| 367 | automatic stopping criterion selection (small EpsX).
|
---|
| 368 |
|
---|
| 369 | -- ALGLIB --
|
---|
| 370 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 371 | *************************************************************************/
|
---|
| 372 | public static void minlmsetcond(ref minlmstate state,
|
---|
| 373 | double epsg,
|
---|
| 374 | double epsf,
|
---|
| 375 | double epsx,
|
---|
| 376 | int maxits)
|
---|
| 377 | {
|
---|
| 378 | System.Diagnostics.Debug.Assert((double)(epsg)>=(double)(0), "MinLMSetCond: negative EpsG!");
|
---|
| 379 | System.Diagnostics.Debug.Assert((double)(epsf)>=(double)(0), "MinLMSetCond: negative EpsF!");
|
---|
| 380 | System.Diagnostics.Debug.Assert((double)(epsx)>=(double)(0), "MinLMSetCond: negative EpsX!");
|
---|
| 381 | System.Diagnostics.Debug.Assert(maxits>=0, "MinLMSetCond: negative MaxIts!");
|
---|
| 382 | if( (double)(epsg)==(double)(0) & (double)(epsf)==(double)(0) & (double)(epsx)==(double)(0) & maxits==0 )
|
---|
| 383 | {
|
---|
| 384 | epsx = 1.0E-6;
|
---|
| 385 | }
|
---|
| 386 | state.epsg = epsg;
|
---|
| 387 | state.epsf = epsf;
|
---|
| 388 | state.epsx = epsx;
|
---|
| 389 | state.maxits = maxits;
|
---|
| 390 | }
|
---|
| 391 |
|
---|
| 392 |
|
---|
| 393 | /*************************************************************************
|
---|
| 394 | This function turns on/off reporting.
|
---|
| 395 |
|
---|
| 396 | INPUT PARAMETERS:
|
---|
| 397 | State - structure which stores algorithm state between calls and
|
---|
| 398 | which is used for reverse communication. Must be
|
---|
| 399 | initialized with MinLMCreate???()
|
---|
| 400 | NeedXRep- whether iteration reports are needed or not
|
---|
| 401 |
|
---|
| 402 | Usually algorithm returns from MinLMIteration() only when it needs
|
---|
| 403 | function/gradient/Hessian. However, with this function we can let it stop
|
---|
| 404 | after each iteration (one iteration may include more than one function
|
---|
| 405 | evaluation), which is indicated by XUpdated field.
|
---|
| 406 |
|
---|
| 407 | Both Levenberg-Marquardt and L-BFGS iterations are reported.
|
---|
| 408 |
|
---|
| 409 |
|
---|
| 410 | -- ALGLIB --
|
---|
| 411 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 412 | *************************************************************************/
|
---|
| 413 | public static void minlmsetxrep(ref minlmstate state,
|
---|
| 414 | bool needxrep)
|
---|
| 415 | {
|
---|
| 416 | state.xrep = needxrep;
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 |
|
---|
| 420 | /*************************************************************************
|
---|
| 421 | This function sets maximum step length
|
---|
| 422 |
|
---|
| 423 | INPUT PARAMETERS:
|
---|
| 424 | State - structure which stores algorithm state between calls and
|
---|
| 425 | which is used for reverse communication. Must be
|
---|
| 426 | initialized with MinCGCreate???()
|
---|
| 427 | StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
|
---|
| 428 | want to limit step length.
|
---|
| 429 |
|
---|
| 430 | Use this subroutine when you optimize target function which contains exp()
|
---|
| 431 | or other fast growing functions, and optimization algorithm makes too
|
---|
| 432 | large steps which leads to overflow. This function allows us to reject
|
---|
| 433 | steps that are too large (and therefore expose us to the possible
|
---|
| 434 | overflow) without actually calculating function value at the x+stp*d.
|
---|
| 435 |
|
---|
| 436 | NOTE: non-zero StpMax leads to moderate performance degradation because
|
---|
| 437 | intermediate step of preconditioned L-BFGS optimization is incompatible
|
---|
| 438 | with limits on step size.
|
---|
| 439 |
|
---|
| 440 | -- ALGLIB --
|
---|
| 441 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 442 | *************************************************************************/
|
---|
| 443 | public static void minlmsetstpmax(ref minlmstate state,
|
---|
| 444 | double stpmax)
|
---|
| 445 | {
|
---|
| 446 | System.Diagnostics.Debug.Assert((double)(stpmax)>=(double)(0), "MinLMSetStpMax: StpMax<0!");
|
---|
| 447 | state.stpmax = stpmax;
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 |
|
---|
| 451 | /*************************************************************************
|
---|
| 452 | One Levenberg-Marquardt iteration.
|
---|
| 453 |
|
---|
| 454 | Called after inialization of State structure with MinLMXXX subroutine.
|
---|
| 455 | See HTML docs for examples.
|
---|
| 456 |
|
---|
| 457 | Input parameters:
|
---|
| 458 | State - structure which stores algorithm state between subsequent
|
---|
| 459 | calls and which is used for reverse communication. Must be
|
---|
| 460 | initialized with MinLMXXX call first.
|
---|
| 461 |
|
---|
| 462 | If subroutine returned False, iterative algorithm has converged.
|
---|
| 463 |
|
---|
| 464 | If subroutine returned True, then:
|
---|
| 465 | * if State.NeedF=True, - function value F at State.X[0..N-1]
|
---|
| 466 | is required
|
---|
| 467 | * if State.NeedFG=True - function value F and gradient G
|
---|
| 468 | are required
|
---|
| 469 | * if State.NeedFiJ=True - function vector f[i] and Jacobi matrix J
|
---|
| 470 | are required
|
---|
| 471 | * if State.NeedFGH=True - function value F, gradient G and Hesian H
|
---|
| 472 | are required
|
---|
| 473 | * if State.XUpdated=True - algorithm reports about new iteration,
|
---|
| 474 | State.X contains current point,
|
---|
| 475 | State.F contains function value.
|
---|
| 476 |
|
---|
| 477 | One and only one of this fields can be set at time.
|
---|
| 478 |
|
---|
| 479 | Results are stored:
|
---|
| 480 | * function value - in MinLMState.F
|
---|
| 481 | * gradient - in MinLMState.G[0..N-1]
|
---|
| 482 | * Jacobi matrix - in MinLMState.J[0..M-1,0..N-1]
|
---|
| 483 | * Hessian - in MinLMState.H[0..N-1,0..N-1]
|
---|
| 484 |
|
---|
| 485 | -- ALGLIB --
|
---|
| 486 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
| 487 | *************************************************************************/
|
---|
| 488 | public static bool minlmiteration(ref minlmstate state)
|
---|
| 489 | {
|
---|
| 490 | bool result = new bool();
|
---|
| 491 | int n = 0;
|
---|
| 492 | int m = 0;
|
---|
| 493 | int i = 0;
|
---|
| 494 | double stepnorm = 0;
|
---|
| 495 | bool spd = new bool();
|
---|
| 496 | double fbase = 0;
|
---|
| 497 | double fnew = 0;
|
---|
| 498 | double lambda = 0;
|
---|
| 499 | double nu = 0;
|
---|
| 500 | double lambdaup = 0;
|
---|
| 501 | double lambdadown = 0;
|
---|
| 502 | int lbfgsflags = 0;
|
---|
| 503 | double v = 0;
|
---|
| 504 | int i_ = 0;
|
---|
| 505 |
|
---|
| 506 |
|
---|
| 507 | //
|
---|
| 508 | // Reverse communication preparations
|
---|
| 509 | // I know it looks ugly, but it works the same way
|
---|
| 510 | // anywhere from C++ to Python.
|
---|
| 511 | //
|
---|
| 512 | // This code initializes locals by:
|
---|
| 513 | // * random values determined during code
|
---|
| 514 | // generation - on first subroutine call
|
---|
| 515 | // * values from previous call - on subsequent calls
|
---|
| 516 | //
|
---|
| 517 | if( state.rstate.stage>=0 )
|
---|
| 518 | {
|
---|
| 519 | n = state.rstate.ia[0];
|
---|
| 520 | m = state.rstate.ia[1];
|
---|
| 521 | i = state.rstate.ia[2];
|
---|
| 522 | lbfgsflags = state.rstate.ia[3];
|
---|
| 523 | spd = state.rstate.ba[0];
|
---|
| 524 | stepnorm = state.rstate.ra[0];
|
---|
| 525 | fbase = state.rstate.ra[1];
|
---|
| 526 | fnew = state.rstate.ra[2];
|
---|
| 527 | lambda = state.rstate.ra[3];
|
---|
| 528 | nu = state.rstate.ra[4];
|
---|
| 529 | lambdaup = state.rstate.ra[5];
|
---|
| 530 | lambdadown = state.rstate.ra[6];
|
---|
| 531 | v = state.rstate.ra[7];
|
---|
| 532 | }
|
---|
| 533 | else
|
---|
| 534 | {
|
---|
| 535 | n = -983;
|
---|
| 536 | m = -989;
|
---|
| 537 | i = -834;
|
---|
| 538 | lbfgsflags = 900;
|
---|
| 539 | spd = true;
|
---|
| 540 | stepnorm = 364;
|
---|
| 541 | fbase = 214;
|
---|
| 542 | fnew = -338;
|
---|
| 543 | lambda = -686;
|
---|
| 544 | nu = 912;
|
---|
| 545 | lambdaup = 585;
|
---|
| 546 | lambdadown = 497;
|
---|
| 547 | v = -271;
|
---|
| 548 | }
|
---|
| 549 | if( state.rstate.stage==0 )
|
---|
| 550 | {
|
---|
| 551 | goto lbl_0;
|
---|
| 552 | }
|
---|
| 553 | if( state.rstate.stage==1 )
|
---|
| 554 | {
|
---|
| 555 | goto lbl_1;
|
---|
| 556 | }
|
---|
| 557 | if( state.rstate.stage==2 )
|
---|
| 558 | {
|
---|
| 559 | goto lbl_2;
|
---|
| 560 | }
|
---|
| 561 | if( state.rstate.stage==3 )
|
---|
| 562 | {
|
---|
| 563 | goto lbl_3;
|
---|
| 564 | }
|
---|
| 565 | if( state.rstate.stage==4 )
|
---|
| 566 | {
|
---|
| 567 | goto lbl_4;
|
---|
| 568 | }
|
---|
| 569 | if( state.rstate.stage==5 )
|
---|
| 570 | {
|
---|
| 571 | goto lbl_5;
|
---|
| 572 | }
|
---|
| 573 | if( state.rstate.stage==6 )
|
---|
| 574 | {
|
---|
| 575 | goto lbl_6;
|
---|
| 576 | }
|
---|
| 577 | if( state.rstate.stage==7 )
|
---|
| 578 | {
|
---|
| 579 | goto lbl_7;
|
---|
| 580 | }
|
---|
| 581 | if( state.rstate.stage==8 )
|
---|
| 582 | {
|
---|
| 583 | goto lbl_8;
|
---|
| 584 | }
|
---|
| 585 | if( state.rstate.stage==9 )
|
---|
| 586 | {
|
---|
| 587 | goto lbl_9;
|
---|
| 588 | }
|
---|
| 589 | if( state.rstate.stage==10 )
|
---|
| 590 | {
|
---|
| 591 | goto lbl_10;
|
---|
| 592 | }
|
---|
| 593 | if( state.rstate.stage==11 )
|
---|
| 594 | {
|
---|
| 595 | goto lbl_11;
|
---|
| 596 | }
|
---|
| 597 | if( state.rstate.stage==12 )
|
---|
| 598 | {
|
---|
| 599 | goto lbl_12;
|
---|
| 600 | }
|
---|
| 601 | if( state.rstate.stage==13 )
|
---|
| 602 | {
|
---|
| 603 | goto lbl_13;
|
---|
| 604 | }
|
---|
| 605 | if( state.rstate.stage==14 )
|
---|
| 606 | {
|
---|
| 607 | goto lbl_14;
|
---|
| 608 | }
|
---|
| 609 | if( state.rstate.stage==15 )
|
---|
| 610 | {
|
---|
| 611 | goto lbl_15;
|
---|
| 612 | }
|
---|
| 613 |
|
---|
| 614 | //
|
---|
| 615 | // Routine body
|
---|
| 616 | //
|
---|
| 617 | System.Diagnostics.Debug.Assert(state.usermode==lmmodefj | state.usermode==lmmodefgj | state.usermode==lmmodefgh, "LM: internal error");
|
---|
| 618 | if( state.wrongparams )
|
---|
| 619 | {
|
---|
| 620 | state.repterminationtype = -1;
|
---|
| 621 | result = false;
|
---|
| 622 | return result;
|
---|
| 623 | }
|
---|
| 624 |
|
---|
| 625 | //
|
---|
| 626 | // prepare params
|
---|
| 627 | //
|
---|
| 628 | n = state.n;
|
---|
| 629 | m = state.m;
|
---|
| 630 | lambdaup = 20;
|
---|
| 631 | lambdadown = 0.5;
|
---|
| 632 | nu = 1;
|
---|
| 633 | lbfgsflags = 0;
|
---|
| 634 |
|
---|
| 635 | //
|
---|
| 636 | // if we have F and G
|
---|
| 637 | //
|
---|
| 638 | if( ! ((state.usermode==lmmodefgj | state.usermode==lmmodefgh) & state.flags/lmflagnoprelbfgs%2==0) )
|
---|
| 639 | {
|
---|
| 640 | goto lbl_16;
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | //
|
---|
| 644 | // First stage of the hybrid algorithm: LBFGS
|
---|
| 645 | //
|
---|
| 646 | minlbfgs.minlbfgscreate(n, Math.Min(n, lmprelbfgsm), ref state.x, ref state.internalstate);
|
---|
| 647 | minlbfgs.minlbfgssetcond(ref state.internalstate, 0, 0, 0, Math.Max(5, n));
|
---|
| 648 | minlbfgs.minlbfgssetxrep(ref state.internalstate, state.xrep);
|
---|
| 649 | minlbfgs.minlbfgssetstpmax(ref state.internalstate, state.stpmax);
|
---|
| 650 | lbl_18:
|
---|
| 651 | if( ! minlbfgs.minlbfgsiteration(ref state.internalstate) )
|
---|
| 652 | {
|
---|
| 653 | goto lbl_19;
|
---|
| 654 | }
|
---|
| 655 | if( ! state.internalstate.needfg )
|
---|
| 656 | {
|
---|
| 657 | goto lbl_20;
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | //
|
---|
| 661 | // RComm
|
---|
| 662 | //
|
---|
| 663 | for(i_=0; i_<=n-1;i_++)
|
---|
| 664 | {
|
---|
| 665 | state.x[i_] = state.internalstate.x[i_];
|
---|
| 666 | }
|
---|
| 667 | lmclearrequestfields(ref state);
|
---|
| 668 | state.needfg = true;
|
---|
| 669 | state.rstate.stage = 0;
|
---|
| 670 | goto lbl_rcomm;
|
---|
| 671 | lbl_0:
|
---|
| 672 | state.repnfunc = state.repnfunc+1;
|
---|
| 673 | state.repngrad = state.repngrad+1;
|
---|
| 674 |
|
---|
| 675 | //
|
---|
| 676 | // Call LBFGS
|
---|
| 677 | //
|
---|
| 678 | state.internalstate.f = state.f;
|
---|
| 679 | for(i_=0; i_<=n-1;i_++)
|
---|
| 680 | {
|
---|
| 681 | state.internalstate.g[i_] = state.g[i_];
|
---|
| 682 | }
|
---|
| 683 | lbl_20:
|
---|
| 684 | if( ! (state.internalstate.xupdated & state.xrep) )
|
---|
| 685 | {
|
---|
| 686 | goto lbl_22;
|
---|
| 687 | }
|
---|
| 688 | lmclearrequestfields(ref state);
|
---|
| 689 | state.f = state.internalstate.f;
|
---|
| 690 | for(i_=0; i_<=n-1;i_++)
|
---|
| 691 | {
|
---|
| 692 | state.x[i_] = state.internalstate.x[i_];
|
---|
| 693 | }
|
---|
| 694 | state.xupdated = true;
|
---|
| 695 | state.rstate.stage = 1;
|
---|
| 696 | goto lbl_rcomm;
|
---|
| 697 | lbl_1:
|
---|
| 698 | lbl_22:
|
---|
| 699 | goto lbl_18;
|
---|
| 700 | lbl_19:
|
---|
| 701 | minlbfgs.minlbfgsresults(ref state.internalstate, ref state.x, ref state.internalrep);
|
---|
| 702 | goto lbl_17;
|
---|
| 703 | lbl_16:
|
---|
| 704 |
|
---|
| 705 | //
|
---|
| 706 | // No first stage.
|
---|
| 707 | // However, we may need to report initial point
|
---|
| 708 | //
|
---|
| 709 | if( ! state.xrep )
|
---|
| 710 | {
|
---|
| 711 | goto lbl_24;
|
---|
| 712 | }
|
---|
| 713 | lmclearrequestfields(ref state);
|
---|
| 714 | state.needf = true;
|
---|
| 715 | state.rstate.stage = 2;
|
---|
| 716 | goto lbl_rcomm;
|
---|
| 717 | lbl_2:
|
---|
| 718 | lmclearrequestfields(ref state);
|
---|
| 719 | state.xupdated = true;
|
---|
| 720 | state.rstate.stage = 3;
|
---|
| 721 | goto lbl_rcomm;
|
---|
| 722 | lbl_3:
|
---|
| 723 | lbl_24:
|
---|
| 724 | lbl_17:
|
---|
| 725 |
|
---|
| 726 | //
|
---|
| 727 | // Second stage of the hybrid algorithm: LM
|
---|
| 728 | // Initialize quadratic model.
|
---|
| 729 | //
|
---|
| 730 | if( state.usermode!=lmmodefgh )
|
---|
| 731 | {
|
---|
| 732 | goto lbl_26;
|
---|
| 733 | }
|
---|
| 734 |
|
---|
| 735 | //
|
---|
| 736 | // RComm
|
---|
| 737 | //
|
---|
| 738 | lmclearrequestfields(ref state);
|
---|
| 739 | state.needfgh = true;
|
---|
| 740 | state.rstate.stage = 4;
|
---|
| 741 | goto lbl_rcomm;
|
---|
| 742 | lbl_4:
|
---|
| 743 | state.repnfunc = state.repnfunc+1;
|
---|
| 744 | state.repngrad = state.repngrad+1;
|
---|
| 745 | state.repnhess = state.repnhess+1;
|
---|
| 746 |
|
---|
| 747 | //
|
---|
| 748 | // generate raw quadratic model
|
---|
| 749 | //
|
---|
| 750 | ablas.rmatrixcopy(n, n, ref state.h, 0, 0, ref state.rawmodel, 0, 0);
|
---|
| 751 | for(i_=0; i_<=n-1;i_++)
|
---|
| 752 | {
|
---|
| 753 | state.gbase[i_] = state.g[i_];
|
---|
| 754 | }
|
---|
| 755 | fbase = state.f;
|
---|
| 756 | lbl_26:
|
---|
| 757 | if( ! (state.usermode==lmmodefgj | state.usermode==lmmodefj) )
|
---|
| 758 | {
|
---|
| 759 | goto lbl_28;
|
---|
| 760 | }
|
---|
| 761 |
|
---|
| 762 | //
|
---|
| 763 | // RComm
|
---|
| 764 | //
|
---|
| 765 | lmclearrequestfields(ref state);
|
---|
| 766 | state.needfij = true;
|
---|
| 767 | state.rstate.stage = 5;
|
---|
| 768 | goto lbl_rcomm;
|
---|
| 769 | lbl_5:
|
---|
| 770 | state.repnfunc = state.repnfunc+1;
|
---|
| 771 | state.repnjac = state.repnjac+1;
|
---|
| 772 |
|
---|
| 773 | //
|
---|
| 774 | // generate raw quadratic model
|
---|
| 775 | //
|
---|
| 776 | ablas.rmatrixgemm(n, n, m, 2.0, ref state.j, 0, 0, 1, ref state.j, 0, 0, 0, 0.0, ref state.rawmodel, 0, 0);
|
---|
| 777 | ablas.rmatrixmv(n, m, ref state.j, 0, 0, 1, ref state.fi, 0, ref state.gbase, 0);
|
---|
| 778 | for(i_=0; i_<=n-1;i_++)
|
---|
| 779 | {
|
---|
| 780 | state.gbase[i_] = 2*state.gbase[i_];
|
---|
| 781 | }
|
---|
| 782 | fbase = 0.0;
|
---|
| 783 | for(i_=0; i_<=m-1;i_++)
|
---|
| 784 | {
|
---|
| 785 | fbase += state.fi[i_]*state.fi[i_];
|
---|
| 786 | }
|
---|
| 787 | lbl_28:
|
---|
| 788 | lambda = 0.001;
|
---|
| 789 | lbl_30:
|
---|
| 790 | if( false )
|
---|
| 791 | {
|
---|
| 792 | goto lbl_31;
|
---|
| 793 | }
|
---|
| 794 |
|
---|
| 795 | //
|
---|
| 796 | // 1. Model = RawModel+lambda*I
|
---|
| 797 | // 2. Try to solve (RawModel+Lambda*I)*dx = -g.
|
---|
| 798 | // Increase lambda if left part is not positive definite.
|
---|
| 799 | //
|
---|
| 800 | for(i=0; i<=n-1; i++)
|
---|
| 801 | {
|
---|
| 802 | for(i_=0; i_<=n-1;i_++)
|
---|
| 803 | {
|
---|
| 804 | state.model[i,i_] = state.rawmodel[i,i_];
|
---|
| 805 | }
|
---|
| 806 | state.model[i,i] = state.model[i,i]+lambda;
|
---|
| 807 | }
|
---|
| 808 | spd = trfac.spdmatrixcholesky(ref state.model, n, true);
|
---|
| 809 | state.repncholesky = state.repncholesky+1;
|
---|
| 810 | if( spd )
|
---|
| 811 | {
|
---|
| 812 | goto lbl_32;
|
---|
| 813 | }
|
---|
| 814 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
| 815 | {
|
---|
| 816 | goto lbl_34;
|
---|
| 817 | }
|
---|
| 818 | goto lbl_30;
|
---|
| 819 | goto lbl_35;
|
---|
| 820 | lbl_34:
|
---|
| 821 | state.repterminationtype = 7;
|
---|
| 822 | lmclearrequestfields(ref state);
|
---|
| 823 | state.needf = true;
|
---|
| 824 | state.rstate.stage = 6;
|
---|
| 825 | goto lbl_rcomm;
|
---|
| 826 | lbl_6:
|
---|
| 827 | goto lbl_31;
|
---|
| 828 | lbl_35:
|
---|
| 829 | lbl_32:
|
---|
| 830 | densesolver.spdmatrixcholeskysolve(ref state.model, n, true, ref state.gbase, ref state.solverinfo, ref state.solverrep, ref state.xdir);
|
---|
| 831 | if( state.solverinfo>=0 )
|
---|
| 832 | {
|
---|
| 833 | goto lbl_36;
|
---|
| 834 | }
|
---|
| 835 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
| 836 | {
|
---|
| 837 | goto lbl_38;
|
---|
| 838 | }
|
---|
| 839 | goto lbl_30;
|
---|
| 840 | goto lbl_39;
|
---|
| 841 | lbl_38:
|
---|
| 842 | state.repterminationtype = 7;
|
---|
| 843 | lmclearrequestfields(ref state);
|
---|
| 844 | state.needf = true;
|
---|
| 845 | state.rstate.stage = 7;
|
---|
| 846 | goto lbl_rcomm;
|
---|
| 847 | lbl_7:
|
---|
| 848 | goto lbl_31;
|
---|
| 849 | lbl_39:
|
---|
| 850 | lbl_36:
|
---|
| 851 | for(i_=0; i_<=n-1;i_++)
|
---|
| 852 | {
|
---|
| 853 | state.xdir[i_] = -1*state.xdir[i_];
|
---|
| 854 | }
|
---|
| 855 |
|
---|
| 856 | //
|
---|
| 857 | // Candidate lambda is found.
|
---|
| 858 | // 1. Save old w in WBase
|
---|
| 859 | // 1. Test some stopping criterions
|
---|
| 860 | // 2. If error(w+wdir)>error(w), increase lambda
|
---|
| 861 | //
|
---|
| 862 | for(i_=0; i_<=n-1;i_++)
|
---|
| 863 | {
|
---|
| 864 | state.xprev[i_] = state.x[i_];
|
---|
| 865 | }
|
---|
| 866 | state.fprev = state.f;
|
---|
| 867 | for(i_=0; i_<=n-1;i_++)
|
---|
| 868 | {
|
---|
| 869 | state.xbase[i_] = state.x[i_];
|
---|
| 870 | }
|
---|
| 871 | for(i_=0; i_<=n-1;i_++)
|
---|
| 872 | {
|
---|
| 873 | state.x[i_] = state.x[i_] + state.xdir[i_];
|
---|
| 874 | }
|
---|
| 875 | stepnorm = 0.0;
|
---|
| 876 | for(i_=0; i_<=n-1;i_++)
|
---|
| 877 | {
|
---|
| 878 | stepnorm += state.xdir[i_]*state.xdir[i_];
|
---|
| 879 | }
|
---|
| 880 | stepnorm = Math.Sqrt(stepnorm);
|
---|
| 881 | if( ! ((double)(state.stpmax)>(double)(0) & (double)(stepnorm)>(double)(state.stpmax)) )
|
---|
| 882 | {
|
---|
| 883 | goto lbl_40;
|
---|
| 884 | }
|
---|
| 885 |
|
---|
| 886 | //
|
---|
| 887 | // Step is larger than the limit,
|
---|
| 888 | // larger lambda is needed
|
---|
| 889 | //
|
---|
| 890 | for(i_=0; i_<=n-1;i_++)
|
---|
| 891 | {
|
---|
| 892 | state.x[i_] = state.xbase[i_];
|
---|
| 893 | }
|
---|
| 894 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
| 895 | {
|
---|
| 896 | goto lbl_42;
|
---|
| 897 | }
|
---|
| 898 | goto lbl_30;
|
---|
| 899 | goto lbl_43;
|
---|
| 900 | lbl_42:
|
---|
| 901 | state.repterminationtype = 7;
|
---|
| 902 | for(i_=0; i_<=n-1;i_++)
|
---|
| 903 | {
|
---|
| 904 | state.x[i_] = state.xprev[i_];
|
---|
| 905 | }
|
---|
| 906 | lmclearrequestfields(ref state);
|
---|
| 907 | state.needf = true;
|
---|
| 908 | state.rstate.stage = 8;
|
---|
| 909 | goto lbl_rcomm;
|
---|
| 910 | lbl_8:
|
---|
| 911 | goto lbl_31;
|
---|
| 912 | lbl_43:
|
---|
| 913 | lbl_40:
|
---|
| 914 | lmclearrequestfields(ref state);
|
---|
| 915 | state.needf = true;
|
---|
| 916 | state.rstate.stage = 9;
|
---|
| 917 | goto lbl_rcomm;
|
---|
| 918 | lbl_9:
|
---|
| 919 | state.repnfunc = state.repnfunc+1;
|
---|
| 920 | fnew = state.f;
|
---|
| 921 | if( (double)(fnew)<=(double)(fbase) )
|
---|
| 922 | {
|
---|
| 923 | goto lbl_44;
|
---|
| 924 | }
|
---|
| 925 |
|
---|
| 926 | //
|
---|
| 927 | // restore state and continue search for lambda
|
---|
| 928 | //
|
---|
| 929 | for(i_=0; i_<=n-1;i_++)
|
---|
| 930 | {
|
---|
| 931 | state.x[i_] = state.xbase[i_];
|
---|
| 932 | }
|
---|
| 933 | if( ! increaselambda(ref lambda, ref nu, lambdaup) )
|
---|
| 934 | {
|
---|
| 935 | goto lbl_46;
|
---|
| 936 | }
|
---|
| 937 | goto lbl_30;
|
---|
| 938 | goto lbl_47;
|
---|
| 939 | lbl_46:
|
---|
| 940 | state.repterminationtype = 7;
|
---|
| 941 | for(i_=0; i_<=n-1;i_++)
|
---|
| 942 | {
|
---|
| 943 | state.x[i_] = state.xprev[i_];
|
---|
| 944 | }
|
---|
| 945 | lmclearrequestfields(ref state);
|
---|
| 946 | state.needf = true;
|
---|
| 947 | state.rstate.stage = 10;
|
---|
| 948 | goto lbl_rcomm;
|
---|
| 949 | lbl_10:
|
---|
| 950 | goto lbl_31;
|
---|
| 951 | lbl_47:
|
---|
| 952 | lbl_44:
|
---|
| 953 | if( ! ((double)(state.stpmax)==(double)(0) & (state.usermode==lmmodefgj | state.usermode==lmmodefgh) & state.flags/lmflagnointlbfgs%2==0) )
|
---|
| 954 | {
|
---|
| 955 | goto lbl_48;
|
---|
| 956 | }
|
---|
| 957 |
|
---|
| 958 | //
|
---|
| 959 | // Optimize using LBFGS, with inv(cholesky(H)) as preconditioner.
|
---|
| 960 | //
|
---|
| 961 | // It is possible only when StpMax=0, because we can't guarantee
|
---|
| 962 | // that step remains bounded when preconditioner is used (we need
|
---|
| 963 | // SVD decomposition to do that, which is too slow).
|
---|
| 964 | //
|
---|
| 965 | matinv.rmatrixtrinverse(ref state.model, n, true, false, ref state.invinfo, ref state.invrep);
|
---|
| 966 | if( state.invinfo<=0 )
|
---|
| 967 | {
|
---|
| 968 | goto lbl_50;
|
---|
| 969 | }
|
---|
| 970 |
|
---|
| 971 | //
|
---|
| 972 | // if matrix can be inverted, use it.
|
---|
| 973 | // just silently move to next iteration otherwise.
|
---|
| 974 | // (will be very, very rare, mostly for specially
|
---|
| 975 | // designed near-degenerate tasks)
|
---|
| 976 | //
|
---|
| 977 | for(i_=0; i_<=n-1;i_++)
|
---|
| 978 | {
|
---|
| 979 | state.xbase[i_] = state.x[i_];
|
---|
| 980 | }
|
---|
| 981 | for(i=0; i<=n-1; i++)
|
---|
| 982 | {
|
---|
| 983 | state.xprec[i] = 0;
|
---|
| 984 | }
|
---|
| 985 | minlbfgs.minlbfgscreatex(n, Math.Min(n, lmintlbfgsits), ref state.xprec, lbfgsflags, ref state.internalstate);
|
---|
| 986 | minlbfgs.minlbfgssetcond(ref state.internalstate, 0, 0, 0, lmintlbfgsits);
|
---|
| 987 | lbl_52:
|
---|
| 988 | if( ! minlbfgs.minlbfgsiteration(ref state.internalstate) )
|
---|
| 989 | {
|
---|
| 990 | goto lbl_53;
|
---|
| 991 | }
|
---|
| 992 |
|
---|
| 993 | //
|
---|
| 994 | // convert XPrec to unpreconditioned form, then call RComm.
|
---|
| 995 | //
|
---|
| 996 | for(i=0; i<=n-1; i++)
|
---|
| 997 | {
|
---|
| 998 | v = 0.0;
|
---|
| 999 | for(i_=i; i_<=n-1;i_++)
|
---|
| 1000 | {
|
---|
| 1001 | v += state.internalstate.x[i_]*state.model[i,i_];
|
---|
| 1002 | }
|
---|
| 1003 | state.x[i] = state.xbase[i]+v;
|
---|
| 1004 | }
|
---|
| 1005 | lmclearrequestfields(ref state);
|
---|
| 1006 | state.needfg = true;
|
---|
| 1007 | state.rstate.stage = 11;
|
---|
| 1008 | goto lbl_rcomm;
|
---|
| 1009 | lbl_11:
|
---|
| 1010 | state.repnfunc = state.repnfunc+1;
|
---|
| 1011 | state.repngrad = state.repngrad+1;
|
---|
| 1012 |
|
---|
| 1013 | //
|
---|
| 1014 | // 1. pass State.F to State.InternalState.F
|
---|
| 1015 | // 2. convert gradient back to preconditioned form
|
---|
| 1016 | //
|
---|
| 1017 | state.internalstate.f = state.f;
|
---|
| 1018 | for(i=0; i<=n-1; i++)
|
---|
| 1019 | {
|
---|
| 1020 | state.internalstate.g[i] = 0;
|
---|
| 1021 | }
|
---|
| 1022 | for(i=0; i<=n-1; i++)
|
---|
| 1023 | {
|
---|
| 1024 | v = state.g[i];
|
---|
| 1025 | for(i_=i; i_<=n-1;i_++)
|
---|
| 1026 | {
|
---|
| 1027 | state.internalstate.g[i_] = state.internalstate.g[i_] + v*state.model[i,i_];
|
---|
| 1028 | }
|
---|
| 1029 | }
|
---|
| 1030 |
|
---|
| 1031 | //
|
---|
| 1032 | // next iteration
|
---|
| 1033 | //
|
---|
| 1034 | goto lbl_52;
|
---|
| 1035 | lbl_53:
|
---|
| 1036 |
|
---|
| 1037 | //
|
---|
| 1038 | // change LBFGS flags to NoRealloc.
|
---|
| 1039 | // L-BFGS subroutine will use memory allocated from previous run.
|
---|
| 1040 | // it is possible since all subsequent calls will be with same N/M.
|
---|
| 1041 | //
|
---|
| 1042 | lbfgsflags = lbfgsnorealloc;
|
---|
| 1043 |
|
---|
| 1044 | //
|
---|
| 1045 | // back to unpreconditioned X
|
---|
| 1046 | //
|
---|
| 1047 | minlbfgs.minlbfgsresults(ref state.internalstate, ref state.xprec, ref state.internalrep);
|
---|
| 1048 | for(i=0; i<=n-1; i++)
|
---|
| 1049 | {
|
---|
| 1050 | v = 0.0;
|
---|
| 1051 | for(i_=i; i_<=n-1;i_++)
|
---|
| 1052 | {
|
---|
| 1053 | v += state.xprec[i_]*state.model[i,i_];
|
---|
| 1054 | }
|
---|
| 1055 | state.x[i] = state.xbase[i]+v;
|
---|
| 1056 | }
|
---|
| 1057 | lbl_50:
|
---|
| 1058 | lbl_48:
|
---|
| 1059 |
|
---|
| 1060 | //
|
---|
| 1061 | // Composite iteration is almost over:
|
---|
| 1062 | // * accept new position.
|
---|
| 1063 | // * rebuild quadratic model
|
---|
| 1064 | //
|
---|
| 1065 | state.repiterationscount = state.repiterationscount+1;
|
---|
| 1066 | if( state.usermode!=lmmodefgh )
|
---|
| 1067 | {
|
---|
| 1068 | goto lbl_54;
|
---|
| 1069 | }
|
---|
| 1070 | lmclearrequestfields(ref state);
|
---|
| 1071 | state.needfgh = true;
|
---|
| 1072 | state.rstate.stage = 12;
|
---|
| 1073 | goto lbl_rcomm;
|
---|
| 1074 | lbl_12:
|
---|
| 1075 | state.repnfunc = state.repnfunc+1;
|
---|
| 1076 | state.repngrad = state.repngrad+1;
|
---|
| 1077 | state.repnhess = state.repnhess+1;
|
---|
| 1078 | ablas.rmatrixcopy(n, n, ref state.h, 0, 0, ref state.rawmodel, 0, 0);
|
---|
| 1079 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1080 | {
|
---|
| 1081 | state.gbase[i_] = state.g[i_];
|
---|
| 1082 | }
|
---|
| 1083 | fnew = state.f;
|
---|
| 1084 | lbl_54:
|
---|
| 1085 | if( ! (state.usermode==lmmodefgj | state.usermode==lmmodefj) )
|
---|
| 1086 | {
|
---|
| 1087 | goto lbl_56;
|
---|
| 1088 | }
|
---|
| 1089 | lmclearrequestfields(ref state);
|
---|
| 1090 | state.needfij = true;
|
---|
| 1091 | state.rstate.stage = 13;
|
---|
| 1092 | goto lbl_rcomm;
|
---|
| 1093 | lbl_13:
|
---|
| 1094 | state.repnfunc = state.repnfunc+1;
|
---|
| 1095 | state.repnjac = state.repnjac+1;
|
---|
| 1096 | ablas.rmatrixgemm(n, n, m, 2.0, ref state.j, 0, 0, 1, ref state.j, 0, 0, 0, 0.0, ref state.rawmodel, 0, 0);
|
---|
| 1097 | ablas.rmatrixmv(n, m, ref state.j, 0, 0, 1, ref state.fi, 0, ref state.gbase, 0);
|
---|
| 1098 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1099 | {
|
---|
| 1100 | state.gbase[i_] = 2*state.gbase[i_];
|
---|
| 1101 | }
|
---|
| 1102 | fnew = 0.0;
|
---|
| 1103 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1104 | {
|
---|
| 1105 | fnew += state.fi[i_]*state.fi[i_];
|
---|
| 1106 | }
|
---|
| 1107 | lbl_56:
|
---|
| 1108 |
|
---|
| 1109 | //
|
---|
| 1110 | // Stopping conditions
|
---|
| 1111 | //
|
---|
| 1112 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1113 | {
|
---|
| 1114 | state.work[i_] = state.xprev[i_];
|
---|
| 1115 | }
|
---|
| 1116 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1117 | {
|
---|
| 1118 | state.work[i_] = state.work[i_] - state.x[i_];
|
---|
| 1119 | }
|
---|
| 1120 | stepnorm = 0.0;
|
---|
| 1121 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1122 | {
|
---|
| 1123 | stepnorm += state.work[i_]*state.work[i_];
|
---|
| 1124 | }
|
---|
| 1125 | stepnorm = Math.Sqrt(stepnorm);
|
---|
| 1126 | if( (double)(stepnorm)<=(double)(state.epsx) )
|
---|
| 1127 | {
|
---|
| 1128 | state.repterminationtype = 2;
|
---|
| 1129 | goto lbl_31;
|
---|
| 1130 | }
|
---|
| 1131 | if( state.repiterationscount>=state.maxits & state.maxits>0 )
|
---|
| 1132 | {
|
---|
| 1133 | state.repterminationtype = 5;
|
---|
| 1134 | goto lbl_31;
|
---|
| 1135 | }
|
---|
| 1136 | v = 0.0;
|
---|
| 1137 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1138 | {
|
---|
| 1139 | v += state.gbase[i_]*state.gbase[i_];
|
---|
| 1140 | }
|
---|
| 1141 | v = Math.Sqrt(v);
|
---|
| 1142 | if( (double)(v)<=(double)(state.epsg) )
|
---|
| 1143 | {
|
---|
| 1144 | state.repterminationtype = 4;
|
---|
| 1145 | goto lbl_31;
|
---|
| 1146 | }
|
---|
| 1147 | if( (double)(Math.Abs(fnew-fbase))<=(double)(state.epsf*Math.Max(1, Math.Max(Math.Abs(fnew), Math.Abs(fbase)))) )
|
---|
| 1148 | {
|
---|
| 1149 | state.repterminationtype = 1;
|
---|
| 1150 | goto lbl_31;
|
---|
| 1151 | }
|
---|
| 1152 |
|
---|
| 1153 | //
|
---|
| 1154 | // Now, iteration is finally over:
|
---|
| 1155 | // * update FBase
|
---|
| 1156 | // * decrease lambda
|
---|
| 1157 | // * report new iteration
|
---|
| 1158 | //
|
---|
| 1159 | if( ! state.xrep )
|
---|
| 1160 | {
|
---|
| 1161 | goto lbl_58;
|
---|
| 1162 | }
|
---|
| 1163 | lmclearrequestfields(ref state);
|
---|
| 1164 | state.xupdated = true;
|
---|
| 1165 | state.f = fnew;
|
---|
| 1166 | state.rstate.stage = 14;
|
---|
| 1167 | goto lbl_rcomm;
|
---|
| 1168 | lbl_14:
|
---|
| 1169 | lbl_58:
|
---|
| 1170 | fbase = fnew;
|
---|
| 1171 | decreaselambda(ref lambda, ref nu, lambdadown);
|
---|
| 1172 | goto lbl_30;
|
---|
| 1173 | lbl_31:
|
---|
| 1174 |
|
---|
| 1175 | //
|
---|
| 1176 | // final point is reported
|
---|
| 1177 | //
|
---|
| 1178 | if( ! state.xrep )
|
---|
| 1179 | {
|
---|
| 1180 | goto lbl_60;
|
---|
| 1181 | }
|
---|
| 1182 | lmclearrequestfields(ref state);
|
---|
| 1183 | state.xupdated = true;
|
---|
| 1184 | state.f = fnew;
|
---|
| 1185 | state.rstate.stage = 15;
|
---|
| 1186 | goto lbl_rcomm;
|
---|
| 1187 | lbl_15:
|
---|
| 1188 | lbl_60:
|
---|
| 1189 | result = false;
|
---|
| 1190 | return result;
|
---|
| 1191 |
|
---|
| 1192 | //
|
---|
| 1193 | // Saving state
|
---|
| 1194 | //
|
---|
| 1195 | lbl_rcomm:
|
---|
| 1196 | result = true;
|
---|
| 1197 | state.rstate.ia[0] = n;
|
---|
| 1198 | state.rstate.ia[1] = m;
|
---|
| 1199 | state.rstate.ia[2] = i;
|
---|
| 1200 | state.rstate.ia[3] = lbfgsflags;
|
---|
| 1201 | state.rstate.ba[0] = spd;
|
---|
| 1202 | state.rstate.ra[0] = stepnorm;
|
---|
| 1203 | state.rstate.ra[1] = fbase;
|
---|
| 1204 | state.rstate.ra[2] = fnew;
|
---|
| 1205 | state.rstate.ra[3] = lambda;
|
---|
| 1206 | state.rstate.ra[4] = nu;
|
---|
| 1207 | state.rstate.ra[5] = lambdaup;
|
---|
| 1208 | state.rstate.ra[6] = lambdadown;
|
---|
| 1209 | state.rstate.ra[7] = v;
|
---|
| 1210 | return result;
|
---|
| 1211 | }
|
---|
| 1212 |
|
---|
| 1213 |
|
---|
| 1214 | /*************************************************************************
|
---|
| 1215 | Levenberg-Marquardt algorithm results
|
---|
| 1216 |
|
---|
| 1217 | Called after MinLMIteration returned False.
|
---|
| 1218 |
|
---|
| 1219 | Input parameters:
|
---|
| 1220 | State - algorithm state (used by MinLMIteration).
|
---|
| 1221 |
|
---|
| 1222 | Output parameters:
|
---|
| 1223 | X - array[0..N-1], solution
|
---|
| 1224 | Rep - optimization report:
|
---|
| 1225 | * Rep.TerminationType completetion code:
|
---|
| 1226 | * -1 incorrect parameters were specified
|
---|
| 1227 | * 1 relative function improvement is no more than
|
---|
| 1228 | EpsF.
|
---|
| 1229 | * 2 relative step is no more than EpsX.
|
---|
| 1230 | * 4 gradient is no more than EpsG.
|
---|
| 1231 | * 5 MaxIts steps was taken
|
---|
| 1232 | * 7 stopping conditions are too stringent,
|
---|
| 1233 | further improvement is impossible
|
---|
| 1234 | * Rep.IterationsCount contains iterations count
|
---|
| 1235 | * Rep.NFunc - number of function calculations
|
---|
| 1236 | * Rep.NJac - number of Jacobi matrix calculations
|
---|
| 1237 | * Rep.NGrad - number of gradient calculations
|
---|
| 1238 | * Rep.NHess - number of Hessian calculations
|
---|
| 1239 | * Rep.NCholesky - number of Cholesky decomposition calculations
|
---|
| 1240 |
|
---|
| 1241 | -- ALGLIB --
|
---|
| 1242 | Copyright 10.03.2009 by Bochkanov Sergey
|
---|
| 1243 | *************************************************************************/
|
---|
| 1244 | public static void minlmresults(ref minlmstate state,
|
---|
| 1245 | ref double[] x,
|
---|
| 1246 | ref minlmreport rep)
|
---|
| 1247 | {
|
---|
| 1248 | int i_ = 0;
|
---|
| 1249 |
|
---|
| 1250 | x = new double[state.n-1+1];
|
---|
| 1251 | for(i_=0; i_<=state.n-1;i_++)
|
---|
| 1252 | {
|
---|
| 1253 | x[i_] = state.x[i_];
|
---|
| 1254 | }
|
---|
| 1255 | rep.iterationscount = state.repiterationscount;
|
---|
| 1256 | rep.terminationtype = state.repterminationtype;
|
---|
| 1257 | rep.nfunc = state.repnfunc;
|
---|
| 1258 | rep.njac = state.repnjac;
|
---|
| 1259 | rep.ngrad = state.repngrad;
|
---|
| 1260 | rep.nhess = state.repnhess;
|
---|
| 1261 | rep.ncholesky = state.repncholesky;
|
---|
| 1262 | }
|
---|
| 1263 |
|
---|
| 1264 |
|
---|
| 1265 | /*************************************************************************
|
---|
| 1266 | Prepare internal structures (except for RComm).
|
---|
| 1267 |
|
---|
| 1268 | Note: M must be zero for FGH mode, non-zero for FJ/FGJ mode.
|
---|
| 1269 | *************************************************************************/
|
---|
| 1270 | private static void lmprepare(int n,
|
---|
| 1271 | int m,
|
---|
| 1272 | bool havegrad,
|
---|
| 1273 | ref minlmstate state)
|
---|
| 1274 | {
|
---|
| 1275 | state.repiterationscount = 0;
|
---|
| 1276 | state.repterminationtype = 0;
|
---|
| 1277 | state.repnfunc = 0;
|
---|
| 1278 | state.repnjac = 0;
|
---|
| 1279 | state.repngrad = 0;
|
---|
| 1280 | state.repnhess = 0;
|
---|
| 1281 | state.repncholesky = 0;
|
---|
| 1282 | if( n<=0 | m<0 )
|
---|
| 1283 | {
|
---|
| 1284 | return;
|
---|
| 1285 | }
|
---|
| 1286 | if( havegrad )
|
---|
| 1287 | {
|
---|
| 1288 | state.g = new double[n-1+1];
|
---|
| 1289 | }
|
---|
| 1290 | if( m!=0 )
|
---|
| 1291 | {
|
---|
| 1292 | state.j = new double[m-1+1, n-1+1];
|
---|
| 1293 | state.fi = new double[m-1+1];
|
---|
| 1294 | state.h = new double[0+1, 0+1];
|
---|
| 1295 | }
|
---|
| 1296 | else
|
---|
| 1297 | {
|
---|
| 1298 | state.j = new double[0+1, 0+1];
|
---|
| 1299 | state.fi = new double[0+1];
|
---|
| 1300 | state.h = new double[n-1+1, n-1+1];
|
---|
| 1301 | }
|
---|
| 1302 | state.x = new double[n-1+1];
|
---|
| 1303 | state.rawmodel = new double[n-1+1, n-1+1];
|
---|
| 1304 | state.model = new double[n-1+1, n-1+1];
|
---|
| 1305 | state.xbase = new double[n-1+1];
|
---|
| 1306 | state.xprec = new double[n-1+1];
|
---|
| 1307 | state.gbase = new double[n-1+1];
|
---|
| 1308 | state.xdir = new double[n-1+1];
|
---|
| 1309 | state.xprev = new double[n-1+1];
|
---|
| 1310 | state.work = new double[Math.Max(n, m)+1];
|
---|
| 1311 | }
|
---|
| 1312 |
|
---|
| 1313 |
|
---|
| 1314 | /*************************************************************************
|
---|
| 1315 | Clears request fileds (to be sure that we don't forgot to clear something)
|
---|
| 1316 | *************************************************************************/
|
---|
| 1317 | private static void lmclearrequestfields(ref minlmstate state)
|
---|
| 1318 | {
|
---|
| 1319 | state.needf = false;
|
---|
| 1320 | state.needfg = false;
|
---|
| 1321 | state.needfgh = false;
|
---|
| 1322 | state.needfij = false;
|
---|
| 1323 | state.xupdated = false;
|
---|
| 1324 | }
|
---|
| 1325 |
|
---|
| 1326 |
|
---|
| 1327 | /*************************************************************************
|
---|
| 1328 | Increases lambda, returns False when there is a danger of overflow
|
---|
| 1329 | *************************************************************************/
|
---|
| 1330 | private static bool increaselambda(ref double lambda,
|
---|
| 1331 | ref double nu,
|
---|
| 1332 | double lambdaup)
|
---|
| 1333 | {
|
---|
| 1334 | bool result = new bool();
|
---|
| 1335 | double lnlambda = 0;
|
---|
| 1336 | double lnnu = 0;
|
---|
| 1337 | double lnlambdaup = 0;
|
---|
| 1338 | double lnmax = 0;
|
---|
| 1339 |
|
---|
| 1340 | result = false;
|
---|
| 1341 | lnlambda = Math.Log(lambda);
|
---|
| 1342 | lnlambdaup = Math.Log(lambdaup);
|
---|
| 1343 | lnnu = Math.Log(nu);
|
---|
| 1344 | lnmax = Math.Log(AP.Math.MaxRealNumber);
|
---|
| 1345 | if( (double)(lnlambda+lnlambdaup+lnnu)>(double)(lnmax) )
|
---|
| 1346 | {
|
---|
| 1347 | return result;
|
---|
| 1348 | }
|
---|
| 1349 | if( (double)(lnnu+Math.Log(2))>(double)(lnmax) )
|
---|
| 1350 | {
|
---|
| 1351 | return result;
|
---|
| 1352 | }
|
---|
| 1353 | lambda = lambda*lambdaup*nu;
|
---|
| 1354 | nu = nu*2;
|
---|
| 1355 | result = true;
|
---|
| 1356 | return result;
|
---|
| 1357 | }
|
---|
| 1358 |
|
---|
| 1359 |
|
---|
| 1360 | /*************************************************************************
|
---|
| 1361 | Decreases lambda, but leaves it unchanged when there is danger of underflow.
|
---|
| 1362 | *************************************************************************/
|
---|
| 1363 | private static void decreaselambda(ref double lambda,
|
---|
| 1364 | ref double nu,
|
---|
| 1365 | double lambdadown)
|
---|
| 1366 | {
|
---|
| 1367 | nu = 1;
|
---|
| 1368 | if( (double)(Math.Log(lambda)+Math.Log(lambdadown))<(double)(Math.Log(AP.Math.MinRealNumber)) )
|
---|
| 1369 | {
|
---|
| 1370 | lambda = AP.Math.MinRealNumber;
|
---|
| 1371 | }
|
---|
| 1372 | else
|
---|
| 1373 | {
|
---|
| 1374 | lambda = lambda*lambdadown;
|
---|
| 1375 | }
|
---|
| 1376 | }
|
---|
| 1377 | }
|
---|
| 1378 | }
|
---|