[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2010, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class minasa
|
---|
| 26 | {
|
---|
| 27 | public struct minasastate
|
---|
| 28 | {
|
---|
| 29 | public int n;
|
---|
| 30 | public double epsg;
|
---|
| 31 | public double epsf;
|
---|
| 32 | public double epsx;
|
---|
| 33 | public int maxits;
|
---|
| 34 | public bool xrep;
|
---|
| 35 | public double stpmax;
|
---|
| 36 | public int cgtype;
|
---|
| 37 | public int k;
|
---|
| 38 | public int nfev;
|
---|
| 39 | public int mcstage;
|
---|
| 40 | public double[] bndl;
|
---|
| 41 | public double[] bndu;
|
---|
| 42 | public int curalgo;
|
---|
| 43 | public int acount;
|
---|
| 44 | public double mu;
|
---|
| 45 | public double finit;
|
---|
| 46 | public double dginit;
|
---|
| 47 | public double[] ak;
|
---|
| 48 | public double[] xk;
|
---|
| 49 | public double[] dk;
|
---|
| 50 | public double[] an;
|
---|
| 51 | public double[] xn;
|
---|
| 52 | public double[] dn;
|
---|
| 53 | public double[] d;
|
---|
| 54 | public double fold;
|
---|
| 55 | public double stp;
|
---|
| 56 | public double[] work;
|
---|
| 57 | public double[] yk;
|
---|
| 58 | public double[] gc;
|
---|
| 59 | public double[] x;
|
---|
| 60 | public double f;
|
---|
| 61 | public double[] g;
|
---|
| 62 | public bool needfg;
|
---|
| 63 | public bool xupdated;
|
---|
| 64 | public AP.rcommstate rstate;
|
---|
| 65 | public int repiterationscount;
|
---|
| 66 | public int repnfev;
|
---|
| 67 | public int repterminationtype;
|
---|
| 68 | public int debugrestartscount;
|
---|
| 69 | public linmin.linminstate lstate;
|
---|
| 70 | public double betahs;
|
---|
| 71 | public double betady;
|
---|
| 72 | };
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 | public struct minasareport
|
---|
| 76 | {
|
---|
| 77 | public int iterationscount;
|
---|
| 78 | public int nfev;
|
---|
| 79 | public int terminationtype;
|
---|
| 80 | public int activeconstraints;
|
---|
| 81 | };
|
---|
| 82 |
|
---|
| 83 |
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 | public const int n1 = 2;
|
---|
| 87 | public const int n2 = 2;
|
---|
| 88 | public const double stpmin = 1.0E-300;
|
---|
| 89 | public const double gpaftol = 0.0001;
|
---|
| 90 | public const double gpadecay = 0.5;
|
---|
| 91 | public const double asarho = 0.5;
|
---|
| 92 |
|
---|
| 93 |
|
---|
| 94 | /*************************************************************************
|
---|
| 95 | NONLINEAR BOUND CONSTRAINED OPTIMIZATION USING
|
---|
| 96 | MODIFIED
|
---|
| 97 | WILLIAM W. HAGER AND HONGCHAO ZHANG
|
---|
| 98 | ACTIVE SET ALGORITHM
|
---|
| 99 |
|
---|
| 100 | The subroutine minimizes function F(x) of N arguments with bound
|
---|
| 101 | constraints: BndL[i] <= x[i] <= BndU[i]
|
---|
| 102 |
|
---|
| 103 | This method is globally convergent as long as grad(f) is Lipschitz
|
---|
| 104 | continuous on a level set: L = { x : f(x)<=f(x0) }.
|
---|
| 105 |
|
---|
| 106 | INPUT PARAMETERS:
|
---|
| 107 | N - problem dimension. N>0
|
---|
| 108 | X - initial solution approximation, array[0..N-1].
|
---|
| 109 | BndL - lower bounds, array[0..N-1].
|
---|
| 110 | all elements MUST be specified, i.e. all variables are
|
---|
| 111 | bounded. However, if some (all) variables are unbounded,
|
---|
| 112 | you may specify very small number as bound: -1000, -1.0E6
|
---|
| 113 | or -1.0E300, or something like that.
|
---|
| 114 | BndU - upper bounds, array[0..N-1].
|
---|
| 115 | all elements MUST be specified, i.e. all variables are
|
---|
| 116 | bounded. However, if some (all) variables are unbounded,
|
---|
| 117 | you may specify very large number as bound: +1000, +1.0E6
|
---|
| 118 | or +1.0E300, or something like that.
|
---|
| 119 | EpsG - positive number which defines a precision of search. The
|
---|
| 120 | subroutine finishes its work if the condition ||G|| < EpsG is
|
---|
| 121 | satisfied, where ||.|| means Euclidian norm, G - gradient, X -
|
---|
| 122 | current approximation.
|
---|
| 123 | EpsF - positive number which defines a precision of search. The
|
---|
| 124 | subroutine finishes its work if on iteration number k+1 the
|
---|
| 125 | condition |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1} is
|
---|
| 126 | satisfied.
|
---|
| 127 | EpsX - positive number which defines a precision of search. The
|
---|
| 128 | subroutine finishes its work if on iteration number k+1 the
|
---|
| 129 | condition |X(k+1)-X(k)| <= EpsX is fulfilled.
|
---|
| 130 | MaxIts - maximum number of iterations. If MaxIts=0, the number of
|
---|
| 131 | iterations is unlimited.
|
---|
| 132 |
|
---|
| 133 | OUTPUT PARAMETERS:
|
---|
| 134 | State - structure used for reverse communication.
|
---|
| 135 |
|
---|
| 136 | This function initializes State structure with default optimization
|
---|
| 137 | parameters (stopping conditions, step size, etc.). Use MinASASet??????()
|
---|
| 138 | functions to tune optimization parameters.
|
---|
| 139 |
|
---|
| 140 | After all optimization parameters are tuned, you should use
|
---|
| 141 | MinASAIteration() function to advance algorithm iterations.
|
---|
| 142 |
|
---|
| 143 | NOTES:
|
---|
| 144 |
|
---|
| 145 | 1. you may tune stopping conditions with MinASASetCond() function
|
---|
| 146 | 2. if target function contains exp() or other fast growing functions, and
|
---|
| 147 | optimization algorithm makes too large steps which leads to overflow,
|
---|
| 148 | use MinASASetStpMax() function to bound algorithm's steps.
|
---|
| 149 |
|
---|
| 150 | -- ALGLIB --
|
---|
| 151 | Copyright 25.03.2010 by Bochkanov Sergey
|
---|
| 152 | *************************************************************************/
|
---|
| 153 | public static void minasacreate(int n,
|
---|
| 154 | ref double[] x,
|
---|
| 155 | ref double[] bndl,
|
---|
| 156 | ref double[] bndu,
|
---|
| 157 | ref minasastate state)
|
---|
| 158 | {
|
---|
| 159 | int i = 0;
|
---|
| 160 | int i_ = 0;
|
---|
| 161 |
|
---|
| 162 | System.Diagnostics.Debug.Assert(n>=1, "MinASA: N too small!");
|
---|
| 163 | for(i=0; i<=n-1; i++)
|
---|
| 164 | {
|
---|
| 165 | System.Diagnostics.Debug.Assert((double)(bndl[i])<=(double)(bndu[i]), "MinASA: inconsistent bounds!");
|
---|
| 166 | System.Diagnostics.Debug.Assert((double)(bndl[i])<=(double)(x[i]), "MinASA: infeasible X!");
|
---|
| 167 | System.Diagnostics.Debug.Assert((double)(x[i])<=(double)(bndu[i]), "MinASA: infeasible X!");
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | //
|
---|
| 171 | // Initialize
|
---|
| 172 | //
|
---|
| 173 | state.n = n;
|
---|
| 174 | minasasetcond(ref state, 0, 0, 0, 0);
|
---|
| 175 | minasasetxrep(ref state, false);
|
---|
| 176 | minasasetstpmax(ref state, 0);
|
---|
| 177 | minasasetalgorithm(ref state, -1);
|
---|
| 178 | state.bndl = new double[n];
|
---|
| 179 | state.bndu = new double[n];
|
---|
| 180 | state.ak = new double[n];
|
---|
| 181 | state.xk = new double[n];
|
---|
| 182 | state.dk = new double[n];
|
---|
| 183 | state.an = new double[n];
|
---|
| 184 | state.xn = new double[n];
|
---|
| 185 | state.dn = new double[n];
|
---|
| 186 | state.x = new double[n];
|
---|
| 187 | state.d = new double[n];
|
---|
| 188 | state.g = new double[n];
|
---|
| 189 | state.gc = new double[n];
|
---|
| 190 | state.work = new double[n];
|
---|
| 191 | state.yk = new double[n];
|
---|
| 192 | for(i_=0; i_<=n-1;i_++)
|
---|
| 193 | {
|
---|
| 194 | state.bndl[i_] = bndl[i_];
|
---|
| 195 | }
|
---|
| 196 | for(i_=0; i_<=n-1;i_++)
|
---|
| 197 | {
|
---|
| 198 | state.bndu[i_] = bndu[i_];
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | //
|
---|
| 202 | // Prepare first run
|
---|
| 203 | //
|
---|
| 204 | for(i_=0; i_<=n-1;i_++)
|
---|
| 205 | {
|
---|
| 206 | state.x[i_] = x[i_];
|
---|
| 207 | }
|
---|
| 208 | state.rstate.ia = new int[3+1];
|
---|
| 209 | state.rstate.ba = new bool[1+1];
|
---|
| 210 | state.rstate.ra = new double[2+1];
|
---|
| 211 | state.rstate.stage = -1;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 |
|
---|
| 215 | /*************************************************************************
|
---|
| 216 | This function sets stopping conditions for the ASA optimization algorithm.
|
---|
| 217 |
|
---|
| 218 | INPUT PARAMETERS:
|
---|
| 219 | State - structure which stores algorithm state between calls and
|
---|
| 220 | which is used for reverse communication. Must be initialized
|
---|
| 221 | with MinASACreate()
|
---|
| 222 | EpsG - >=0
|
---|
| 223 | The subroutine finishes its work if the condition
|
---|
| 224 | ||G||<EpsG is satisfied, where ||.|| means Euclidian norm,
|
---|
| 225 | G - gradient.
|
---|
| 226 | EpsF - >=0
|
---|
| 227 | The subroutine finishes its work if on k+1-th iteration
|
---|
| 228 | the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
|
---|
| 229 | is satisfied.
|
---|
| 230 | EpsX - >=0
|
---|
| 231 | The subroutine finishes its work if on k+1-th iteration
|
---|
| 232 | the condition |X(k+1)-X(k)| <= EpsX is fulfilled.
|
---|
| 233 | MaxIts - maximum number of iterations. If MaxIts=0, the number of
|
---|
| 234 | iterations is unlimited.
|
---|
| 235 |
|
---|
| 236 | Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
|
---|
| 237 | automatic stopping criterion selection (small EpsX).
|
---|
| 238 |
|
---|
| 239 | -- ALGLIB --
|
---|
| 240 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 241 | *************************************************************************/
|
---|
| 242 | public static void minasasetcond(ref minasastate state,
|
---|
| 243 | double epsg,
|
---|
| 244 | double epsf,
|
---|
| 245 | double epsx,
|
---|
| 246 | int maxits)
|
---|
| 247 | {
|
---|
| 248 | System.Diagnostics.Debug.Assert((double)(epsg)>=(double)(0), "MinASASetCond: negative EpsG!");
|
---|
| 249 | System.Diagnostics.Debug.Assert((double)(epsf)>=(double)(0), "MinASASetCond: negative EpsF!");
|
---|
| 250 | System.Diagnostics.Debug.Assert((double)(epsx)>=(double)(0), "MinASASetCond: negative EpsX!");
|
---|
| 251 | System.Diagnostics.Debug.Assert(maxits>=0, "MinASASetCond: negative MaxIts!");
|
---|
| 252 | if( (double)(epsg)==(double)(0) & (double)(epsf)==(double)(0) & (double)(epsx)==(double)(0) & maxits==0 )
|
---|
| 253 | {
|
---|
| 254 | epsx = 1.0E-6;
|
---|
| 255 | }
|
---|
| 256 | state.epsg = epsg;
|
---|
| 257 | state.epsf = epsf;
|
---|
| 258 | state.epsx = epsx;
|
---|
| 259 | state.maxits = maxits;
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 |
|
---|
| 263 | /*************************************************************************
|
---|
| 264 | This function turns on/off reporting.
|
---|
| 265 |
|
---|
| 266 | INPUT PARAMETERS:
|
---|
| 267 | State - structure which stores algorithm state between calls and
|
---|
| 268 | which is used for reverse communication. Must be
|
---|
| 269 | initialized with MinASACreate()
|
---|
| 270 | NeedXRep- whether iteration reports are needed or not
|
---|
| 271 |
|
---|
| 272 | Usually algorithm returns from MinASAIteration() only when it needs
|
---|
| 273 | function/gradient. However, with this function we can let it stop after
|
---|
| 274 | each iteration (one iteration may include more than one function
|
---|
| 275 | evaluation), which is indicated by XUpdated field.
|
---|
| 276 |
|
---|
| 277 | -- ALGLIB --
|
---|
| 278 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 279 | *************************************************************************/
|
---|
| 280 | public static void minasasetxrep(ref minasastate state,
|
---|
| 281 | bool needxrep)
|
---|
| 282 | {
|
---|
| 283 | state.xrep = needxrep;
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 |
|
---|
| 287 | /*************************************************************************
|
---|
| 288 | This function sets optimization algorithm.
|
---|
| 289 |
|
---|
| 290 | INPUT PARAMETERS:
|
---|
| 291 | State - structure which stores algorithm state between calls and
|
---|
| 292 | which is used for reverse communication. Must be
|
---|
| 293 | initialized with MinASACreate()
|
---|
| 294 | UAType - algorithm type:
|
---|
| 295 | * -1 automatic selection of the best algorithm
|
---|
| 296 | * 0 DY (Dai and Yuan) algorithm
|
---|
| 297 | * 1 Hybrid DY-HS algorithm
|
---|
| 298 |
|
---|
| 299 | -- ALGLIB --
|
---|
| 300 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 301 | *************************************************************************/
|
---|
| 302 | public static void minasasetalgorithm(ref minasastate state,
|
---|
| 303 | int algotype)
|
---|
| 304 | {
|
---|
| 305 | System.Diagnostics.Debug.Assert(algotype>=-1 & algotype<=1, "MinASASetAlgorithm: incorrect AlgoType!");
|
---|
| 306 | if( algotype==-1 )
|
---|
| 307 | {
|
---|
| 308 | algotype = 1;
|
---|
| 309 | }
|
---|
| 310 | state.cgtype = algotype;
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 |
|
---|
| 314 | /*************************************************************************
|
---|
| 315 | This function sets maximum step length
|
---|
| 316 |
|
---|
| 317 | INPUT PARAMETERS:
|
---|
| 318 | State - structure which stores algorithm state between calls and
|
---|
| 319 | which is used for reverse communication. Must be
|
---|
| 320 | initialized with MinCGCreate()
|
---|
| 321 | StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
|
---|
| 322 | want to limit step length.
|
---|
| 323 |
|
---|
| 324 | Use this subroutine when you optimize target function which contains exp()
|
---|
| 325 | or other fast growing functions, and optimization algorithm makes too
|
---|
| 326 | large steps which leads to overflow. This function allows us to reject
|
---|
| 327 | steps that are too large (and therefore expose us to the possible
|
---|
| 328 | overflow) without actually calculating function value at the x+stp*d.
|
---|
| 329 |
|
---|
| 330 | -- ALGLIB --
|
---|
| 331 | Copyright 02.04.2010 by Bochkanov Sergey
|
---|
| 332 | *************************************************************************/
|
---|
| 333 | public static void minasasetstpmax(ref minasastate state,
|
---|
| 334 | double stpmax)
|
---|
| 335 | {
|
---|
| 336 | System.Diagnostics.Debug.Assert((double)(stpmax)>=(double)(0), "MinASASetStpMax: StpMax<0!");
|
---|
| 337 | state.stpmax = stpmax;
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 |
|
---|
| 341 | /*************************************************************************
|
---|
| 342 | One ASA iteration
|
---|
| 343 |
|
---|
| 344 | Called after initialization with MinASACreate.
|
---|
| 345 | See HTML documentation for examples.
|
---|
| 346 |
|
---|
| 347 | INPUT PARAMETERS:
|
---|
| 348 | State - structure which stores algorithm state between calls and
|
---|
| 349 | which is used for reverse communication. Must be initialized
|
---|
| 350 | with MinASACreate.
|
---|
| 351 | RESULT:
|
---|
| 352 | * if function returned False, iterative proces has converged.
|
---|
| 353 | Use MinLBFGSResults() to obtain optimization results.
|
---|
| 354 | * if subroutine returned True, then, depending on structure fields, we
|
---|
| 355 | have one of the following situations
|
---|
| 356 |
|
---|
| 357 |
|
---|
| 358 | === FUNC/GRAD REQUEST ===
|
---|
| 359 | State.NeedFG is True => function value/gradient are needed.
|
---|
| 360 | Caller should calculate function value State.F and gradient
|
---|
| 361 | State.G[0..N-1] at State.X[0..N-1] and call MinLBFGSIteration() again.
|
---|
| 362 |
|
---|
| 363 | === NEW INTERATION IS REPORTED ===
|
---|
| 364 | State.XUpdated is True => one more iteration was made.
|
---|
| 365 | State.X contains current position, State.F contains function value at X.
|
---|
| 366 | You can read info from these fields, but never modify them because they
|
---|
| 367 | contain the only copy of optimization algorithm state.
|
---|
| 368 |
|
---|
| 369 | One and only one of these fields (NeedFG, XUpdated) is true on return. New
|
---|
| 370 | iterations are reported only when reports are explicitly turned on by
|
---|
| 371 | MinLBFGSSetXRep() function, so if you never called it, you can expect that
|
---|
| 372 | NeedFG is always True.
|
---|
| 373 |
|
---|
| 374 |
|
---|
| 375 | -- ALGLIB --
|
---|
| 376 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 377 | *************************************************************************/
|
---|
| 378 | public static bool minasaiteration(ref minasastate state)
|
---|
| 379 | {
|
---|
| 380 | bool result = new bool();
|
---|
| 381 | int n = 0;
|
---|
| 382 | int i = 0;
|
---|
| 383 | double betak = 0;
|
---|
| 384 | double v = 0;
|
---|
| 385 | double vv = 0;
|
---|
| 386 | int mcinfo = 0;
|
---|
| 387 | bool b = new bool();
|
---|
| 388 | bool stepfound = new bool();
|
---|
| 389 | int diffcnt = 0;
|
---|
| 390 | int i_ = 0;
|
---|
| 391 |
|
---|
| 392 |
|
---|
| 393 | //
|
---|
| 394 | // Reverse communication preparations
|
---|
| 395 | // I know it looks ugly, but it works the same way
|
---|
| 396 | // anywhere from C++ to Python.
|
---|
| 397 | //
|
---|
| 398 | // This code initializes locals by:
|
---|
| 399 | // * random values determined during code
|
---|
| 400 | // generation - on first subroutine call
|
---|
| 401 | // * values from previous call - on subsequent calls
|
---|
| 402 | //
|
---|
| 403 | if( state.rstate.stage>=0 )
|
---|
| 404 | {
|
---|
| 405 | n = state.rstate.ia[0];
|
---|
| 406 | i = state.rstate.ia[1];
|
---|
| 407 | mcinfo = state.rstate.ia[2];
|
---|
| 408 | diffcnt = state.rstate.ia[3];
|
---|
| 409 | b = state.rstate.ba[0];
|
---|
| 410 | stepfound = state.rstate.ba[1];
|
---|
| 411 | betak = state.rstate.ra[0];
|
---|
| 412 | v = state.rstate.ra[1];
|
---|
| 413 | vv = state.rstate.ra[2];
|
---|
| 414 | }
|
---|
| 415 | else
|
---|
| 416 | {
|
---|
| 417 | n = -983;
|
---|
| 418 | i = -989;
|
---|
| 419 | mcinfo = -834;
|
---|
| 420 | diffcnt = 900;
|
---|
| 421 | b = true;
|
---|
| 422 | stepfound = false;
|
---|
| 423 | betak = 214;
|
---|
| 424 | v = -338;
|
---|
| 425 | vv = -686;
|
---|
| 426 | }
|
---|
| 427 | if( state.rstate.stage==0 )
|
---|
| 428 | {
|
---|
| 429 | goto lbl_0;
|
---|
| 430 | }
|
---|
| 431 | if( state.rstate.stage==1 )
|
---|
| 432 | {
|
---|
| 433 | goto lbl_1;
|
---|
| 434 | }
|
---|
| 435 | if( state.rstate.stage==2 )
|
---|
| 436 | {
|
---|
| 437 | goto lbl_2;
|
---|
| 438 | }
|
---|
| 439 | if( state.rstate.stage==3 )
|
---|
| 440 | {
|
---|
| 441 | goto lbl_3;
|
---|
| 442 | }
|
---|
| 443 | if( state.rstate.stage==4 )
|
---|
| 444 | {
|
---|
| 445 | goto lbl_4;
|
---|
| 446 | }
|
---|
| 447 | if( state.rstate.stage==5 )
|
---|
| 448 | {
|
---|
| 449 | goto lbl_5;
|
---|
| 450 | }
|
---|
| 451 | if( state.rstate.stage==6 )
|
---|
| 452 | {
|
---|
| 453 | goto lbl_6;
|
---|
| 454 | }
|
---|
| 455 | if( state.rstate.stage==7 )
|
---|
| 456 | {
|
---|
| 457 | goto lbl_7;
|
---|
| 458 | }
|
---|
| 459 | if( state.rstate.stage==8 )
|
---|
| 460 | {
|
---|
| 461 | goto lbl_8;
|
---|
| 462 | }
|
---|
| 463 | if( state.rstate.stage==9 )
|
---|
| 464 | {
|
---|
| 465 | goto lbl_9;
|
---|
| 466 | }
|
---|
| 467 | if( state.rstate.stage==10 )
|
---|
| 468 | {
|
---|
| 469 | goto lbl_10;
|
---|
| 470 | }
|
---|
| 471 | if( state.rstate.stage==11 )
|
---|
| 472 | {
|
---|
| 473 | goto lbl_11;
|
---|
| 474 | }
|
---|
| 475 | if( state.rstate.stage==12 )
|
---|
| 476 | {
|
---|
| 477 | goto lbl_12;
|
---|
| 478 | }
|
---|
| 479 | if( state.rstate.stage==13 )
|
---|
| 480 | {
|
---|
| 481 | goto lbl_13;
|
---|
| 482 | }
|
---|
| 483 | if( state.rstate.stage==14 )
|
---|
| 484 | {
|
---|
| 485 | goto lbl_14;
|
---|
| 486 | }
|
---|
| 487 |
|
---|
| 488 | //
|
---|
| 489 | // Routine body
|
---|
| 490 | //
|
---|
| 491 |
|
---|
| 492 | //
|
---|
| 493 | // Prepare
|
---|
| 494 | //
|
---|
| 495 | n = state.n;
|
---|
| 496 | state.repterminationtype = 0;
|
---|
| 497 | state.repiterationscount = 0;
|
---|
| 498 | state.repnfev = 0;
|
---|
| 499 | state.debugrestartscount = 0;
|
---|
| 500 | state.cgtype = 1;
|
---|
| 501 | for(i_=0; i_<=n-1;i_++)
|
---|
| 502 | {
|
---|
| 503 | state.xk[i_] = state.x[i_];
|
---|
| 504 | }
|
---|
| 505 | for(i=0; i<=n-1; i++)
|
---|
| 506 | {
|
---|
| 507 | if( (double)(state.xk[i])==(double)(state.bndl[i]) | (double)(state.xk[i])==(double)(state.bndu[i]) )
|
---|
| 508 | {
|
---|
| 509 | state.ak[i] = 0;
|
---|
| 510 | }
|
---|
| 511 | else
|
---|
| 512 | {
|
---|
| 513 | state.ak[i] = 1;
|
---|
| 514 | }
|
---|
| 515 | }
|
---|
| 516 | state.mu = 0.1;
|
---|
| 517 | state.curalgo = 0;
|
---|
| 518 |
|
---|
| 519 | //
|
---|
| 520 | // Calculate F/G, initialize algorithm
|
---|
| 521 | //
|
---|
| 522 | clearrequestfields(ref state);
|
---|
| 523 | state.needfg = true;
|
---|
| 524 | state.rstate.stage = 0;
|
---|
| 525 | goto lbl_rcomm;
|
---|
| 526 | lbl_0:
|
---|
| 527 | if( ! state.xrep )
|
---|
| 528 | {
|
---|
| 529 | goto lbl_15;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | //
|
---|
| 533 | // progress report
|
---|
| 534 | //
|
---|
| 535 | clearrequestfields(ref state);
|
---|
| 536 | state.xupdated = true;
|
---|
| 537 | state.rstate.stage = 1;
|
---|
| 538 | goto lbl_rcomm;
|
---|
| 539 | lbl_1:
|
---|
| 540 | lbl_15:
|
---|
| 541 | if( (double)(asaboundedantigradnorm(ref state))<=(double)(state.epsg) )
|
---|
| 542 | {
|
---|
| 543 | state.repterminationtype = 4;
|
---|
| 544 | result = false;
|
---|
| 545 | return result;
|
---|
| 546 | }
|
---|
| 547 | state.repnfev = state.repnfev+1;
|
---|
| 548 |
|
---|
| 549 | //
|
---|
| 550 | // Main cycle
|
---|
| 551 | //
|
---|
| 552 | // At the beginning of new iteration:
|
---|
| 553 | // * CurAlgo stores current algorithm selector
|
---|
| 554 | // * State.XK, State.F and State.G store current X/F/G
|
---|
| 555 | // * State.AK stores current set of active constraints
|
---|
| 556 | //
|
---|
| 557 | lbl_17:
|
---|
| 558 | if( false )
|
---|
| 559 | {
|
---|
| 560 | goto lbl_18;
|
---|
| 561 | }
|
---|
| 562 |
|
---|
| 563 | //
|
---|
| 564 | // GPA algorithm
|
---|
| 565 | //
|
---|
| 566 | if( state.curalgo!=0 )
|
---|
| 567 | {
|
---|
| 568 | goto lbl_19;
|
---|
| 569 | }
|
---|
| 570 | state.k = 0;
|
---|
| 571 | state.acount = 0;
|
---|
| 572 | lbl_21:
|
---|
| 573 | if( false )
|
---|
| 574 | {
|
---|
| 575 | goto lbl_22;
|
---|
| 576 | }
|
---|
| 577 |
|
---|
| 578 | //
|
---|
| 579 | // Determine Dk = proj(xk - gk)-xk
|
---|
| 580 | //
|
---|
| 581 | for(i=0; i<=n-1; i++)
|
---|
| 582 | {
|
---|
| 583 | state.d[i] = asaboundval(state.xk[i]-state.g[i], state.bndl[i], state.bndu[i])-state.xk[i];
|
---|
| 584 | }
|
---|
| 585 |
|
---|
| 586 | //
|
---|
| 587 | // Armijo line search.
|
---|
| 588 | // * exact search with alpha=1 is tried first,
|
---|
| 589 | // 'exact' means that we evaluate f() EXACTLY at
|
---|
| 590 | // bound(x-g,bndl,bndu), without intermediate floating
|
---|
| 591 | // point operations.
|
---|
| 592 | // * alpha<1 are tried if explicit search wasn't successful
|
---|
| 593 | // Result is placed into XN.
|
---|
| 594 | //
|
---|
| 595 | // Two types of search are needed because we can't
|
---|
| 596 | // just use second type with alpha=1 because in finite
|
---|
| 597 | // precision arithmetics (x1-x0)+x0 may differ from x1.
|
---|
| 598 | // So while x1 is correctly bounded (it lie EXACTLY on
|
---|
| 599 | // boundary, if it is active), (x1-x0)+x0 may be
|
---|
| 600 | // not bounded.
|
---|
| 601 | //
|
---|
| 602 | v = 0.0;
|
---|
| 603 | for(i_=0; i_<=n-1;i_++)
|
---|
| 604 | {
|
---|
| 605 | v += state.d[i_]*state.g[i_];
|
---|
| 606 | }
|
---|
| 607 | state.dginit = v;
|
---|
| 608 | state.finit = state.f;
|
---|
| 609 | if( ! ((double)(asad1norm(ref state))<=(double)(state.stpmax) | (double)(state.stpmax)==(double)(0)) )
|
---|
| 610 | {
|
---|
| 611 | goto lbl_23;
|
---|
| 612 | }
|
---|
| 613 |
|
---|
| 614 | //
|
---|
| 615 | // Try alpha=1 step first
|
---|
| 616 | //
|
---|
| 617 | for(i=0; i<=n-1; i++)
|
---|
| 618 | {
|
---|
| 619 | state.x[i] = asaboundval(state.xk[i]-state.g[i], state.bndl[i], state.bndu[i]);
|
---|
| 620 | }
|
---|
| 621 | clearrequestfields(ref state);
|
---|
| 622 | state.needfg = true;
|
---|
| 623 | state.rstate.stage = 2;
|
---|
| 624 | goto lbl_rcomm;
|
---|
| 625 | lbl_2:
|
---|
| 626 | state.repnfev = state.repnfev+1;
|
---|
| 627 | stepfound = (double)(state.f)<=(double)(state.finit+gpaftol*state.dginit);
|
---|
| 628 | goto lbl_24;
|
---|
| 629 | lbl_23:
|
---|
| 630 | stepfound = false;
|
---|
| 631 | lbl_24:
|
---|
| 632 | if( ! stepfound )
|
---|
| 633 | {
|
---|
| 634 | goto lbl_25;
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | //
|
---|
| 638 | // we are at the boundary(ies)
|
---|
| 639 | //
|
---|
| 640 | for(i_=0; i_<=n-1;i_++)
|
---|
| 641 | {
|
---|
| 642 | state.xn[i_] = state.x[i_];
|
---|
| 643 | }
|
---|
| 644 | state.stp = 1;
|
---|
| 645 | goto lbl_26;
|
---|
| 646 | lbl_25:
|
---|
| 647 |
|
---|
| 648 | //
|
---|
| 649 | // alpha=1 is too large, try smaller values
|
---|
| 650 | //
|
---|
| 651 | state.stp = 1;
|
---|
| 652 | linmin.linminnormalized(ref state.d, ref state.stp, n);
|
---|
| 653 | state.dginit = state.dginit/state.stp;
|
---|
| 654 | state.stp = gpadecay*state.stp;
|
---|
| 655 | if( (double)(state.stpmax)>(double)(0) )
|
---|
| 656 | {
|
---|
| 657 | state.stp = Math.Min(state.stp, state.stpmax);
|
---|
| 658 | }
|
---|
| 659 | lbl_27:
|
---|
| 660 | if( false )
|
---|
| 661 | {
|
---|
| 662 | goto lbl_28;
|
---|
| 663 | }
|
---|
| 664 | v = state.stp;
|
---|
| 665 | for(i_=0; i_<=n-1;i_++)
|
---|
| 666 | {
|
---|
| 667 | state.x[i_] = state.xk[i_];
|
---|
| 668 | }
|
---|
| 669 | for(i_=0; i_<=n-1;i_++)
|
---|
| 670 | {
|
---|
| 671 | state.x[i_] = state.x[i_] + v*state.d[i_];
|
---|
| 672 | }
|
---|
| 673 | clearrequestfields(ref state);
|
---|
| 674 | state.needfg = true;
|
---|
| 675 | state.rstate.stage = 3;
|
---|
| 676 | goto lbl_rcomm;
|
---|
| 677 | lbl_3:
|
---|
| 678 | state.repnfev = state.repnfev+1;
|
---|
| 679 | if( (double)(state.stp)<=(double)(stpmin) )
|
---|
| 680 | {
|
---|
| 681 | goto lbl_28;
|
---|
| 682 | }
|
---|
| 683 | if( (double)(state.f)<=(double)(state.finit+state.stp*gpaftol*state.dginit) )
|
---|
| 684 | {
|
---|
| 685 | goto lbl_28;
|
---|
| 686 | }
|
---|
| 687 | state.stp = state.stp*gpadecay;
|
---|
| 688 | goto lbl_27;
|
---|
| 689 | lbl_28:
|
---|
| 690 | for(i_=0; i_<=n-1;i_++)
|
---|
| 691 | {
|
---|
| 692 | state.xn[i_] = state.x[i_];
|
---|
| 693 | }
|
---|
| 694 | lbl_26:
|
---|
| 695 | state.repiterationscount = state.repiterationscount+1;
|
---|
| 696 | if( ! state.xrep )
|
---|
| 697 | {
|
---|
| 698 | goto lbl_29;
|
---|
| 699 | }
|
---|
| 700 |
|
---|
| 701 | //
|
---|
| 702 | // progress report
|
---|
| 703 | //
|
---|
| 704 | clearrequestfields(ref state);
|
---|
| 705 | state.xupdated = true;
|
---|
| 706 | state.rstate.stage = 4;
|
---|
| 707 | goto lbl_rcomm;
|
---|
| 708 | lbl_4:
|
---|
| 709 | lbl_29:
|
---|
| 710 |
|
---|
| 711 | //
|
---|
| 712 | // Calculate new set of active constraints.
|
---|
| 713 | // Reset counter if active set was changed.
|
---|
| 714 | // Prepare for the new iteration
|
---|
| 715 | //
|
---|
| 716 | for(i=0; i<=n-1; i++)
|
---|
| 717 | {
|
---|
| 718 | if( (double)(state.xn[i])==(double)(state.bndl[i]) | (double)(state.xn[i])==(double)(state.bndu[i]) )
|
---|
| 719 | {
|
---|
| 720 | state.an[i] = 0;
|
---|
| 721 | }
|
---|
| 722 | else
|
---|
| 723 | {
|
---|
| 724 | state.an[i] = 1;
|
---|
| 725 | }
|
---|
| 726 | }
|
---|
| 727 | for(i=0; i<=n-1; i++)
|
---|
| 728 | {
|
---|
| 729 | if( (double)(state.ak[i])!=(double)(state.an[i]) )
|
---|
| 730 | {
|
---|
| 731 | state.acount = -1;
|
---|
| 732 | break;
|
---|
| 733 | }
|
---|
| 734 | }
|
---|
| 735 | state.acount = state.acount+1;
|
---|
| 736 | for(i_=0; i_<=n-1;i_++)
|
---|
| 737 | {
|
---|
| 738 | state.xk[i_] = state.xn[i_];
|
---|
| 739 | }
|
---|
| 740 | for(i_=0; i_<=n-1;i_++)
|
---|
| 741 | {
|
---|
| 742 | state.ak[i_] = state.an[i_];
|
---|
| 743 | }
|
---|
| 744 |
|
---|
| 745 | //
|
---|
| 746 | // Stopping conditions
|
---|
| 747 | //
|
---|
| 748 | if( ! (state.repiterationscount>=state.maxits & state.maxits>0) )
|
---|
| 749 | {
|
---|
| 750 | goto lbl_31;
|
---|
| 751 | }
|
---|
| 752 |
|
---|
| 753 | //
|
---|
| 754 | // Too many iterations
|
---|
| 755 | //
|
---|
| 756 | state.repterminationtype = 5;
|
---|
| 757 | if( ! state.xrep )
|
---|
| 758 | {
|
---|
| 759 | goto lbl_33;
|
---|
| 760 | }
|
---|
| 761 | clearrequestfields(ref state);
|
---|
| 762 | state.xupdated = true;
|
---|
| 763 | state.rstate.stage = 5;
|
---|
| 764 | goto lbl_rcomm;
|
---|
| 765 | lbl_5:
|
---|
| 766 | lbl_33:
|
---|
| 767 | result = false;
|
---|
| 768 | return result;
|
---|
| 769 | lbl_31:
|
---|
| 770 | if( (double)(asaboundedantigradnorm(ref state))>(double)(state.epsg) )
|
---|
| 771 | {
|
---|
| 772 | goto lbl_35;
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 | //
|
---|
| 776 | // Gradient is small enough
|
---|
| 777 | //
|
---|
| 778 | state.repterminationtype = 4;
|
---|
| 779 | if( ! state.xrep )
|
---|
| 780 | {
|
---|
| 781 | goto lbl_37;
|
---|
| 782 | }
|
---|
| 783 | clearrequestfields(ref state);
|
---|
| 784 | state.xupdated = true;
|
---|
| 785 | state.rstate.stage = 6;
|
---|
| 786 | goto lbl_rcomm;
|
---|
| 787 | lbl_6:
|
---|
| 788 | lbl_37:
|
---|
| 789 | result = false;
|
---|
| 790 | return result;
|
---|
| 791 | lbl_35:
|
---|
| 792 | v = 0.0;
|
---|
| 793 | for(i_=0; i_<=n-1;i_++)
|
---|
| 794 | {
|
---|
| 795 | v += state.d[i_]*state.d[i_];
|
---|
| 796 | }
|
---|
| 797 | if( (double)(Math.Sqrt(v)*state.stp)>(double)(state.epsx) )
|
---|
| 798 | {
|
---|
| 799 | goto lbl_39;
|
---|
| 800 | }
|
---|
| 801 |
|
---|
| 802 | //
|
---|
| 803 | // Step size is too small, no further improvement is
|
---|
| 804 | // possible
|
---|
| 805 | //
|
---|
| 806 | state.repterminationtype = 2;
|
---|
| 807 | if( ! state.xrep )
|
---|
| 808 | {
|
---|
| 809 | goto lbl_41;
|
---|
| 810 | }
|
---|
| 811 | clearrequestfields(ref state);
|
---|
| 812 | state.xupdated = true;
|
---|
| 813 | state.rstate.stage = 7;
|
---|
| 814 | goto lbl_rcomm;
|
---|
| 815 | lbl_7:
|
---|
| 816 | lbl_41:
|
---|
| 817 | result = false;
|
---|
| 818 | return result;
|
---|
| 819 | lbl_39:
|
---|
| 820 | if( (double)(state.finit-state.f)>(double)(state.epsf*Math.Max(Math.Abs(state.finit), Math.Max(Math.Abs(state.f), 1.0))) )
|
---|
| 821 | {
|
---|
| 822 | goto lbl_43;
|
---|
| 823 | }
|
---|
| 824 |
|
---|
| 825 | //
|
---|
| 826 | // F(k+1)-F(k) is small enough
|
---|
| 827 | //
|
---|
| 828 | state.repterminationtype = 1;
|
---|
| 829 | if( ! state.xrep )
|
---|
| 830 | {
|
---|
| 831 | goto lbl_45;
|
---|
| 832 | }
|
---|
| 833 | clearrequestfields(ref state);
|
---|
| 834 | state.xupdated = true;
|
---|
| 835 | state.rstate.stage = 8;
|
---|
| 836 | goto lbl_rcomm;
|
---|
| 837 | lbl_8:
|
---|
| 838 | lbl_45:
|
---|
| 839 | result = false;
|
---|
| 840 | return result;
|
---|
| 841 | lbl_43:
|
---|
| 842 |
|
---|
| 843 | //
|
---|
| 844 | // Decide - should we switch algorithm or not
|
---|
| 845 | //
|
---|
| 846 | if( asauisempty(ref state) )
|
---|
| 847 | {
|
---|
| 848 | if( (double)(asaginorm(ref state))>=(double)(state.mu*asad1norm(ref state)) )
|
---|
| 849 | {
|
---|
| 850 | state.curalgo = 1;
|
---|
| 851 | goto lbl_22;
|
---|
| 852 | }
|
---|
| 853 | else
|
---|
| 854 | {
|
---|
| 855 | state.mu = state.mu*asarho;
|
---|
| 856 | }
|
---|
| 857 | }
|
---|
| 858 | else
|
---|
| 859 | {
|
---|
| 860 | if( state.acount==n1 )
|
---|
| 861 | {
|
---|
| 862 | if( (double)(asaginorm(ref state))>=(double)(state.mu*asad1norm(ref state)) )
|
---|
| 863 | {
|
---|
| 864 | state.curalgo = 1;
|
---|
| 865 | goto lbl_22;
|
---|
| 866 | }
|
---|
| 867 | }
|
---|
| 868 | }
|
---|
| 869 |
|
---|
| 870 | //
|
---|
| 871 | // Next iteration
|
---|
| 872 | //
|
---|
| 873 | state.k = state.k+1;
|
---|
| 874 | goto lbl_21;
|
---|
| 875 | lbl_22:
|
---|
| 876 | lbl_19:
|
---|
| 877 |
|
---|
| 878 | //
|
---|
| 879 | // CG algorithm
|
---|
| 880 | //
|
---|
| 881 | if( state.curalgo!=1 )
|
---|
| 882 | {
|
---|
| 883 | goto lbl_47;
|
---|
| 884 | }
|
---|
| 885 |
|
---|
| 886 | //
|
---|
| 887 | // first, check that there are non-active constraints.
|
---|
| 888 | // move to GPA algorithm, if all constraints are active
|
---|
| 889 | //
|
---|
| 890 | b = true;
|
---|
| 891 | for(i=0; i<=n-1; i++)
|
---|
| 892 | {
|
---|
| 893 | if( (double)(state.ak[i])!=(double)(0) )
|
---|
| 894 | {
|
---|
| 895 | b = false;
|
---|
| 896 | break;
|
---|
| 897 | }
|
---|
| 898 | }
|
---|
| 899 | if( b )
|
---|
| 900 | {
|
---|
| 901 | state.curalgo = 0;
|
---|
| 902 | goto lbl_17;
|
---|
| 903 | }
|
---|
| 904 |
|
---|
| 905 | //
|
---|
| 906 | // CG iterations
|
---|
| 907 | //
|
---|
| 908 | state.fold = state.f;
|
---|
| 909 | for(i_=0; i_<=n-1;i_++)
|
---|
| 910 | {
|
---|
| 911 | state.xk[i_] = state.x[i_];
|
---|
| 912 | }
|
---|
| 913 | for(i=0; i<=n-1; i++)
|
---|
| 914 | {
|
---|
| 915 | state.dk[i] = -(state.g[i]*state.ak[i]);
|
---|
| 916 | state.gc[i] = state.g[i]*state.ak[i];
|
---|
| 917 | }
|
---|
| 918 | lbl_49:
|
---|
| 919 | if( false )
|
---|
| 920 | {
|
---|
| 921 | goto lbl_50;
|
---|
| 922 | }
|
---|
| 923 |
|
---|
| 924 | //
|
---|
| 925 | // Store G[k] for later calculation of Y[k]
|
---|
| 926 | //
|
---|
| 927 | for(i=0; i<=n-1; i++)
|
---|
| 928 | {
|
---|
| 929 | state.yk[i] = -state.gc[i];
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 | //
|
---|
| 933 | // Make a CG step in direction given by DK[]:
|
---|
| 934 | // * calculate step. Step projection into feasible set
|
---|
| 935 | // is used. It has several benefits: a) step may be
|
---|
| 936 | // found with usual line search, b) multiple constraints
|
---|
| 937 | // may be activated with one step, c) activated constraints
|
---|
| 938 | // are detected in a natural way - just compare x[i] with
|
---|
| 939 | // bounds
|
---|
| 940 | // * update active set, set B to True, if there
|
---|
| 941 | // were changes in the set.
|
---|
| 942 | //
|
---|
| 943 | for(i_=0; i_<=n-1;i_++)
|
---|
| 944 | {
|
---|
| 945 | state.d[i_] = state.dk[i_];
|
---|
| 946 | }
|
---|
| 947 | for(i_=0; i_<=n-1;i_++)
|
---|
| 948 | {
|
---|
| 949 | state.xn[i_] = state.xk[i_];
|
---|
| 950 | }
|
---|
| 951 | state.mcstage = 0;
|
---|
| 952 | state.stp = 1;
|
---|
| 953 | linmin.linminnormalized(ref state.d, ref state.stp, n);
|
---|
| 954 | linmin.mcsrch(n, ref state.xn, ref state.f, ref state.gc, ref state.d, ref state.stp, state.stpmax, ref mcinfo, ref state.nfev, ref state.work, ref state.lstate, ref state.mcstage);
|
---|
| 955 | lbl_51:
|
---|
| 956 | if( state.mcstage==0 )
|
---|
| 957 | {
|
---|
| 958 | goto lbl_52;
|
---|
| 959 | }
|
---|
| 960 |
|
---|
| 961 | //
|
---|
| 962 | // preprocess data: bound State.XN so it belongs to the
|
---|
| 963 | // feasible set and store it in the State.X
|
---|
| 964 | //
|
---|
| 965 | for(i=0; i<=n-1; i++)
|
---|
| 966 | {
|
---|
| 967 | state.x[i] = asaboundval(state.xn[i], state.bndl[i], state.bndu[i]);
|
---|
| 968 | }
|
---|
| 969 |
|
---|
| 970 | //
|
---|
| 971 | // RComm
|
---|
| 972 | //
|
---|
| 973 | clearrequestfields(ref state);
|
---|
| 974 | state.needfg = true;
|
---|
| 975 | state.rstate.stage = 9;
|
---|
| 976 | goto lbl_rcomm;
|
---|
| 977 | lbl_9:
|
---|
| 978 |
|
---|
| 979 | //
|
---|
| 980 | // postprocess data: zero components of G corresponding to
|
---|
| 981 | // the active constraints
|
---|
| 982 | //
|
---|
| 983 | for(i=0; i<=n-1; i++)
|
---|
| 984 | {
|
---|
| 985 | if( (double)(state.x[i])==(double)(state.bndl[i]) | (double)(state.x[i])==(double)(state.bndu[i]) )
|
---|
| 986 | {
|
---|
| 987 | state.gc[i] = 0;
|
---|
| 988 | }
|
---|
| 989 | else
|
---|
| 990 | {
|
---|
| 991 | state.gc[i] = state.g[i];
|
---|
| 992 | }
|
---|
| 993 | }
|
---|
| 994 | linmin.mcsrch(n, ref state.xn, ref state.f, ref state.gc, ref state.d, ref state.stp, state.stpmax, ref mcinfo, ref state.nfev, ref state.work, ref state.lstate, ref state.mcstage);
|
---|
| 995 | goto lbl_51;
|
---|
| 996 | lbl_52:
|
---|
| 997 | diffcnt = 0;
|
---|
| 998 | for(i=0; i<=n-1; i++)
|
---|
| 999 | {
|
---|
| 1000 |
|
---|
| 1001 | //
|
---|
| 1002 | // XN contains unprojected result, project it,
|
---|
| 1003 | // save copy to X (will be used for progress reporting)
|
---|
| 1004 | //
|
---|
| 1005 | state.xn[i] = asaboundval(state.xn[i], state.bndl[i], state.bndu[i]);
|
---|
| 1006 |
|
---|
| 1007 | //
|
---|
| 1008 | // update active set
|
---|
| 1009 | //
|
---|
| 1010 | if( (double)(state.xn[i])==(double)(state.bndl[i]) | (double)(state.xn[i])==(double)(state.bndu[i]) )
|
---|
| 1011 | {
|
---|
| 1012 | state.an[i] = 0;
|
---|
| 1013 | }
|
---|
| 1014 | else
|
---|
| 1015 | {
|
---|
| 1016 | state.an[i] = 1;
|
---|
| 1017 | }
|
---|
| 1018 | if( (double)(state.an[i])!=(double)(state.ak[i]) )
|
---|
| 1019 | {
|
---|
| 1020 | diffcnt = diffcnt+1;
|
---|
| 1021 | }
|
---|
| 1022 | state.ak[i] = state.an[i];
|
---|
| 1023 | }
|
---|
| 1024 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1025 | {
|
---|
| 1026 | state.xk[i_] = state.xn[i_];
|
---|
| 1027 | }
|
---|
| 1028 | state.repnfev = state.repnfev+state.nfev;
|
---|
| 1029 | state.repiterationscount = state.repiterationscount+1;
|
---|
| 1030 | if( ! state.xrep )
|
---|
| 1031 | {
|
---|
| 1032 | goto lbl_53;
|
---|
| 1033 | }
|
---|
| 1034 |
|
---|
| 1035 | //
|
---|
| 1036 | // progress report
|
---|
| 1037 | //
|
---|
| 1038 | clearrequestfields(ref state);
|
---|
| 1039 | state.xupdated = true;
|
---|
| 1040 | state.rstate.stage = 10;
|
---|
| 1041 | goto lbl_rcomm;
|
---|
| 1042 | lbl_10:
|
---|
| 1043 | lbl_53:
|
---|
| 1044 |
|
---|
| 1045 | //
|
---|
| 1046 | // Check stopping conditions.
|
---|
| 1047 | //
|
---|
| 1048 | if( (double)(asaboundedantigradnorm(ref state))>(double)(state.epsg) )
|
---|
| 1049 | {
|
---|
| 1050 | goto lbl_55;
|
---|
| 1051 | }
|
---|
| 1052 |
|
---|
| 1053 | //
|
---|
| 1054 | // Gradient is small enough
|
---|
| 1055 | //
|
---|
| 1056 | state.repterminationtype = 4;
|
---|
| 1057 | if( ! state.xrep )
|
---|
| 1058 | {
|
---|
| 1059 | goto lbl_57;
|
---|
| 1060 | }
|
---|
| 1061 | clearrequestfields(ref state);
|
---|
| 1062 | state.xupdated = true;
|
---|
| 1063 | state.rstate.stage = 11;
|
---|
| 1064 | goto lbl_rcomm;
|
---|
| 1065 | lbl_11:
|
---|
| 1066 | lbl_57:
|
---|
| 1067 | result = false;
|
---|
| 1068 | return result;
|
---|
| 1069 | lbl_55:
|
---|
| 1070 | if( ! (state.repiterationscount>=state.maxits & state.maxits>0) )
|
---|
| 1071 | {
|
---|
| 1072 | goto lbl_59;
|
---|
| 1073 | }
|
---|
| 1074 |
|
---|
| 1075 | //
|
---|
| 1076 | // Too many iterations
|
---|
| 1077 | //
|
---|
| 1078 | state.repterminationtype = 5;
|
---|
| 1079 | if( ! state.xrep )
|
---|
| 1080 | {
|
---|
| 1081 | goto lbl_61;
|
---|
| 1082 | }
|
---|
| 1083 | clearrequestfields(ref state);
|
---|
| 1084 | state.xupdated = true;
|
---|
| 1085 | state.rstate.stage = 12;
|
---|
| 1086 | goto lbl_rcomm;
|
---|
| 1087 | lbl_12:
|
---|
| 1088 | lbl_61:
|
---|
| 1089 | result = false;
|
---|
| 1090 | return result;
|
---|
| 1091 | lbl_59:
|
---|
| 1092 | if( ! ((double)(asaginorm(ref state))>=(double)(state.mu*asad1norm(ref state)) & diffcnt==0) )
|
---|
| 1093 | {
|
---|
| 1094 | goto lbl_63;
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
| 1097 | //
|
---|
| 1098 | // These conditions are explicitly or implicitly
|
---|
| 1099 | // related to the current step size and influenced
|
---|
| 1100 | // by changes in the active constraints.
|
---|
| 1101 | //
|
---|
| 1102 | // For these reasons they are checked only when we don't
|
---|
| 1103 | // want to 'unstick' at the end of the iteration and there
|
---|
| 1104 | // were no changes in the active set.
|
---|
| 1105 | //
|
---|
| 1106 | // NOTE: consition |G|>=Mu*|D1| must be exactly opposite
|
---|
| 1107 | // to the condition used to switch back to GPA. At least
|
---|
| 1108 | // one inequality must be strict, otherwise infinite cycle
|
---|
| 1109 | // may occur when |G|=Mu*|D1| (we DON'T test stopping
|
---|
| 1110 | // conditions and we DON'T switch to GPA, so we cycle
|
---|
| 1111 | // indefinitely).
|
---|
| 1112 | //
|
---|
| 1113 | if( (double)(state.fold-state.f)>(double)(state.epsf*Math.Max(Math.Abs(state.fold), Math.Max(Math.Abs(state.f), 1.0))) )
|
---|
| 1114 | {
|
---|
| 1115 | goto lbl_65;
|
---|
| 1116 | }
|
---|
| 1117 |
|
---|
| 1118 | //
|
---|
| 1119 | // F(k+1)-F(k) is small enough
|
---|
| 1120 | //
|
---|
| 1121 | state.repterminationtype = 1;
|
---|
| 1122 | if( ! state.xrep )
|
---|
| 1123 | {
|
---|
| 1124 | goto lbl_67;
|
---|
| 1125 | }
|
---|
| 1126 | clearrequestfields(ref state);
|
---|
| 1127 | state.xupdated = true;
|
---|
| 1128 | state.rstate.stage = 13;
|
---|
| 1129 | goto lbl_rcomm;
|
---|
| 1130 | lbl_13:
|
---|
| 1131 | lbl_67:
|
---|
| 1132 | result = false;
|
---|
| 1133 | return result;
|
---|
| 1134 | lbl_65:
|
---|
| 1135 | v = 0.0;
|
---|
| 1136 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1137 | {
|
---|
| 1138 | v += state.d[i_]*state.d[i_];
|
---|
| 1139 | }
|
---|
| 1140 | if( (double)(Math.Sqrt(v)*state.stp)>(double)(state.epsx) )
|
---|
| 1141 | {
|
---|
| 1142 | goto lbl_69;
|
---|
| 1143 | }
|
---|
| 1144 |
|
---|
| 1145 | //
|
---|
| 1146 | // X(k+1)-X(k) is small enough
|
---|
| 1147 | //
|
---|
| 1148 | state.repterminationtype = 2;
|
---|
| 1149 | if( ! state.xrep )
|
---|
| 1150 | {
|
---|
| 1151 | goto lbl_71;
|
---|
| 1152 | }
|
---|
| 1153 | clearrequestfields(ref state);
|
---|
| 1154 | state.xupdated = true;
|
---|
| 1155 | state.rstate.stage = 14;
|
---|
| 1156 | goto lbl_rcomm;
|
---|
| 1157 | lbl_14:
|
---|
| 1158 | lbl_71:
|
---|
| 1159 | result = false;
|
---|
| 1160 | return result;
|
---|
| 1161 | lbl_69:
|
---|
| 1162 | lbl_63:
|
---|
| 1163 |
|
---|
| 1164 | //
|
---|
| 1165 | // Check conditions for switching
|
---|
| 1166 | //
|
---|
| 1167 | if( (double)(asaginorm(ref state))<(double)(state.mu*asad1norm(ref state)) )
|
---|
| 1168 | {
|
---|
| 1169 | state.curalgo = 0;
|
---|
| 1170 | goto lbl_50;
|
---|
| 1171 | }
|
---|
| 1172 | if( diffcnt>0 )
|
---|
| 1173 | {
|
---|
| 1174 | if( asauisempty(ref state) | diffcnt>=n2 )
|
---|
| 1175 | {
|
---|
| 1176 | state.curalgo = 1;
|
---|
| 1177 | }
|
---|
| 1178 | else
|
---|
| 1179 | {
|
---|
| 1180 | state.curalgo = 0;
|
---|
| 1181 | }
|
---|
| 1182 | goto lbl_50;
|
---|
| 1183 | }
|
---|
| 1184 |
|
---|
| 1185 | //
|
---|
| 1186 | // Calculate D(k+1)
|
---|
| 1187 | //
|
---|
| 1188 | // Line search may result in:
|
---|
| 1189 | // * maximum feasible step being taken (already processed)
|
---|
| 1190 | // * point satisfying Wolfe conditions
|
---|
| 1191 | // * some kind of error (CG is restarted by assigning 0.0 to Beta)
|
---|
| 1192 | //
|
---|
| 1193 | if( mcinfo==1 )
|
---|
| 1194 | {
|
---|
| 1195 |
|
---|
| 1196 | //
|
---|
| 1197 | // Standard Wolfe conditions are satisfied:
|
---|
| 1198 | // * calculate Y[K] and BetaK
|
---|
| 1199 | //
|
---|
| 1200 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1201 | {
|
---|
| 1202 | state.yk[i_] = state.yk[i_] + state.gc[i_];
|
---|
| 1203 | }
|
---|
| 1204 | vv = 0.0;
|
---|
| 1205 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1206 | {
|
---|
| 1207 | vv += state.yk[i_]*state.dk[i_];
|
---|
| 1208 | }
|
---|
| 1209 | v = 0.0;
|
---|
| 1210 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1211 | {
|
---|
| 1212 | v += state.gc[i_]*state.gc[i_];
|
---|
| 1213 | }
|
---|
| 1214 | state.betady = v/vv;
|
---|
| 1215 | v = 0.0;
|
---|
| 1216 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1217 | {
|
---|
| 1218 | v += state.gc[i_]*state.yk[i_];
|
---|
| 1219 | }
|
---|
| 1220 | state.betahs = v/vv;
|
---|
| 1221 | if( state.cgtype==0 )
|
---|
| 1222 | {
|
---|
| 1223 | betak = state.betady;
|
---|
| 1224 | }
|
---|
| 1225 | if( state.cgtype==1 )
|
---|
| 1226 | {
|
---|
| 1227 | betak = Math.Max(0, Math.Min(state.betady, state.betahs));
|
---|
| 1228 | }
|
---|
| 1229 | }
|
---|
| 1230 | else
|
---|
| 1231 | {
|
---|
| 1232 |
|
---|
| 1233 | //
|
---|
| 1234 | // Something is wrong (may be function is too wild or too flat).
|
---|
| 1235 | //
|
---|
| 1236 | // We'll set BetaK=0, which will restart CG algorithm.
|
---|
| 1237 | // We can stop later (during normal checks) if stopping conditions are met.
|
---|
| 1238 | //
|
---|
| 1239 | betak = 0;
|
---|
| 1240 | state.debugrestartscount = state.debugrestartscount+1;
|
---|
| 1241 | }
|
---|
| 1242 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1243 | {
|
---|
| 1244 | state.dn[i_] = -state.gc[i_];
|
---|
| 1245 | }
|
---|
| 1246 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1247 | {
|
---|
| 1248 | state.dn[i_] = state.dn[i_] + betak*state.dk[i_];
|
---|
| 1249 | }
|
---|
| 1250 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1251 | {
|
---|
| 1252 | state.dk[i_] = state.dn[i_];
|
---|
| 1253 | }
|
---|
| 1254 |
|
---|
| 1255 | //
|
---|
| 1256 | // update other information
|
---|
| 1257 | //
|
---|
| 1258 | state.fold = state.f;
|
---|
| 1259 | state.k = state.k+1;
|
---|
| 1260 | goto lbl_49;
|
---|
| 1261 | lbl_50:
|
---|
| 1262 | lbl_47:
|
---|
| 1263 | goto lbl_17;
|
---|
| 1264 | lbl_18:
|
---|
| 1265 | result = false;
|
---|
| 1266 | return result;
|
---|
| 1267 |
|
---|
| 1268 | //
|
---|
| 1269 | // Saving state
|
---|
| 1270 | //
|
---|
| 1271 | lbl_rcomm:
|
---|
| 1272 | result = true;
|
---|
| 1273 | state.rstate.ia[0] = n;
|
---|
| 1274 | state.rstate.ia[1] = i;
|
---|
| 1275 | state.rstate.ia[2] = mcinfo;
|
---|
| 1276 | state.rstate.ia[3] = diffcnt;
|
---|
| 1277 | state.rstate.ba[0] = b;
|
---|
| 1278 | state.rstate.ba[1] = stepfound;
|
---|
| 1279 | state.rstate.ra[0] = betak;
|
---|
| 1280 | state.rstate.ra[1] = v;
|
---|
| 1281 | state.rstate.ra[2] = vv;
|
---|
| 1282 | return result;
|
---|
| 1283 | }
|
---|
| 1284 |
|
---|
| 1285 |
|
---|
| 1286 | /*************************************************************************
|
---|
| 1287 | Conjugate gradient results
|
---|
| 1288 |
|
---|
| 1289 | Called after MinASA returned False.
|
---|
| 1290 |
|
---|
| 1291 | INPUT PARAMETERS:
|
---|
| 1292 | State - algorithm state (used by MinASAIteration).
|
---|
| 1293 |
|
---|
| 1294 | OUTPUT PARAMETERS:
|
---|
| 1295 | X - array[0..N-1], solution
|
---|
| 1296 | Rep - optimization report:
|
---|
| 1297 | * Rep.TerminationType completetion code:
|
---|
| 1298 | * -2 rounding errors prevent further improvement.
|
---|
| 1299 | X contains best point found.
|
---|
| 1300 | * -1 incorrect parameters were specified
|
---|
| 1301 | * 1 relative function improvement is no more than
|
---|
| 1302 | EpsF.
|
---|
| 1303 | * 2 relative step is no more than EpsX.
|
---|
| 1304 | * 4 gradient norm is no more than EpsG
|
---|
| 1305 | * 5 MaxIts steps was taken
|
---|
| 1306 | * 7 stopping conditions are too stringent,
|
---|
| 1307 | further improvement is impossible
|
---|
| 1308 | * Rep.IterationsCount contains iterations count
|
---|
| 1309 | * NFEV countains number of function calculations
|
---|
| 1310 | * ActiveConstraints contains number of active constraints
|
---|
| 1311 |
|
---|
| 1312 | -- ALGLIB --
|
---|
| 1313 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1314 | *************************************************************************/
|
---|
| 1315 | public static void minasaresults(ref minasastate state,
|
---|
| 1316 | ref double[] x,
|
---|
| 1317 | ref minasareport rep)
|
---|
| 1318 | {
|
---|
| 1319 | int i = 0;
|
---|
| 1320 | int i_ = 0;
|
---|
| 1321 |
|
---|
| 1322 | x = new double[state.n-1+1];
|
---|
| 1323 | for(i_=0; i_<=state.n-1;i_++)
|
---|
| 1324 | {
|
---|
| 1325 | x[i_] = state.x[i_];
|
---|
| 1326 | }
|
---|
| 1327 | rep.iterationscount = state.repiterationscount;
|
---|
| 1328 | rep.nfev = state.repnfev;
|
---|
| 1329 | rep.terminationtype = state.repterminationtype;
|
---|
| 1330 | rep.activeconstraints = 0;
|
---|
| 1331 | for(i=0; i<=state.n-1; i++)
|
---|
| 1332 | {
|
---|
| 1333 | if( (double)(state.ak[i])==(double)(0) )
|
---|
| 1334 | {
|
---|
| 1335 | rep.activeconstraints = rep.activeconstraints+1;
|
---|
| 1336 | }
|
---|
| 1337 | }
|
---|
| 1338 | }
|
---|
| 1339 |
|
---|
| 1340 |
|
---|
| 1341 | /*************************************************************************
|
---|
| 1342 | 'bound' value: map X to [B1,B2]
|
---|
| 1343 |
|
---|
| 1344 | -- ALGLIB --
|
---|
| 1345 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1346 | *************************************************************************/
|
---|
| 1347 | private static double asaboundval(double x,
|
---|
| 1348 | double b1,
|
---|
| 1349 | double b2)
|
---|
| 1350 | {
|
---|
| 1351 | double result = 0;
|
---|
| 1352 |
|
---|
| 1353 | if( (double)(x)<=(double)(b1) )
|
---|
| 1354 | {
|
---|
| 1355 | result = b1;
|
---|
| 1356 | return result;
|
---|
| 1357 | }
|
---|
| 1358 | if( (double)(x)>=(double)(b2) )
|
---|
| 1359 | {
|
---|
| 1360 | result = b2;
|
---|
| 1361 | return result;
|
---|
| 1362 | }
|
---|
| 1363 | result = x;
|
---|
| 1364 | return result;
|
---|
| 1365 | }
|
---|
| 1366 |
|
---|
| 1367 |
|
---|
| 1368 | /*************************************************************************
|
---|
| 1369 | Returns norm of bounded anti-gradient.
|
---|
| 1370 |
|
---|
| 1371 | Bounded antigradient is a vector obtained from anti-gradient by zeroing
|
---|
| 1372 | components which point outwards:
|
---|
| 1373 | result = norm(v)
|
---|
| 1374 | v[i]=0 if ((-g[i]<0)and(x[i]=bndl[i])) or
|
---|
| 1375 | ((-g[i]>0)and(x[i]=bndu[i]))
|
---|
| 1376 | v[i]=-g[i] otherwise
|
---|
| 1377 |
|
---|
| 1378 | This function may be used to check a stopping criterion.
|
---|
| 1379 |
|
---|
| 1380 | -- ALGLIB --
|
---|
| 1381 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1382 | *************************************************************************/
|
---|
| 1383 | private static double asaboundedantigradnorm(ref minasastate state)
|
---|
| 1384 | {
|
---|
| 1385 | double result = 0;
|
---|
| 1386 | int i = 0;
|
---|
| 1387 | double v = 0;
|
---|
| 1388 |
|
---|
| 1389 | result = 0;
|
---|
| 1390 | for(i=0; i<=state.n-1; i++)
|
---|
| 1391 | {
|
---|
| 1392 | v = -state.g[i];
|
---|
| 1393 | if( (double)(state.x[i])==(double)(state.bndl[i]) & (double)(-state.g[i])<(double)(0) )
|
---|
| 1394 | {
|
---|
| 1395 | v = 0;
|
---|
| 1396 | }
|
---|
| 1397 | if( (double)(state.x[i])==(double)(state.bndu[i]) & (double)(-state.g[i])>(double)(0) )
|
---|
| 1398 | {
|
---|
| 1399 | v = 0;
|
---|
| 1400 | }
|
---|
| 1401 | result = result+AP.Math.Sqr(v);
|
---|
| 1402 | }
|
---|
| 1403 | result = Math.Sqrt(result);
|
---|
| 1404 | return result;
|
---|
| 1405 | }
|
---|
| 1406 |
|
---|
| 1407 |
|
---|
| 1408 | /*************************************************************************
|
---|
| 1409 | Returns norm of GI(x).
|
---|
| 1410 |
|
---|
| 1411 | GI(x) is a gradient vector whose components associated with active
|
---|
| 1412 | constraints are zeroed. It differs from bounded anti-gradient because
|
---|
| 1413 | components of GI(x) are zeroed independently of sign(g[i]), and
|
---|
| 1414 | anti-gradient's components are zeroed with respect to both constraint and
|
---|
| 1415 | sign.
|
---|
| 1416 |
|
---|
| 1417 | -- ALGLIB --
|
---|
| 1418 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1419 | *************************************************************************/
|
---|
| 1420 | private static double asaginorm(ref minasastate state)
|
---|
| 1421 | {
|
---|
| 1422 | double result = 0;
|
---|
| 1423 | int i = 0;
|
---|
| 1424 | double v = 0;
|
---|
| 1425 |
|
---|
| 1426 | result = 0;
|
---|
| 1427 | for(i=0; i<=state.n-1; i++)
|
---|
| 1428 | {
|
---|
| 1429 | if( (double)(state.x[i])!=(double)(state.bndl[i]) & (double)(state.x[i])!=(double)(state.bndu[i]) )
|
---|
| 1430 | {
|
---|
| 1431 | result = result+AP.Math.Sqr(state.g[i]);
|
---|
| 1432 | }
|
---|
| 1433 | }
|
---|
| 1434 | result = Math.Sqrt(result);
|
---|
| 1435 | return result;
|
---|
| 1436 | }
|
---|
| 1437 |
|
---|
| 1438 |
|
---|
| 1439 | /*************************************************************************
|
---|
| 1440 | Returns norm(D1(State.X))
|
---|
| 1441 |
|
---|
| 1442 | For a meaning of D1 see 'NEW ACTIVE SET ALGORITHM FOR BOX CONSTRAINED
|
---|
| 1443 | OPTIMIZATION' by WILLIAM W. HAGER AND HONGCHAO ZHANG.
|
---|
| 1444 |
|
---|
| 1445 | -- ALGLIB --
|
---|
| 1446 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1447 | *************************************************************************/
|
---|
| 1448 | private static double asad1norm(ref minasastate state)
|
---|
| 1449 | {
|
---|
| 1450 | double result = 0;
|
---|
| 1451 | int i = 0;
|
---|
| 1452 |
|
---|
| 1453 | result = 0;
|
---|
| 1454 | for(i=0; i<=state.n-1; i++)
|
---|
| 1455 | {
|
---|
| 1456 | result = result+AP.Math.Sqr(asaboundval(state.x[i]-state.g[i], state.bndl[i], state.bndu[i])-state.x[i]);
|
---|
| 1457 | }
|
---|
| 1458 | result = Math.Sqrt(result);
|
---|
| 1459 | return result;
|
---|
| 1460 | }
|
---|
| 1461 |
|
---|
| 1462 |
|
---|
| 1463 | /*************************************************************************
|
---|
| 1464 | Returns True, if U set is empty.
|
---|
| 1465 |
|
---|
| 1466 | * State.X is used as point,
|
---|
| 1467 | * State.G - as gradient,
|
---|
| 1468 | * D is calculated within function (because State.D may have different
|
---|
| 1469 | meaning depending on current optimization algorithm)
|
---|
| 1470 |
|
---|
| 1471 | For a meaning of U see 'NEW ACTIVE SET ALGORITHM FOR BOX CONSTRAINED
|
---|
| 1472 | OPTIMIZATION' by WILLIAM W. HAGER AND HONGCHAO ZHANG.
|
---|
| 1473 |
|
---|
| 1474 | -- ALGLIB --
|
---|
| 1475 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1476 | *************************************************************************/
|
---|
| 1477 | private static bool asauisempty(ref minasastate state)
|
---|
| 1478 | {
|
---|
| 1479 | bool result = new bool();
|
---|
| 1480 | int i = 0;
|
---|
| 1481 | double d = 0;
|
---|
| 1482 | double d2 = 0;
|
---|
| 1483 | double d32 = 0;
|
---|
| 1484 |
|
---|
| 1485 | d = asad1norm(ref state);
|
---|
| 1486 | d2 = Math.Sqrt(d);
|
---|
| 1487 | d32 = d*d2;
|
---|
| 1488 | result = true;
|
---|
| 1489 | for(i=0; i<=state.n-1; i++)
|
---|
| 1490 | {
|
---|
| 1491 | if( (double)(Math.Abs(state.g[i]))>=(double)(d2) & (double)(Math.Min(state.x[i]-state.bndl[i], state.bndu[i]-state.x[i]))>=(double)(d32) )
|
---|
| 1492 | {
|
---|
| 1493 | result = false;
|
---|
| 1494 | return result;
|
---|
| 1495 | }
|
---|
| 1496 | }
|
---|
| 1497 | return result;
|
---|
| 1498 | }
|
---|
| 1499 |
|
---|
| 1500 |
|
---|
| 1501 | /*************************************************************************
|
---|
| 1502 | Returns True, if optimizer "want to unstick" from one of the active
|
---|
| 1503 | constraints, i.e. there is such active constraint with index I that either
|
---|
| 1504 | lower bound is active and g[i]<0, or upper bound is active and g[i]>0.
|
---|
| 1505 |
|
---|
| 1506 | State.X is used as current point, State.X - as gradient.
|
---|
| 1507 | -- ALGLIB --
|
---|
| 1508 | Copyright 20.03.2009 by Bochkanov Sergey
|
---|
| 1509 | *************************************************************************/
|
---|
| 1510 | private static bool asawanttounstick(ref minasastate state)
|
---|
| 1511 | {
|
---|
| 1512 | bool result = new bool();
|
---|
| 1513 | int i = 0;
|
---|
| 1514 |
|
---|
| 1515 | result = false;
|
---|
| 1516 | for(i=0; i<=state.n-1; i++)
|
---|
| 1517 | {
|
---|
| 1518 | if( (double)(state.x[i])==(double)(state.bndl[i]) & (double)(state.g[i])<(double)(0) )
|
---|
| 1519 | {
|
---|
| 1520 | result = true;
|
---|
| 1521 | }
|
---|
| 1522 | if( (double)(state.x[i])==(double)(state.bndu[i]) & (double)(state.g[i])>(double)(0) )
|
---|
| 1523 | {
|
---|
| 1524 | result = true;
|
---|
| 1525 | }
|
---|
| 1526 | if( result )
|
---|
| 1527 | {
|
---|
| 1528 | return result;
|
---|
| 1529 | }
|
---|
| 1530 | }
|
---|
| 1531 | return result;
|
---|
| 1532 | }
|
---|
| 1533 |
|
---|
| 1534 |
|
---|
| 1535 | /*************************************************************************
|
---|
| 1536 | Clears request fileds (to be sure that we don't forgot to clear something)
|
---|
| 1537 | *************************************************************************/
|
---|
| 1538 | private static void clearrequestfields(ref minasastate state)
|
---|
| 1539 | {
|
---|
| 1540 | state.needfg = false;
|
---|
| 1541 | state.xupdated = false;
|
---|
| 1542 | }
|
---|
| 1543 | }
|
---|
| 1544 | }
|
---|