[3839] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class igammaf
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Incomplete gamma integral
|
---|
| 36 |
|
---|
| 37 | The function is defined by
|
---|
| 38 |
|
---|
| 39 | x
|
---|
| 40 | -
|
---|
| 41 | 1 | | -t a-1
|
---|
| 42 | igam(a,x) = ----- | e t dt.
|
---|
| 43 | - | |
|
---|
| 44 | | (a) -
|
---|
| 45 | 0
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | In this implementation both arguments must be positive.
|
---|
| 49 | The integral is evaluated by either a power series or
|
---|
| 50 | continued fraction expansion, depending on the relative
|
---|
| 51 | values of a and x.
|
---|
| 52 |
|
---|
| 53 | ACCURACY:
|
---|
| 54 |
|
---|
| 55 | Relative error:
|
---|
| 56 | arithmetic domain # trials peak rms
|
---|
| 57 | IEEE 0,30 200000 3.6e-14 2.9e-15
|
---|
| 58 | IEEE 0,100 300000 9.9e-14 1.5e-14
|
---|
| 59 |
|
---|
| 60 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 61 | Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
---|
| 62 | *************************************************************************/
|
---|
| 63 | public static double incompletegamma(double a,
|
---|
| 64 | double x)
|
---|
| 65 | {
|
---|
| 66 | double result = 0;
|
---|
| 67 | double igammaepsilon = 0;
|
---|
| 68 | double ans = 0;
|
---|
| 69 | double ax = 0;
|
---|
| 70 | double c = 0;
|
---|
| 71 | double r = 0;
|
---|
| 72 | double tmp = 0;
|
---|
| 73 |
|
---|
| 74 | igammaepsilon = 0.000000000000001;
|
---|
| 75 | if( (double)(x)<=(double)(0) | (double)(a)<=(double)(0) )
|
---|
| 76 | {
|
---|
| 77 | result = 0;
|
---|
| 78 | return result;
|
---|
| 79 | }
|
---|
| 80 | if( (double)(x)>(double)(1) & (double)(x)>(double)(a) )
|
---|
| 81 | {
|
---|
| 82 | result = 1-incompletegammac(a, x);
|
---|
| 83 | return result;
|
---|
| 84 | }
|
---|
| 85 | ax = a*Math.Log(x)-x-gammafunc.lngamma(a, ref tmp);
|
---|
| 86 | if( (double)(ax)<(double)(-709.78271289338399) )
|
---|
| 87 | {
|
---|
| 88 | result = 0;
|
---|
| 89 | return result;
|
---|
| 90 | }
|
---|
| 91 | ax = Math.Exp(ax);
|
---|
| 92 | r = a;
|
---|
| 93 | c = 1;
|
---|
| 94 | ans = 1;
|
---|
| 95 | do
|
---|
| 96 | {
|
---|
| 97 | r = r+1;
|
---|
| 98 | c = c*x/r;
|
---|
| 99 | ans = ans+c;
|
---|
| 100 | }
|
---|
| 101 | while( (double)(c/ans)>(double)(igammaepsilon) );
|
---|
| 102 | result = ans*ax/a;
|
---|
| 103 | return result;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 |
|
---|
| 107 | /*************************************************************************
|
---|
| 108 | Complemented incomplete gamma integral
|
---|
| 109 |
|
---|
| 110 | The function is defined by
|
---|
| 111 |
|
---|
| 112 |
|
---|
| 113 | igamc(a,x) = 1 - igam(a,x)
|
---|
| 114 |
|
---|
| 115 | inf.
|
---|
| 116 | -
|
---|
| 117 | 1 | | -t a-1
|
---|
| 118 | = ----- | e t dt.
|
---|
| 119 | - | |
|
---|
| 120 | | (a) -
|
---|
| 121 | x
|
---|
| 122 |
|
---|
| 123 |
|
---|
| 124 | In this implementation both arguments must be positive.
|
---|
| 125 | The integral is evaluated by either a power series or
|
---|
| 126 | continued fraction expansion, depending on the relative
|
---|
| 127 | values of a and x.
|
---|
| 128 |
|
---|
| 129 | ACCURACY:
|
---|
| 130 |
|
---|
| 131 | Tested at random a, x.
|
---|
| 132 | a x Relative error:
|
---|
| 133 | arithmetic domain domain # trials peak rms
|
---|
| 134 | IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
---|
| 135 | IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
---|
| 136 |
|
---|
| 137 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 138 | Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
---|
| 139 | *************************************************************************/
|
---|
| 140 | public static double incompletegammac(double a,
|
---|
| 141 | double x)
|
---|
| 142 | {
|
---|
| 143 | double result = 0;
|
---|
| 144 | double igammaepsilon = 0;
|
---|
| 145 | double igammabignumber = 0;
|
---|
| 146 | double igammabignumberinv = 0;
|
---|
| 147 | double ans = 0;
|
---|
| 148 | double ax = 0;
|
---|
| 149 | double c = 0;
|
---|
| 150 | double yc = 0;
|
---|
| 151 | double r = 0;
|
---|
| 152 | double t = 0;
|
---|
| 153 | double y = 0;
|
---|
| 154 | double z = 0;
|
---|
| 155 | double pk = 0;
|
---|
| 156 | double pkm1 = 0;
|
---|
| 157 | double pkm2 = 0;
|
---|
| 158 | double qk = 0;
|
---|
| 159 | double qkm1 = 0;
|
---|
| 160 | double qkm2 = 0;
|
---|
| 161 | double tmp = 0;
|
---|
| 162 |
|
---|
| 163 | igammaepsilon = 0.000000000000001;
|
---|
| 164 | igammabignumber = 4503599627370496.0;
|
---|
| 165 | igammabignumberinv = 2.22044604925031308085*0.0000000000000001;
|
---|
| 166 | if( (double)(x)<=(double)(0) | (double)(a)<=(double)(0) )
|
---|
| 167 | {
|
---|
| 168 | result = 1;
|
---|
| 169 | return result;
|
---|
| 170 | }
|
---|
| 171 | if( (double)(x)<(double)(1) | (double)(x)<(double)(a) )
|
---|
| 172 | {
|
---|
| 173 | result = 1-incompletegamma(a, x);
|
---|
| 174 | return result;
|
---|
| 175 | }
|
---|
| 176 | ax = a*Math.Log(x)-x-gammafunc.lngamma(a, ref tmp);
|
---|
| 177 | if( (double)(ax)<(double)(-709.78271289338399) )
|
---|
| 178 | {
|
---|
| 179 | result = 0;
|
---|
| 180 | return result;
|
---|
| 181 | }
|
---|
| 182 | ax = Math.Exp(ax);
|
---|
| 183 | y = 1-a;
|
---|
| 184 | z = x+y+1;
|
---|
| 185 | c = 0;
|
---|
| 186 | pkm2 = 1;
|
---|
| 187 | qkm2 = x;
|
---|
| 188 | pkm1 = x+1;
|
---|
| 189 | qkm1 = z*x;
|
---|
| 190 | ans = pkm1/qkm1;
|
---|
| 191 | do
|
---|
| 192 | {
|
---|
| 193 | c = c+1;
|
---|
| 194 | y = y+1;
|
---|
| 195 | z = z+2;
|
---|
| 196 | yc = y*c;
|
---|
| 197 | pk = pkm1*z-pkm2*yc;
|
---|
| 198 | qk = qkm1*z-qkm2*yc;
|
---|
| 199 | if( (double)(qk)!=(double)(0) )
|
---|
| 200 | {
|
---|
| 201 | r = pk/qk;
|
---|
| 202 | t = Math.Abs((ans-r)/r);
|
---|
| 203 | ans = r;
|
---|
| 204 | }
|
---|
| 205 | else
|
---|
| 206 | {
|
---|
| 207 | t = 1;
|
---|
| 208 | }
|
---|
| 209 | pkm2 = pkm1;
|
---|
| 210 | pkm1 = pk;
|
---|
| 211 | qkm2 = qkm1;
|
---|
| 212 | qkm1 = qk;
|
---|
| 213 | if( (double)(Math.Abs(pk))>(double)(igammabignumber) )
|
---|
| 214 | {
|
---|
| 215 | pkm2 = pkm2*igammabignumberinv;
|
---|
| 216 | pkm1 = pkm1*igammabignumberinv;
|
---|
| 217 | qkm2 = qkm2*igammabignumberinv;
|
---|
| 218 | qkm1 = qkm1*igammabignumberinv;
|
---|
| 219 | }
|
---|
| 220 | }
|
---|
| 221 | while( (double)(t)>(double)(igammaepsilon) );
|
---|
| 222 | result = ans*ax;
|
---|
| 223 | return result;
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 |
|
---|
| 227 | /*************************************************************************
|
---|
| 228 | Inverse of complemented imcomplete gamma integral
|
---|
| 229 |
|
---|
| 230 | Given p, the function finds x such that
|
---|
| 231 |
|
---|
| 232 | igamc( a, x ) = p.
|
---|
| 233 |
|
---|
| 234 | Starting with the approximate value
|
---|
| 235 |
|
---|
| 236 | 3
|
---|
| 237 | x = a t
|
---|
| 238 |
|
---|
| 239 | where
|
---|
| 240 |
|
---|
| 241 | t = 1 - d - ndtri(p) sqrt(d)
|
---|
| 242 |
|
---|
| 243 | and
|
---|
| 244 |
|
---|
| 245 | d = 1/9a,
|
---|
| 246 |
|
---|
| 247 | the routine performs up to 10 Newton iterations to find the
|
---|
| 248 | root of igamc(a,x) - p = 0.
|
---|
| 249 |
|
---|
| 250 | ACCURACY:
|
---|
| 251 |
|
---|
| 252 | Tested at random a, p in the intervals indicated.
|
---|
| 253 |
|
---|
| 254 | a p Relative error:
|
---|
| 255 | arithmetic domain domain # trials peak rms
|
---|
| 256 | IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
|
---|
| 257 | IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
|
---|
| 258 | IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
|
---|
| 259 |
|
---|
| 260 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 261 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 262 | *************************************************************************/
|
---|
| 263 | public static double invincompletegammac(double a,
|
---|
| 264 | double y0)
|
---|
| 265 | {
|
---|
| 266 | double result = 0;
|
---|
| 267 | double igammaepsilon = 0;
|
---|
| 268 | double iinvgammabignumber = 0;
|
---|
| 269 | double x0 = 0;
|
---|
| 270 | double x1 = 0;
|
---|
| 271 | double x = 0;
|
---|
| 272 | double yl = 0;
|
---|
| 273 | double yh = 0;
|
---|
| 274 | double y = 0;
|
---|
| 275 | double d = 0;
|
---|
| 276 | double lgm = 0;
|
---|
| 277 | double dithresh = 0;
|
---|
| 278 | int i = 0;
|
---|
| 279 | int dir = 0;
|
---|
| 280 | double tmp = 0;
|
---|
| 281 |
|
---|
| 282 | igammaepsilon = 0.000000000000001;
|
---|
| 283 | iinvgammabignumber = 4503599627370496.0;
|
---|
| 284 | x0 = iinvgammabignumber;
|
---|
| 285 | yl = 0;
|
---|
| 286 | x1 = 0;
|
---|
| 287 | yh = 1;
|
---|
| 288 | dithresh = 5*igammaepsilon;
|
---|
| 289 | d = 1/(9*a);
|
---|
| 290 | y = 1-d-normaldistr.invnormaldistribution(y0)*Math.Sqrt(d);
|
---|
| 291 | x = a*y*y*y;
|
---|
| 292 | lgm = gammafunc.lngamma(a, ref tmp);
|
---|
| 293 | i = 0;
|
---|
| 294 | while( i<10 )
|
---|
| 295 | {
|
---|
| 296 | if( (double)(x)>(double)(x0) | (double)(x)<(double)(x1) )
|
---|
| 297 | {
|
---|
| 298 | d = 0.0625;
|
---|
| 299 | break;
|
---|
| 300 | }
|
---|
| 301 | y = incompletegammac(a, x);
|
---|
| 302 | if( (double)(y)<(double)(yl) | (double)(y)>(double)(yh) )
|
---|
| 303 | {
|
---|
| 304 | d = 0.0625;
|
---|
| 305 | break;
|
---|
| 306 | }
|
---|
| 307 | if( (double)(y)<(double)(y0) )
|
---|
| 308 | {
|
---|
| 309 | x0 = x;
|
---|
| 310 | yl = y;
|
---|
| 311 | }
|
---|
| 312 | else
|
---|
| 313 | {
|
---|
| 314 | x1 = x;
|
---|
| 315 | yh = y;
|
---|
| 316 | }
|
---|
| 317 | d = (a-1)*Math.Log(x)-x-lgm;
|
---|
| 318 | if( (double)(d)<(double)(-709.78271289338399) )
|
---|
| 319 | {
|
---|
| 320 | d = 0.0625;
|
---|
| 321 | break;
|
---|
| 322 | }
|
---|
| 323 | d = -Math.Exp(d);
|
---|
| 324 | d = (y-y0)/d;
|
---|
| 325 | if( (double)(Math.Abs(d/x))<(double)(igammaepsilon) )
|
---|
| 326 | {
|
---|
| 327 | result = x;
|
---|
| 328 | return result;
|
---|
| 329 | }
|
---|
| 330 | x = x-d;
|
---|
| 331 | i = i+1;
|
---|
| 332 | }
|
---|
| 333 | if( (double)(x0)==(double)(iinvgammabignumber) )
|
---|
| 334 | {
|
---|
| 335 | if( (double)(x)<=(double)(0) )
|
---|
| 336 | {
|
---|
| 337 | x = 1;
|
---|
| 338 | }
|
---|
| 339 | while( (double)(x0)==(double)(iinvgammabignumber) )
|
---|
| 340 | {
|
---|
| 341 | x = (1+d)*x;
|
---|
| 342 | y = incompletegammac(a, x);
|
---|
| 343 | if( (double)(y)<(double)(y0) )
|
---|
| 344 | {
|
---|
| 345 | x0 = x;
|
---|
| 346 | yl = y;
|
---|
| 347 | break;
|
---|
| 348 | }
|
---|
| 349 | d = d+d;
|
---|
| 350 | }
|
---|
| 351 | }
|
---|
| 352 | d = 0.5;
|
---|
| 353 | dir = 0;
|
---|
| 354 | i = 0;
|
---|
| 355 | while( i<400 )
|
---|
| 356 | {
|
---|
| 357 | x = x1+d*(x0-x1);
|
---|
| 358 | y = incompletegammac(a, x);
|
---|
| 359 | lgm = (x0-x1)/(x1+x0);
|
---|
| 360 | if( (double)(Math.Abs(lgm))<(double)(dithresh) )
|
---|
| 361 | {
|
---|
| 362 | break;
|
---|
| 363 | }
|
---|
| 364 | lgm = (y-y0)/y0;
|
---|
| 365 | if( (double)(Math.Abs(lgm))<(double)(dithresh) )
|
---|
| 366 | {
|
---|
| 367 | break;
|
---|
| 368 | }
|
---|
| 369 | if( (double)(x)<=(double)(0.0) )
|
---|
| 370 | {
|
---|
| 371 | break;
|
---|
| 372 | }
|
---|
| 373 | if( (double)(y)>=(double)(y0) )
|
---|
| 374 | {
|
---|
| 375 | x1 = x;
|
---|
| 376 | yh = y;
|
---|
| 377 | if( dir<0 )
|
---|
| 378 | {
|
---|
| 379 | dir = 0;
|
---|
| 380 | d = 0.5;
|
---|
| 381 | }
|
---|
| 382 | else
|
---|
| 383 | {
|
---|
| 384 | if( dir>1 )
|
---|
| 385 | {
|
---|
| 386 | d = 0.5*d+0.5;
|
---|
| 387 | }
|
---|
| 388 | else
|
---|
| 389 | {
|
---|
| 390 | d = (y0-yl)/(yh-yl);
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 | dir = dir+1;
|
---|
| 394 | }
|
---|
| 395 | else
|
---|
| 396 | {
|
---|
| 397 | x0 = x;
|
---|
| 398 | yl = y;
|
---|
| 399 | if( dir>0 )
|
---|
| 400 | {
|
---|
| 401 | dir = 0;
|
---|
| 402 | d = 0.5;
|
---|
| 403 | }
|
---|
| 404 | else
|
---|
| 405 | {
|
---|
| 406 | if( dir<-1 )
|
---|
| 407 | {
|
---|
| 408 | d = 0.5*d;
|
---|
| 409 | }
|
---|
| 410 | else
|
---|
| 411 | {
|
---|
| 412 | d = (y0-yl)/(yh-yl);
|
---|
| 413 | }
|
---|
| 414 | }
|
---|
| 415 | dir = dir-1;
|
---|
| 416 | }
|
---|
| 417 | i = i+1;
|
---|
| 418 | }
|
---|
| 419 | result = x;
|
---|
| 420 | return result;
|
---|
| 421 | }
|
---|
| 422 | }
|
---|
| 423 | }
|
---|