[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class matgen
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Generation of a random uniformly distributed (Haar) orthogonal matrix
|
---|
| 29 |
|
---|
| 30 | INPUT PARAMETERS:
|
---|
| 31 | N - matrix size, N>=1
|
---|
| 32 |
|
---|
| 33 | OUTPUT PARAMETERS:
|
---|
| 34 | A - orthogonal NxN matrix, array[0..N-1,0..N-1]
|
---|
| 35 |
|
---|
| 36 | -- ALGLIB routine --
|
---|
| 37 | 04.12.2009
|
---|
| 38 | Bochkanov Sergey
|
---|
| 39 | *************************************************************************/
|
---|
| 40 | public static void rmatrixrndorthogonal(int n,
|
---|
| 41 | ref double[,] a)
|
---|
| 42 | {
|
---|
| 43 | int i = 0;
|
---|
| 44 | int j = 0;
|
---|
| 45 |
|
---|
| 46 | System.Diagnostics.Debug.Assert(n>=1, "RMatrixRndOrthogonal: N<1!");
|
---|
| 47 | a = new double[n-1+1, n-1+1];
|
---|
| 48 | for(i=0; i<=n-1; i++)
|
---|
| 49 | {
|
---|
| 50 | for(j=0; j<=n-1; j++)
|
---|
| 51 | {
|
---|
| 52 | if( i==j )
|
---|
| 53 | {
|
---|
| 54 | a[i,j] = 1;
|
---|
| 55 | }
|
---|
| 56 | else
|
---|
| 57 | {
|
---|
| 58 | a[i,j] = 0;
|
---|
| 59 | }
|
---|
| 60 | }
|
---|
| 61 | }
|
---|
| 62 | rmatrixrndorthogonalfromtheright(ref a, n, n);
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | /*************************************************************************
|
---|
| 67 | Generation of random NxN matrix with given condition number and norm2(A)=1
|
---|
| 68 |
|
---|
| 69 | INPUT PARAMETERS:
|
---|
| 70 | N - matrix size
|
---|
| 71 | C - condition number (in 2-norm)
|
---|
| 72 |
|
---|
| 73 | OUTPUT PARAMETERS:
|
---|
| 74 | A - random matrix with norm2(A)=1 and cond(A)=C
|
---|
| 75 |
|
---|
| 76 | -- ALGLIB routine --
|
---|
| 77 | 04.12.2009
|
---|
| 78 | Bochkanov Sergey
|
---|
| 79 | *************************************************************************/
|
---|
| 80 | public static void rmatrixrndcond(int n,
|
---|
| 81 | double c,
|
---|
| 82 | ref double[,] a)
|
---|
| 83 | {
|
---|
| 84 | int i = 0;
|
---|
| 85 | int j = 0;
|
---|
| 86 | double l1 = 0;
|
---|
| 87 | double l2 = 0;
|
---|
| 88 |
|
---|
| 89 | System.Diagnostics.Debug.Assert(n>=1 & (double)(c)>=(double)(1), "RMatrixRndCond: N<1 or C<1!");
|
---|
| 90 | a = new double[n-1+1, n-1+1];
|
---|
| 91 | if( n==1 )
|
---|
| 92 | {
|
---|
| 93 |
|
---|
| 94 | //
|
---|
| 95 | // special case
|
---|
| 96 | //
|
---|
| 97 | a[0,0] = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 98 | return;
|
---|
| 99 | }
|
---|
| 100 | l1 = 0;
|
---|
| 101 | l2 = Math.Log(1/c);
|
---|
| 102 | for(i=0; i<=n-1; i++)
|
---|
| 103 | {
|
---|
| 104 | for(j=0; j<=n-1; j++)
|
---|
| 105 | {
|
---|
| 106 | a[i,j] = 0;
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 | a[0,0] = Math.Exp(l1);
|
---|
| 110 | for(i=1; i<=n-2; i++)
|
---|
| 111 | {
|
---|
| 112 | a[i,i] = Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 113 | }
|
---|
| 114 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 115 | rmatrixrndorthogonalfromtheleft(ref a, n, n);
|
---|
| 116 | rmatrixrndorthogonalfromtheright(ref a, n, n);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 |
|
---|
| 120 | /*************************************************************************
|
---|
| 121 | Generation of a random Haar distributed orthogonal complex matrix
|
---|
| 122 |
|
---|
| 123 | INPUT PARAMETERS:
|
---|
| 124 | N - matrix size, N>=1
|
---|
| 125 |
|
---|
| 126 | OUTPUT PARAMETERS:
|
---|
| 127 | A - orthogonal NxN matrix, array[0..N-1,0..N-1]
|
---|
| 128 |
|
---|
| 129 | -- ALGLIB routine --
|
---|
| 130 | 04.12.2009
|
---|
| 131 | Bochkanov Sergey
|
---|
| 132 | *************************************************************************/
|
---|
| 133 | public static void cmatrixrndorthogonal(int n,
|
---|
| 134 | ref AP.Complex[,] a)
|
---|
| 135 | {
|
---|
| 136 | int i = 0;
|
---|
| 137 | int j = 0;
|
---|
| 138 |
|
---|
| 139 | System.Diagnostics.Debug.Assert(n>=1, "CMatrixRndOrthogonal: N<1!");
|
---|
| 140 | a = new AP.Complex[n-1+1, n-1+1];
|
---|
| 141 | for(i=0; i<=n-1; i++)
|
---|
| 142 | {
|
---|
| 143 | for(j=0; j<=n-1; j++)
|
---|
| 144 | {
|
---|
| 145 | if( i==j )
|
---|
| 146 | {
|
---|
| 147 | a[i,j] = 1;
|
---|
| 148 | }
|
---|
| 149 | else
|
---|
| 150 | {
|
---|
| 151 | a[i,j] = 0;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 | cmatrixrndorthogonalfromtheright(ref a, n, n);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 |
|
---|
| 159 | /*************************************************************************
|
---|
| 160 | Generation of random NxN complex matrix with given condition number C and
|
---|
| 161 | norm2(A)=1
|
---|
| 162 |
|
---|
| 163 | INPUT PARAMETERS:
|
---|
| 164 | N - matrix size
|
---|
| 165 | C - condition number (in 2-norm)
|
---|
| 166 |
|
---|
| 167 | OUTPUT PARAMETERS:
|
---|
| 168 | A - random matrix with norm2(A)=1 and cond(A)=C
|
---|
| 169 |
|
---|
| 170 | -- ALGLIB routine --
|
---|
| 171 | 04.12.2009
|
---|
| 172 | Bochkanov Sergey
|
---|
| 173 | *************************************************************************/
|
---|
| 174 | public static void cmatrixrndcond(int n,
|
---|
| 175 | double c,
|
---|
| 176 | ref AP.Complex[,] a)
|
---|
| 177 | {
|
---|
| 178 | int i = 0;
|
---|
| 179 | int j = 0;
|
---|
| 180 | double l1 = 0;
|
---|
| 181 | double l2 = 0;
|
---|
| 182 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 183 | AP.Complex v = 0;
|
---|
| 184 |
|
---|
| 185 | System.Diagnostics.Debug.Assert(n>=1 & (double)(c)>=(double)(1), "CMatrixRndCond: N<1 or C<1!");
|
---|
| 186 | a = new AP.Complex[n-1+1, n-1+1];
|
---|
| 187 | if( n==1 )
|
---|
| 188 | {
|
---|
| 189 |
|
---|
| 190 | //
|
---|
| 191 | // special case
|
---|
| 192 | //
|
---|
| 193 | hqrnd.hqrndrandomize(ref state);
|
---|
| 194 | hqrnd.hqrndunit2(ref state, ref v.x, ref v.y);
|
---|
| 195 | a[0,0] = v;
|
---|
| 196 | return;
|
---|
| 197 | }
|
---|
| 198 | l1 = 0;
|
---|
| 199 | l2 = Math.Log(1/c);
|
---|
| 200 | for(i=0; i<=n-1; i++)
|
---|
| 201 | {
|
---|
| 202 | for(j=0; j<=n-1; j++)
|
---|
| 203 | {
|
---|
| 204 | a[i,j] = 0;
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | a[0,0] = Math.Exp(l1);
|
---|
| 208 | for(i=1; i<=n-2; i++)
|
---|
| 209 | {
|
---|
| 210 | a[i,i] = Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 211 | }
|
---|
| 212 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 213 | cmatrixrndorthogonalfromtheleft(ref a, n, n);
|
---|
| 214 | cmatrixrndorthogonalfromtheright(ref a, n, n);
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 |
|
---|
| 218 | /*************************************************************************
|
---|
| 219 | Generation of random NxN symmetric matrix with given condition number and
|
---|
| 220 | norm2(A)=1
|
---|
| 221 |
|
---|
| 222 | INPUT PARAMETERS:
|
---|
| 223 | N - matrix size
|
---|
| 224 | C - condition number (in 2-norm)
|
---|
| 225 |
|
---|
| 226 | OUTPUT PARAMETERS:
|
---|
| 227 | A - random matrix with norm2(A)=1 and cond(A)=C
|
---|
| 228 |
|
---|
| 229 | -- ALGLIB routine --
|
---|
| 230 | 04.12.2009
|
---|
| 231 | Bochkanov Sergey
|
---|
| 232 | *************************************************************************/
|
---|
| 233 | public static void smatrixrndcond(int n,
|
---|
| 234 | double c,
|
---|
| 235 | ref double[,] a)
|
---|
| 236 | {
|
---|
| 237 | int i = 0;
|
---|
| 238 | int j = 0;
|
---|
| 239 | double l1 = 0;
|
---|
| 240 | double l2 = 0;
|
---|
| 241 |
|
---|
| 242 | System.Diagnostics.Debug.Assert(n>=1 & (double)(c)>=(double)(1), "SMatrixRndCond: N<1 or C<1!");
|
---|
| 243 | a = new double[n-1+1, n-1+1];
|
---|
| 244 | if( n==1 )
|
---|
| 245 | {
|
---|
| 246 |
|
---|
| 247 | //
|
---|
| 248 | // special case
|
---|
| 249 | //
|
---|
| 250 | a[0,0] = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 251 | return;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | //
|
---|
| 255 | // Prepare matrix
|
---|
| 256 | //
|
---|
| 257 | l1 = 0;
|
---|
| 258 | l2 = Math.Log(1/c);
|
---|
| 259 | for(i=0; i<=n-1; i++)
|
---|
| 260 | {
|
---|
| 261 | for(j=0; j<=n-1; j++)
|
---|
| 262 | {
|
---|
| 263 | a[i,j] = 0;
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 | a[0,0] = Math.Exp(l1);
|
---|
| 267 | for(i=1; i<=n-2; i++)
|
---|
| 268 | {
|
---|
| 269 | a[i,i] = (2*AP.Math.RandomInteger(2)-1)*Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 270 | }
|
---|
| 271 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 272 |
|
---|
| 273 | //
|
---|
| 274 | // Multiply
|
---|
| 275 | //
|
---|
| 276 | smatrixrndmultiply(ref a, n);
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 |
|
---|
| 280 | /*************************************************************************
|
---|
| 281 | Generation of random NxN symmetric positive definite matrix with given
|
---|
| 282 | condition number and norm2(A)=1
|
---|
| 283 |
|
---|
| 284 | INPUT PARAMETERS:
|
---|
| 285 | N - matrix size
|
---|
| 286 | C - condition number (in 2-norm)
|
---|
| 287 |
|
---|
| 288 | OUTPUT PARAMETERS:
|
---|
| 289 | A - random SPD matrix with norm2(A)=1 and cond(A)=C
|
---|
| 290 |
|
---|
| 291 | -- ALGLIB routine --
|
---|
| 292 | 04.12.2009
|
---|
| 293 | Bochkanov Sergey
|
---|
| 294 | *************************************************************************/
|
---|
| 295 | public static void spdmatrixrndcond(int n,
|
---|
| 296 | double c,
|
---|
| 297 | ref double[,] a)
|
---|
| 298 | {
|
---|
| 299 | int i = 0;
|
---|
| 300 | int j = 0;
|
---|
| 301 | double l1 = 0;
|
---|
| 302 | double l2 = 0;
|
---|
| 303 |
|
---|
| 304 |
|
---|
| 305 | //
|
---|
| 306 | // Special cases
|
---|
| 307 | //
|
---|
| 308 | if( n<=0 | (double)(c)<(double)(1) )
|
---|
| 309 | {
|
---|
| 310 | return;
|
---|
| 311 | }
|
---|
| 312 | a = new double[n-1+1, n-1+1];
|
---|
| 313 | if( n==1 )
|
---|
| 314 | {
|
---|
| 315 | a[0,0] = 1;
|
---|
| 316 | return;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | //
|
---|
| 320 | // Prepare matrix
|
---|
| 321 | //
|
---|
| 322 | l1 = 0;
|
---|
| 323 | l2 = Math.Log(1/c);
|
---|
| 324 | for(i=0; i<=n-1; i++)
|
---|
| 325 | {
|
---|
| 326 | for(j=0; j<=n-1; j++)
|
---|
| 327 | {
|
---|
| 328 | a[i,j] = 0;
|
---|
| 329 | }
|
---|
| 330 | }
|
---|
| 331 | a[0,0] = Math.Exp(l1);
|
---|
| 332 | for(i=1; i<=n-2; i++)
|
---|
| 333 | {
|
---|
| 334 | a[i,i] = Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 335 | }
|
---|
| 336 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 337 |
|
---|
| 338 | //
|
---|
| 339 | // Multiply
|
---|
| 340 | //
|
---|
| 341 | smatrixrndmultiply(ref a, n);
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 |
|
---|
| 345 | /*************************************************************************
|
---|
| 346 | Generation of random NxN Hermitian matrix with given condition number and
|
---|
| 347 | norm2(A)=1
|
---|
| 348 |
|
---|
| 349 | INPUT PARAMETERS:
|
---|
| 350 | N - matrix size
|
---|
| 351 | C - condition number (in 2-norm)
|
---|
| 352 |
|
---|
| 353 | OUTPUT PARAMETERS:
|
---|
| 354 | A - random matrix with norm2(A)=1 and cond(A)=C
|
---|
| 355 |
|
---|
| 356 | -- ALGLIB routine --
|
---|
| 357 | 04.12.2009
|
---|
| 358 | Bochkanov Sergey
|
---|
| 359 | *************************************************************************/
|
---|
| 360 | public static void hmatrixrndcond(int n,
|
---|
| 361 | double c,
|
---|
| 362 | ref AP.Complex[,] a)
|
---|
| 363 | {
|
---|
| 364 | int i = 0;
|
---|
| 365 | int j = 0;
|
---|
| 366 | double l1 = 0;
|
---|
| 367 | double l2 = 0;
|
---|
| 368 |
|
---|
| 369 | System.Diagnostics.Debug.Assert(n>=1 & (double)(c)>=(double)(1), "HMatrixRndCond: N<1 or C<1!");
|
---|
| 370 | a = new AP.Complex[n-1+1, n-1+1];
|
---|
| 371 | if( n==1 )
|
---|
| 372 | {
|
---|
| 373 |
|
---|
| 374 | //
|
---|
| 375 | // special case
|
---|
| 376 | //
|
---|
| 377 | a[0,0] = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 378 | return;
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | //
|
---|
| 382 | // Prepare matrix
|
---|
| 383 | //
|
---|
| 384 | l1 = 0;
|
---|
| 385 | l2 = Math.Log(1/c);
|
---|
| 386 | for(i=0; i<=n-1; i++)
|
---|
| 387 | {
|
---|
| 388 | for(j=0; j<=n-1; j++)
|
---|
| 389 | {
|
---|
| 390 | a[i,j] = 0;
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 | a[0,0] = Math.Exp(l1);
|
---|
| 394 | for(i=1; i<=n-2; i++)
|
---|
| 395 | {
|
---|
| 396 | a[i,i] = (2*AP.Math.RandomInteger(2)-1)*Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 397 | }
|
---|
| 398 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 399 |
|
---|
| 400 | //
|
---|
| 401 | // Multiply
|
---|
| 402 | //
|
---|
| 403 | hmatrixrndmultiply(ref a, n);
|
---|
| 404 |
|
---|
| 405 | //
|
---|
| 406 | // post-process to ensure that matrix diagonal is real
|
---|
| 407 | //
|
---|
| 408 | for(i=0; i<=n-1; i++)
|
---|
| 409 | {
|
---|
| 410 | a[i,i].y = 0;
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 |
|
---|
| 415 | /*************************************************************************
|
---|
| 416 | Generation of random NxN Hermitian positive definite matrix with given
|
---|
| 417 | condition number and norm2(A)=1
|
---|
| 418 |
|
---|
| 419 | INPUT PARAMETERS:
|
---|
| 420 | N - matrix size
|
---|
| 421 | C - condition number (in 2-norm)
|
---|
| 422 |
|
---|
| 423 | OUTPUT PARAMETERS:
|
---|
| 424 | A - random HPD matrix with norm2(A)=1 and cond(A)=C
|
---|
| 425 |
|
---|
| 426 | -- ALGLIB routine --
|
---|
| 427 | 04.12.2009
|
---|
| 428 | Bochkanov Sergey
|
---|
| 429 | *************************************************************************/
|
---|
| 430 | public static void hpdmatrixrndcond(int n,
|
---|
| 431 | double c,
|
---|
| 432 | ref AP.Complex[,] a)
|
---|
| 433 | {
|
---|
| 434 | int i = 0;
|
---|
| 435 | int j = 0;
|
---|
| 436 | double l1 = 0;
|
---|
| 437 | double l2 = 0;
|
---|
| 438 |
|
---|
| 439 |
|
---|
| 440 | //
|
---|
| 441 | // Special cases
|
---|
| 442 | //
|
---|
| 443 | if( n<=0 | (double)(c)<(double)(1) )
|
---|
| 444 | {
|
---|
| 445 | return;
|
---|
| 446 | }
|
---|
| 447 | a = new AP.Complex[n-1+1, n-1+1];
|
---|
| 448 | if( n==1 )
|
---|
| 449 | {
|
---|
| 450 | a[0,0] = 1;
|
---|
| 451 | return;
|
---|
| 452 | }
|
---|
| 453 |
|
---|
| 454 | //
|
---|
| 455 | // Prepare matrix
|
---|
| 456 | //
|
---|
| 457 | l1 = 0;
|
---|
| 458 | l2 = Math.Log(1/c);
|
---|
| 459 | for(i=0; i<=n-1; i++)
|
---|
| 460 | {
|
---|
| 461 | for(j=0; j<=n-1; j++)
|
---|
| 462 | {
|
---|
| 463 | a[i,j] = 0;
|
---|
| 464 | }
|
---|
| 465 | }
|
---|
| 466 | a[0,0] = Math.Exp(l1);
|
---|
| 467 | for(i=1; i<=n-2; i++)
|
---|
| 468 | {
|
---|
| 469 | a[i,i] = Math.Exp(AP.Math.RandomReal()*(l2-l1)+l1);
|
---|
| 470 | }
|
---|
| 471 | a[n-1,n-1] = Math.Exp(l2);
|
---|
| 472 |
|
---|
| 473 | //
|
---|
| 474 | // Multiply
|
---|
| 475 | //
|
---|
| 476 | hmatrixrndmultiply(ref a, n);
|
---|
| 477 |
|
---|
| 478 | //
|
---|
| 479 | // post-process to ensure that matrix diagonal is real
|
---|
| 480 | //
|
---|
| 481 | for(i=0; i<=n-1; i++)
|
---|
| 482 | {
|
---|
| 483 | a[i,i].y = 0;
|
---|
| 484 | }
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 |
|
---|
| 488 | /*************************************************************************
|
---|
| 489 | Multiplication of MxN matrix by NxN random Haar distributed orthogonal matrix
|
---|
| 490 |
|
---|
| 491 | INPUT PARAMETERS:
|
---|
| 492 | A - matrix, array[0..M-1, 0..N-1]
|
---|
| 493 | M, N- matrix size
|
---|
| 494 |
|
---|
| 495 | OUTPUT PARAMETERS:
|
---|
| 496 | A - A*Q, where Q is random NxN orthogonal matrix
|
---|
| 497 |
|
---|
| 498 | -- ALGLIB routine --
|
---|
| 499 | 04.12.2009
|
---|
| 500 | Bochkanov Sergey
|
---|
| 501 | *************************************************************************/
|
---|
| 502 | public static void rmatrixrndorthogonalfromtheright(ref double[,] a,
|
---|
| 503 | int m,
|
---|
| 504 | int n)
|
---|
| 505 | {
|
---|
| 506 | double tau = 0;
|
---|
| 507 | double lambda = 0;
|
---|
| 508 | int s = 0;
|
---|
| 509 | int i = 0;
|
---|
| 510 | double u1 = 0;
|
---|
| 511 | double u2 = 0;
|
---|
| 512 | double[] w = new double[0];
|
---|
| 513 | double[] v = new double[0];
|
---|
| 514 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 515 | int i_ = 0;
|
---|
| 516 |
|
---|
| 517 | System.Diagnostics.Debug.Assert(n>=1 & m>=1, "RMatrixRndOrthogonalFromTheRight: N<1 or M<1!");
|
---|
| 518 | if( n==1 )
|
---|
| 519 | {
|
---|
| 520 |
|
---|
| 521 | //
|
---|
| 522 | // Special case
|
---|
| 523 | //
|
---|
| 524 | tau = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 525 | for(i=0; i<=m-1; i++)
|
---|
| 526 | {
|
---|
| 527 | a[i,0] = a[i,0]*tau;
|
---|
| 528 | }
|
---|
| 529 | return;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | //
|
---|
| 533 | // General case.
|
---|
| 534 | // First pass.
|
---|
| 535 | //
|
---|
| 536 | w = new double[m-1+1];
|
---|
| 537 | v = new double[n+1];
|
---|
| 538 | hqrnd.hqrndrandomize(ref state);
|
---|
| 539 | for(s=2; s<=n; s++)
|
---|
| 540 | {
|
---|
| 541 |
|
---|
| 542 | //
|
---|
| 543 | // Prepare random normal v
|
---|
| 544 | //
|
---|
| 545 | do
|
---|
| 546 | {
|
---|
| 547 | i = 1;
|
---|
| 548 | while( i<=s )
|
---|
| 549 | {
|
---|
| 550 | hqrnd.hqrndnormal2(ref state, ref u1, ref u2);
|
---|
| 551 | v[i] = u1;
|
---|
| 552 | if( i+1<=s )
|
---|
| 553 | {
|
---|
| 554 | v[i+1] = u2;
|
---|
| 555 | }
|
---|
| 556 | i = i+2;
|
---|
| 557 | }
|
---|
| 558 | lambda = 0.0;
|
---|
| 559 | for(i_=1; i_<=s;i_++)
|
---|
| 560 | {
|
---|
| 561 | lambda += v[i_]*v[i_];
|
---|
| 562 | }
|
---|
| 563 | }
|
---|
| 564 | while( (double)(lambda)==(double)(0) );
|
---|
| 565 |
|
---|
| 566 | //
|
---|
| 567 | // Prepare and apply reflection
|
---|
| 568 | //
|
---|
| 569 | reflections.generatereflection(ref v, s, ref tau);
|
---|
| 570 | v[1] = 1;
|
---|
| 571 | reflections.applyreflectionfromtheright(ref a, tau, ref v, 0, m-1, n-s, n-1, ref w);
|
---|
| 572 | }
|
---|
| 573 |
|
---|
| 574 | //
|
---|
| 575 | // Second pass.
|
---|
| 576 | //
|
---|
| 577 | for(i=0; i<=n-1; i++)
|
---|
| 578 | {
|
---|
| 579 | tau = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 580 | for(i_=0; i_<=m-1;i_++)
|
---|
| 581 | {
|
---|
| 582 | a[i_,i] = tau*a[i_,i];
|
---|
| 583 | }
|
---|
| 584 | }
|
---|
| 585 | }
|
---|
| 586 |
|
---|
| 587 |
|
---|
| 588 | /*************************************************************************
|
---|
| 589 | Multiplication of MxN matrix by MxM random Haar distributed orthogonal matrix
|
---|
| 590 |
|
---|
| 591 | INPUT PARAMETERS:
|
---|
| 592 | A - matrix, array[0..M-1, 0..N-1]
|
---|
| 593 | M, N- matrix size
|
---|
| 594 |
|
---|
| 595 | OUTPUT PARAMETERS:
|
---|
| 596 | A - Q*A, where Q is random MxM orthogonal matrix
|
---|
| 597 |
|
---|
| 598 | -- ALGLIB routine --
|
---|
| 599 | 04.12.2009
|
---|
| 600 | Bochkanov Sergey
|
---|
| 601 | *************************************************************************/
|
---|
| 602 | public static void rmatrixrndorthogonalfromtheleft(ref double[,] a,
|
---|
| 603 | int m,
|
---|
| 604 | int n)
|
---|
| 605 | {
|
---|
| 606 | double tau = 0;
|
---|
| 607 | double lambda = 0;
|
---|
| 608 | int s = 0;
|
---|
| 609 | int i = 0;
|
---|
| 610 | int j = 0;
|
---|
| 611 | double u1 = 0;
|
---|
| 612 | double u2 = 0;
|
---|
| 613 | double[] w = new double[0];
|
---|
| 614 | double[] v = new double[0];
|
---|
| 615 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 616 | int i_ = 0;
|
---|
| 617 |
|
---|
| 618 | System.Diagnostics.Debug.Assert(n>=1 & m>=1, "RMatrixRndOrthogonalFromTheRight: N<1 or M<1!");
|
---|
| 619 | if( m==1 )
|
---|
| 620 | {
|
---|
| 621 |
|
---|
| 622 | //
|
---|
| 623 | // special case
|
---|
| 624 | //
|
---|
| 625 | tau = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 626 | for(j=0; j<=n-1; j++)
|
---|
| 627 | {
|
---|
| 628 | a[0,j] = a[0,j]*tau;
|
---|
| 629 | }
|
---|
| 630 | return;
|
---|
| 631 | }
|
---|
| 632 |
|
---|
| 633 | //
|
---|
| 634 | // General case.
|
---|
| 635 | // First pass.
|
---|
| 636 | //
|
---|
| 637 | w = new double[n-1+1];
|
---|
| 638 | v = new double[m+1];
|
---|
| 639 | hqrnd.hqrndrandomize(ref state);
|
---|
| 640 | for(s=2; s<=m; s++)
|
---|
| 641 | {
|
---|
| 642 |
|
---|
| 643 | //
|
---|
| 644 | // Prepare random normal v
|
---|
| 645 | //
|
---|
| 646 | do
|
---|
| 647 | {
|
---|
| 648 | i = 1;
|
---|
| 649 | while( i<=s )
|
---|
| 650 | {
|
---|
| 651 | hqrnd.hqrndnormal2(ref state, ref u1, ref u2);
|
---|
| 652 | v[i] = u1;
|
---|
| 653 | if( i+1<=s )
|
---|
| 654 | {
|
---|
| 655 | v[i+1] = u2;
|
---|
| 656 | }
|
---|
| 657 | i = i+2;
|
---|
| 658 | }
|
---|
| 659 | lambda = 0.0;
|
---|
| 660 | for(i_=1; i_<=s;i_++)
|
---|
| 661 | {
|
---|
| 662 | lambda += v[i_]*v[i_];
|
---|
| 663 | }
|
---|
| 664 | }
|
---|
| 665 | while( (double)(lambda)==(double)(0) );
|
---|
| 666 |
|
---|
| 667 | //
|
---|
| 668 | // Prepare and apply reflection
|
---|
| 669 | //
|
---|
| 670 | reflections.generatereflection(ref v, s, ref tau);
|
---|
| 671 | v[1] = 1;
|
---|
| 672 | reflections.applyreflectionfromtheleft(ref a, tau, ref v, m-s, m-1, 0, n-1, ref w);
|
---|
| 673 | }
|
---|
| 674 |
|
---|
| 675 | //
|
---|
| 676 | // Second pass.
|
---|
| 677 | //
|
---|
| 678 | for(i=0; i<=m-1; i++)
|
---|
| 679 | {
|
---|
| 680 | tau = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 681 | for(i_=0; i_<=n-1;i_++)
|
---|
| 682 | {
|
---|
| 683 | a[i,i_] = tau*a[i,i_];
|
---|
| 684 | }
|
---|
| 685 | }
|
---|
| 686 | }
|
---|
| 687 |
|
---|
| 688 |
|
---|
| 689 | /*************************************************************************
|
---|
| 690 | Multiplication of MxN complex matrix by NxN random Haar distributed
|
---|
| 691 | complex orthogonal matrix
|
---|
| 692 |
|
---|
| 693 | INPUT PARAMETERS:
|
---|
| 694 | A - matrix, array[0..M-1, 0..N-1]
|
---|
| 695 | M, N- matrix size
|
---|
| 696 |
|
---|
| 697 | OUTPUT PARAMETERS:
|
---|
| 698 | A - A*Q, where Q is random NxN orthogonal matrix
|
---|
| 699 |
|
---|
| 700 | -- ALGLIB routine --
|
---|
| 701 | 04.12.2009
|
---|
| 702 | Bochkanov Sergey
|
---|
| 703 | *************************************************************************/
|
---|
| 704 | public static void cmatrixrndorthogonalfromtheright(ref AP.Complex[,] a,
|
---|
| 705 | int m,
|
---|
| 706 | int n)
|
---|
| 707 | {
|
---|
| 708 | AP.Complex lambda = 0;
|
---|
| 709 | AP.Complex tau = 0;
|
---|
| 710 | int s = 0;
|
---|
| 711 | int i = 0;
|
---|
| 712 | AP.Complex[] w = new AP.Complex[0];
|
---|
| 713 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 714 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 715 | int i_ = 0;
|
---|
| 716 |
|
---|
| 717 | System.Diagnostics.Debug.Assert(n>=1 & m>=1, "CMatrixRndOrthogonalFromTheRight: N<1 or M<1!");
|
---|
| 718 | if( n==1 )
|
---|
| 719 | {
|
---|
| 720 |
|
---|
| 721 | //
|
---|
| 722 | // Special case
|
---|
| 723 | //
|
---|
| 724 | hqrnd.hqrndrandomize(ref state);
|
---|
| 725 | hqrnd.hqrndunit2(ref state, ref tau.x, ref tau.y);
|
---|
| 726 | for(i=0; i<=m-1; i++)
|
---|
| 727 | {
|
---|
| 728 | a[i,0] = a[i,0]*tau;
|
---|
| 729 | }
|
---|
| 730 | return;
|
---|
| 731 | }
|
---|
| 732 |
|
---|
| 733 | //
|
---|
| 734 | // General case.
|
---|
| 735 | // First pass.
|
---|
| 736 | //
|
---|
| 737 | w = new AP.Complex[m-1+1];
|
---|
| 738 | v = new AP.Complex[n+1];
|
---|
| 739 | hqrnd.hqrndrandomize(ref state);
|
---|
| 740 | for(s=2; s<=n; s++)
|
---|
| 741 | {
|
---|
| 742 |
|
---|
| 743 | //
|
---|
| 744 | // Prepare random normal v
|
---|
| 745 | //
|
---|
| 746 | do
|
---|
| 747 | {
|
---|
| 748 | for(i=1; i<=s; i++)
|
---|
| 749 | {
|
---|
| 750 | hqrnd.hqrndnormal2(ref state, ref tau.x, ref tau.y);
|
---|
| 751 | v[i] = tau;
|
---|
| 752 | }
|
---|
| 753 | lambda = 0.0;
|
---|
| 754 | for(i_=1; i_<=s;i_++)
|
---|
| 755 | {
|
---|
| 756 | lambda += v[i_]*AP.Math.Conj(v[i_]);
|
---|
| 757 | }
|
---|
| 758 | }
|
---|
| 759 | while( lambda==0 );
|
---|
| 760 |
|
---|
| 761 | //
|
---|
| 762 | // Prepare and apply reflection
|
---|
| 763 | //
|
---|
| 764 | creflections.complexgeneratereflection(ref v, s, ref tau);
|
---|
| 765 | v[1] = 1;
|
---|
| 766 | creflections.complexapplyreflectionfromtheright(ref a, tau, ref v, 0, m-1, n-s, n-1, ref w);
|
---|
| 767 | }
|
---|
| 768 |
|
---|
| 769 | //
|
---|
| 770 | // Second pass.
|
---|
| 771 | //
|
---|
| 772 | for(i=0; i<=n-1; i++)
|
---|
| 773 | {
|
---|
| 774 | hqrnd.hqrndunit2(ref state, ref tau.x, ref tau.y);
|
---|
| 775 | for(i_=0; i_<=m-1;i_++)
|
---|
| 776 | {
|
---|
| 777 | a[i_,i] = tau*a[i_,i];
|
---|
| 778 | }
|
---|
| 779 | }
|
---|
| 780 | }
|
---|
| 781 |
|
---|
| 782 |
|
---|
| 783 | /*************************************************************************
|
---|
| 784 | Multiplication of MxN complex matrix by MxM random Haar distributed
|
---|
| 785 | complex orthogonal matrix
|
---|
| 786 |
|
---|
| 787 | INPUT PARAMETERS:
|
---|
| 788 | A - matrix, array[0..M-1, 0..N-1]
|
---|
| 789 | M, N- matrix size
|
---|
| 790 |
|
---|
| 791 | OUTPUT PARAMETERS:
|
---|
| 792 | A - Q*A, where Q is random MxM orthogonal matrix
|
---|
| 793 |
|
---|
| 794 | -- ALGLIB routine --
|
---|
| 795 | 04.12.2009
|
---|
| 796 | Bochkanov Sergey
|
---|
| 797 | *************************************************************************/
|
---|
| 798 | public static void cmatrixrndorthogonalfromtheleft(ref AP.Complex[,] a,
|
---|
| 799 | int m,
|
---|
| 800 | int n)
|
---|
| 801 | {
|
---|
| 802 | AP.Complex tau = 0;
|
---|
| 803 | AP.Complex lambda = 0;
|
---|
| 804 | int s = 0;
|
---|
| 805 | int i = 0;
|
---|
| 806 | int j = 0;
|
---|
| 807 | AP.Complex[] w = new AP.Complex[0];
|
---|
| 808 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 809 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 810 | int i_ = 0;
|
---|
| 811 |
|
---|
| 812 | System.Diagnostics.Debug.Assert(n>=1 & m>=1, "CMatrixRndOrthogonalFromTheRight: N<1 or M<1!");
|
---|
| 813 | if( m==1 )
|
---|
| 814 | {
|
---|
| 815 |
|
---|
| 816 | //
|
---|
| 817 | // special case
|
---|
| 818 | //
|
---|
| 819 | hqrnd.hqrndrandomize(ref state);
|
---|
| 820 | hqrnd.hqrndunit2(ref state, ref tau.x, ref tau.y);
|
---|
| 821 | for(j=0; j<=n-1; j++)
|
---|
| 822 | {
|
---|
| 823 | a[0,j] = a[0,j]*tau;
|
---|
| 824 | }
|
---|
| 825 | return;
|
---|
| 826 | }
|
---|
| 827 |
|
---|
| 828 | //
|
---|
| 829 | // General case.
|
---|
| 830 | // First pass.
|
---|
| 831 | //
|
---|
| 832 | w = new AP.Complex[n-1+1];
|
---|
| 833 | v = new AP.Complex[m+1];
|
---|
| 834 | hqrnd.hqrndrandomize(ref state);
|
---|
| 835 | for(s=2; s<=m; s++)
|
---|
| 836 | {
|
---|
| 837 |
|
---|
| 838 | //
|
---|
| 839 | // Prepare random normal v
|
---|
| 840 | //
|
---|
| 841 | do
|
---|
| 842 | {
|
---|
| 843 | for(i=1; i<=s; i++)
|
---|
| 844 | {
|
---|
| 845 | hqrnd.hqrndnormal2(ref state, ref tau.x, ref tau.y);
|
---|
| 846 | v[i] = tau;
|
---|
| 847 | }
|
---|
| 848 | lambda = 0.0;
|
---|
| 849 | for(i_=1; i_<=s;i_++)
|
---|
| 850 | {
|
---|
| 851 | lambda += v[i_]*AP.Math.Conj(v[i_]);
|
---|
| 852 | }
|
---|
| 853 | }
|
---|
| 854 | while( lambda==0 );
|
---|
| 855 |
|
---|
| 856 | //
|
---|
| 857 | // Prepare and apply reflection
|
---|
| 858 | //
|
---|
| 859 | creflections.complexgeneratereflection(ref v, s, ref tau);
|
---|
| 860 | v[1] = 1;
|
---|
| 861 | creflections.complexapplyreflectionfromtheleft(ref a, tau, ref v, m-s, m-1, 0, n-1, ref w);
|
---|
| 862 | }
|
---|
| 863 |
|
---|
| 864 | //
|
---|
| 865 | // Second pass.
|
---|
| 866 | //
|
---|
| 867 | for(i=0; i<=m-1; i++)
|
---|
| 868 | {
|
---|
| 869 | hqrnd.hqrndunit2(ref state, ref tau.x, ref tau.y);
|
---|
| 870 | for(i_=0; i_<=n-1;i_++)
|
---|
| 871 | {
|
---|
| 872 | a[i,i_] = tau*a[i,i_];
|
---|
| 873 | }
|
---|
| 874 | }
|
---|
| 875 | }
|
---|
| 876 |
|
---|
| 877 |
|
---|
| 878 | /*************************************************************************
|
---|
| 879 | Symmetric multiplication of NxN matrix by random Haar distributed
|
---|
| 880 | orthogonal matrix
|
---|
| 881 |
|
---|
| 882 | INPUT PARAMETERS:
|
---|
| 883 | A - matrix, array[0..N-1, 0..N-1]
|
---|
| 884 | N - matrix size
|
---|
| 885 |
|
---|
| 886 | OUTPUT PARAMETERS:
|
---|
| 887 | A - Q'*A*Q, where Q is random NxN orthogonal matrix
|
---|
| 888 |
|
---|
| 889 | -- ALGLIB routine --
|
---|
| 890 | 04.12.2009
|
---|
| 891 | Bochkanov Sergey
|
---|
| 892 | *************************************************************************/
|
---|
| 893 | public static void smatrixrndmultiply(ref double[,] a,
|
---|
| 894 | int n)
|
---|
| 895 | {
|
---|
| 896 | double tau = 0;
|
---|
| 897 | double lambda = 0;
|
---|
| 898 | int s = 0;
|
---|
| 899 | int i = 0;
|
---|
| 900 | double u1 = 0;
|
---|
| 901 | double u2 = 0;
|
---|
| 902 | double[] w = new double[0];
|
---|
| 903 | double[] v = new double[0];
|
---|
| 904 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 905 | int i_ = 0;
|
---|
| 906 |
|
---|
| 907 |
|
---|
| 908 | //
|
---|
| 909 | // General case.
|
---|
| 910 | //
|
---|
| 911 | w = new double[n-1+1];
|
---|
| 912 | v = new double[n+1];
|
---|
| 913 | hqrnd.hqrndrandomize(ref state);
|
---|
| 914 | for(s=2; s<=n; s++)
|
---|
| 915 | {
|
---|
| 916 |
|
---|
| 917 | //
|
---|
| 918 | // Prepare random normal v
|
---|
| 919 | //
|
---|
| 920 | do
|
---|
| 921 | {
|
---|
| 922 | i = 1;
|
---|
| 923 | while( i<=s )
|
---|
| 924 | {
|
---|
| 925 | hqrnd.hqrndnormal2(ref state, ref u1, ref u2);
|
---|
| 926 | v[i] = u1;
|
---|
| 927 | if( i+1<=s )
|
---|
| 928 | {
|
---|
| 929 | v[i+1] = u2;
|
---|
| 930 | }
|
---|
| 931 | i = i+2;
|
---|
| 932 | }
|
---|
| 933 | lambda = 0.0;
|
---|
| 934 | for(i_=1; i_<=s;i_++)
|
---|
| 935 | {
|
---|
| 936 | lambda += v[i_]*v[i_];
|
---|
| 937 | }
|
---|
| 938 | }
|
---|
| 939 | while( (double)(lambda)==(double)(0) );
|
---|
| 940 |
|
---|
| 941 | //
|
---|
| 942 | // Prepare and apply reflection
|
---|
| 943 | //
|
---|
| 944 | reflections.generatereflection(ref v, s, ref tau);
|
---|
| 945 | v[1] = 1;
|
---|
| 946 | reflections.applyreflectionfromtheright(ref a, tau, ref v, 0, n-1, n-s, n-1, ref w);
|
---|
| 947 | reflections.applyreflectionfromtheleft(ref a, tau, ref v, n-s, n-1, 0, n-1, ref w);
|
---|
| 948 | }
|
---|
| 949 |
|
---|
| 950 | //
|
---|
| 951 | // Second pass.
|
---|
| 952 | //
|
---|
| 953 | for(i=0; i<=n-1; i++)
|
---|
| 954 | {
|
---|
| 955 | tau = 2*AP.Math.RandomInteger(2)-1;
|
---|
| 956 | for(i_=0; i_<=n-1;i_++)
|
---|
| 957 | {
|
---|
| 958 | a[i_,i] = tau*a[i_,i];
|
---|
| 959 | }
|
---|
| 960 | for(i_=0; i_<=n-1;i_++)
|
---|
| 961 | {
|
---|
| 962 | a[i,i_] = tau*a[i,i_];
|
---|
| 963 | }
|
---|
| 964 | }
|
---|
| 965 | }
|
---|
| 966 |
|
---|
| 967 |
|
---|
| 968 | /*************************************************************************
|
---|
| 969 | Hermitian multiplication of NxN matrix by random Haar distributed
|
---|
| 970 | complex orthogonal matrix
|
---|
| 971 |
|
---|
| 972 | INPUT PARAMETERS:
|
---|
| 973 | A - matrix, array[0..N-1, 0..N-1]
|
---|
| 974 | N - matrix size
|
---|
| 975 |
|
---|
| 976 | OUTPUT PARAMETERS:
|
---|
| 977 | A - Q^H*A*Q, where Q is random NxN orthogonal matrix
|
---|
| 978 |
|
---|
| 979 | -- ALGLIB routine --
|
---|
| 980 | 04.12.2009
|
---|
| 981 | Bochkanov Sergey
|
---|
| 982 | *************************************************************************/
|
---|
| 983 | public static void hmatrixrndmultiply(ref AP.Complex[,] a,
|
---|
| 984 | int n)
|
---|
| 985 | {
|
---|
| 986 | AP.Complex tau = 0;
|
---|
| 987 | AP.Complex lambda = 0;
|
---|
| 988 | int s = 0;
|
---|
| 989 | int i = 0;
|
---|
| 990 | AP.Complex[] w = new AP.Complex[0];
|
---|
| 991 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 992 | hqrnd.hqrndstate state = new hqrnd.hqrndstate();
|
---|
| 993 | int i_ = 0;
|
---|
| 994 |
|
---|
| 995 |
|
---|
| 996 | //
|
---|
| 997 | // General case.
|
---|
| 998 | //
|
---|
| 999 | w = new AP.Complex[n-1+1];
|
---|
| 1000 | v = new AP.Complex[n+1];
|
---|
| 1001 | hqrnd.hqrndrandomize(ref state);
|
---|
| 1002 | for(s=2; s<=n; s++)
|
---|
| 1003 | {
|
---|
| 1004 |
|
---|
| 1005 | //
|
---|
| 1006 | // Prepare random normal v
|
---|
| 1007 | //
|
---|
| 1008 | do
|
---|
| 1009 | {
|
---|
| 1010 | for(i=1; i<=s; i++)
|
---|
| 1011 | {
|
---|
| 1012 | hqrnd.hqrndnormal2(ref state, ref tau.x, ref tau.y);
|
---|
| 1013 | v[i] = tau;
|
---|
| 1014 | }
|
---|
| 1015 | lambda = 0.0;
|
---|
| 1016 | for(i_=1; i_<=s;i_++)
|
---|
| 1017 | {
|
---|
| 1018 | lambda += v[i_]*AP.Math.Conj(v[i_]);
|
---|
| 1019 | }
|
---|
| 1020 | }
|
---|
| 1021 | while( lambda==0 );
|
---|
| 1022 |
|
---|
| 1023 | //
|
---|
| 1024 | // Prepare and apply reflection
|
---|
| 1025 | //
|
---|
| 1026 | creflections.complexgeneratereflection(ref v, s, ref tau);
|
---|
| 1027 | v[1] = 1;
|
---|
| 1028 | creflections.complexapplyreflectionfromtheright(ref a, tau, ref v, 0, n-1, n-s, n-1, ref w);
|
---|
| 1029 | creflections.complexapplyreflectionfromtheleft(ref a, AP.Math.Conj(tau), ref v, n-s, n-1, 0, n-1, ref w);
|
---|
| 1030 | }
|
---|
| 1031 |
|
---|
| 1032 | //
|
---|
| 1033 | // Second pass.
|
---|
| 1034 | //
|
---|
| 1035 | for(i=0; i<=n-1; i++)
|
---|
| 1036 | {
|
---|
| 1037 | hqrnd.hqrndunit2(ref state, ref tau.x, ref tau.y);
|
---|
| 1038 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1039 | {
|
---|
| 1040 | a[i_,i] = tau*a[i_,i];
|
---|
| 1041 | }
|
---|
| 1042 | tau = AP.Math.Conj(tau);
|
---|
| 1043 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1044 | {
|
---|
| 1045 | a[i,i_] = tau*a[i,i_];
|
---|
| 1046 | }
|
---|
| 1047 | }
|
---|
| 1048 | }
|
---|
| 1049 | }
|
---|
| 1050 | }
|
---|