[3839] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class fft
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | 1-dimensional complex FFT.
|
---|
| 29 |
|
---|
| 30 | Array size N may be arbitrary number (composite or prime). Composite N's
|
---|
| 31 | are handled with cache-oblivious variation of a Cooley-Tukey algorithm.
|
---|
| 32 | Small prime-factors are transformed using hard coded codelets (similar to
|
---|
| 33 | FFTW codelets, but without low-level optimization), large prime-factors
|
---|
| 34 | are handled with Bluestein's algorithm.
|
---|
| 35 |
|
---|
| 36 | Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only),
|
---|
| 37 | most fast for powers of 2. When N have prime factors larger than these,
|
---|
| 38 | but orders of magnitude smaller than N, computations will be about 4 times
|
---|
| 39 | slower than for nearby highly composite N's. When N itself is prime, speed
|
---|
| 40 | will be 6 times lower.
|
---|
| 41 |
|
---|
| 42 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
| 43 |
|
---|
| 44 | INPUT PARAMETERS
|
---|
| 45 | A - array[0..N-1] - complex function to be transformed
|
---|
| 46 | N - problem size
|
---|
| 47 |
|
---|
| 48 | OUTPUT PARAMETERS
|
---|
| 49 | A - DFT of a input array, array[0..N-1]
|
---|
| 50 | A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | -- ALGLIB --
|
---|
| 54 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
| 55 | *************************************************************************/
|
---|
| 56 | public static void fftc1d(ref AP.Complex[] a,
|
---|
| 57 | int n)
|
---|
| 58 | {
|
---|
| 59 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 60 | int i = 0;
|
---|
| 61 | double[] buf = new double[0];
|
---|
| 62 |
|
---|
| 63 | System.Diagnostics.Debug.Assert(n>0, "FFTC1D: incorrect N!");
|
---|
| 64 |
|
---|
| 65 | //
|
---|
| 66 | // Special case: N=1, FFT is just identity transform.
|
---|
| 67 | // After this block we assume that N is strictly greater than 1.
|
---|
| 68 | //
|
---|
| 69 | if( n==1 )
|
---|
| 70 | {
|
---|
| 71 | return;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | //
|
---|
| 75 | // convert input array to the more convinient format
|
---|
| 76 | //
|
---|
| 77 | buf = new double[2*n];
|
---|
| 78 | for(i=0; i<=n-1; i++)
|
---|
| 79 | {
|
---|
| 80 | buf[2*i+0] = a[i].x;
|
---|
| 81 | buf[2*i+1] = a[i].y;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | //
|
---|
| 85 | // Generate plan and execute it.
|
---|
| 86 | //
|
---|
| 87 | // Plan is a combination of a successive factorizations of N and
|
---|
| 88 | // precomputed data. It is much like a FFTW plan, but is not stored
|
---|
| 89 | // between subroutine calls and is much simpler.
|
---|
| 90 | //
|
---|
| 91 | ftbase.ftbasegeneratecomplexfftplan(n, ref plan);
|
---|
| 92 | ftbase.ftbaseexecuteplan(ref buf, 0, n, ref plan);
|
---|
| 93 |
|
---|
| 94 | //
|
---|
| 95 | // result
|
---|
| 96 | //
|
---|
| 97 | for(i=0; i<=n-1; i++)
|
---|
| 98 | {
|
---|
| 99 | a[i].x = buf[2*i+0];
|
---|
| 100 | a[i].y = buf[2*i+1];
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | /*************************************************************************
|
---|
| 106 | 1-dimensional complex inverse FFT.
|
---|
| 107 |
|
---|
| 108 | Array size N may be arbitrary number (composite or prime). Algorithm has
|
---|
| 109 | O(N*logN) complexity for any N (composite or prime).
|
---|
| 110 |
|
---|
| 111 | See FFTC1D() description for more information about algorithm performance.
|
---|
| 112 |
|
---|
| 113 | INPUT PARAMETERS
|
---|
| 114 | A - array[0..N-1] - complex array to be transformed
|
---|
| 115 | N - problem size
|
---|
| 116 |
|
---|
| 117 | OUTPUT PARAMETERS
|
---|
| 118 | A - inverse DFT of a input array, array[0..N-1]
|
---|
| 119 | A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | -- ALGLIB --
|
---|
| 123 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
| 124 | *************************************************************************/
|
---|
| 125 | public static void fftc1dinv(ref AP.Complex[] a,
|
---|
| 126 | int n)
|
---|
| 127 | {
|
---|
| 128 | int i = 0;
|
---|
| 129 |
|
---|
| 130 | System.Diagnostics.Debug.Assert(n>0, "FFTC1DInv: incorrect N!");
|
---|
| 131 |
|
---|
| 132 | //
|
---|
| 133 | // Inverse DFT can be expressed in terms of the DFT as
|
---|
| 134 | //
|
---|
| 135 | // invfft(x) = fft(x')'/N
|
---|
| 136 | //
|
---|
| 137 | // here x' means conj(x).
|
---|
| 138 | //
|
---|
| 139 | for(i=0; i<=n-1; i++)
|
---|
| 140 | {
|
---|
| 141 | a[i].y = -a[i].y;
|
---|
| 142 | }
|
---|
| 143 | fftc1d(ref a, n);
|
---|
| 144 | for(i=0; i<=n-1; i++)
|
---|
| 145 | {
|
---|
| 146 | a[i].x = a[i].x/n;
|
---|
| 147 | a[i].y = -(a[i].y/n);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 |
|
---|
| 152 | /*************************************************************************
|
---|
| 153 | 1-dimensional real FFT.
|
---|
| 154 |
|
---|
| 155 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
| 156 |
|
---|
| 157 | INPUT PARAMETERS
|
---|
| 158 | A - array[0..N-1] - real function to be transformed
|
---|
| 159 | N - problem size
|
---|
| 160 |
|
---|
| 161 | OUTPUT PARAMETERS
|
---|
| 162 | F - DFT of a input array, array[0..N-1]
|
---|
| 163 | F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
| 164 |
|
---|
| 165 | NOTE:
|
---|
| 166 | F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half
|
---|
| 167 | of array is usually needed. But for convinience subroutine returns full
|
---|
| 168 | complex array (with frequencies above N/2), so its result may be used by
|
---|
| 169 | other FFT-related subroutines.
|
---|
| 170 |
|
---|
| 171 |
|
---|
| 172 | -- ALGLIB --
|
---|
| 173 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
| 174 | *************************************************************************/
|
---|
| 175 | public static void fftr1d(ref double[] a,
|
---|
| 176 | int n,
|
---|
| 177 | ref AP.Complex[] f)
|
---|
| 178 | {
|
---|
| 179 | int i = 0;
|
---|
| 180 | int n2 = 0;
|
---|
| 181 | int idx = 0;
|
---|
| 182 | AP.Complex hn = 0;
|
---|
| 183 | AP.Complex hmnc = 0;
|
---|
| 184 | AP.Complex v = 0;
|
---|
| 185 | double[] buf = new double[0];
|
---|
| 186 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 187 | int i_ = 0;
|
---|
| 188 |
|
---|
| 189 | System.Diagnostics.Debug.Assert(n>0, "FFTR1D: incorrect N!");
|
---|
| 190 |
|
---|
| 191 | //
|
---|
| 192 | // Special cases:
|
---|
| 193 | // * N=1, FFT is just identity transform.
|
---|
| 194 | // * N=2, FFT is simple too
|
---|
| 195 | //
|
---|
| 196 | // After this block we assume that N is strictly greater than 2
|
---|
| 197 | //
|
---|
| 198 | if( n==1 )
|
---|
| 199 | {
|
---|
| 200 | f = new AP.Complex[1];
|
---|
| 201 | f[0] = a[0];
|
---|
| 202 | return;
|
---|
| 203 | }
|
---|
| 204 | if( n==2 )
|
---|
| 205 | {
|
---|
| 206 | f = new AP.Complex[2];
|
---|
| 207 | f[0].x = a[0]+a[1];
|
---|
| 208 | f[0].y = 0;
|
---|
| 209 | f[1].x = a[0]-a[1];
|
---|
| 210 | f[1].y = 0;
|
---|
| 211 | return;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | //
|
---|
| 215 | // Choose between odd-size and even-size FFTs
|
---|
| 216 | //
|
---|
| 217 | if( n%2==0 )
|
---|
| 218 | {
|
---|
| 219 |
|
---|
| 220 | //
|
---|
| 221 | // even-size real FFT, use reduction to the complex task
|
---|
| 222 | //
|
---|
| 223 | n2 = n/2;
|
---|
| 224 | buf = new double[n];
|
---|
| 225 | for(i_=0; i_<=n-1;i_++)
|
---|
| 226 | {
|
---|
| 227 | buf[i_] = a[i_];
|
---|
| 228 | }
|
---|
| 229 | ftbase.ftbasegeneratecomplexfftplan(n2, ref plan);
|
---|
| 230 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, ref plan);
|
---|
| 231 | f = new AP.Complex[n];
|
---|
| 232 | for(i=0; i<=n2; i++)
|
---|
| 233 | {
|
---|
| 234 | idx = 2*(i%n2);
|
---|
| 235 | hn.x = buf[idx+0];
|
---|
| 236 | hn.y = buf[idx+1];
|
---|
| 237 | idx = 2*((n2-i)%n2);
|
---|
| 238 | hmnc.x = buf[idx+0];
|
---|
| 239 | hmnc.y = -buf[idx+1];
|
---|
| 240 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
| 241 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
| 242 | f[i] = hn+hmnc-v*(hn-hmnc);
|
---|
| 243 | f[i].x = 0.5*f[i].x;
|
---|
| 244 | f[i].y = 0.5*f[i].y;
|
---|
| 245 | }
|
---|
| 246 | for(i=n2+1; i<=n-1; i++)
|
---|
| 247 | {
|
---|
| 248 | f[i] = AP.Math.Conj(f[n-i]);
|
---|
| 249 | }
|
---|
| 250 | return;
|
---|
| 251 | }
|
---|
| 252 | else
|
---|
| 253 | {
|
---|
| 254 |
|
---|
| 255 | //
|
---|
| 256 | // use complex FFT
|
---|
| 257 | //
|
---|
| 258 | f = new AP.Complex[n];
|
---|
| 259 | for(i=0; i<=n-1; i++)
|
---|
| 260 | {
|
---|
| 261 | f[i] = a[i];
|
---|
| 262 | }
|
---|
| 263 | fftc1d(ref f, n);
|
---|
| 264 | return;
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 |
|
---|
| 269 | /*************************************************************************
|
---|
| 270 | 1-dimensional real inverse FFT.
|
---|
| 271 |
|
---|
| 272 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
| 273 |
|
---|
| 274 | INPUT PARAMETERS
|
---|
| 275 | F - array[0..floor(N/2)] - frequencies from forward real FFT
|
---|
| 276 | N - problem size
|
---|
| 277 |
|
---|
| 278 | OUTPUT PARAMETERS
|
---|
| 279 | A - inverse DFT of a input array, array[0..N-1]
|
---|
| 280 |
|
---|
| 281 | NOTE:
|
---|
| 282 | F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one
|
---|
| 283 | half of frequencies array is needed - elements from 0 to floor(N/2). F[0]
|
---|
| 284 | is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then
|
---|
| 285 | F[floor(N/2)] has no special properties.
|
---|
| 286 |
|
---|
| 287 | Relying on properties noted above, FFTR1DInv subroutine uses only elements
|
---|
| 288 | from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case
|
---|
| 289 | N is even it ignores imaginary part of F[floor(N/2)] too. So you can pass
|
---|
| 290 | either frequencies array with N elements or reduced array with roughly N/2
|
---|
| 291 | elements - subroutine will successfully transform both.
|
---|
| 292 |
|
---|
| 293 |
|
---|
| 294 | -- ALGLIB --
|
---|
| 295 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
| 296 | *************************************************************************/
|
---|
| 297 | public static void fftr1dinv(ref AP.Complex[] f,
|
---|
| 298 | int n,
|
---|
| 299 | ref double[] a)
|
---|
| 300 | {
|
---|
| 301 | int i = 0;
|
---|
| 302 | double[] h = new double[0];
|
---|
| 303 | AP.Complex[] fh = new AP.Complex[0];
|
---|
| 304 |
|
---|
| 305 | System.Diagnostics.Debug.Assert(n>0, "FFTR1DInv: incorrect N!");
|
---|
| 306 |
|
---|
| 307 | //
|
---|
| 308 | // Special case: N=1, FFT is just identity transform.
|
---|
| 309 | // After this block we assume that N is strictly greater than 1.
|
---|
| 310 | //
|
---|
| 311 | if( n==1 )
|
---|
| 312 | {
|
---|
| 313 | a = new double[1];
|
---|
| 314 | a[0] = f[0].x;
|
---|
| 315 | return;
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | //
|
---|
| 319 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
| 320 | // which is reduced to the forward real FHT,
|
---|
| 321 | // which is reduced to the forward real FFT.
|
---|
| 322 | //
|
---|
| 323 | // Don't worry, it is really compact and efficient reduction :)
|
---|
| 324 | //
|
---|
| 325 | h = new double[n];
|
---|
| 326 | a = new double[n];
|
---|
| 327 | h[0] = f[0].x;
|
---|
| 328 | for(i=1; i<=(int)Math.Floor((double)(n)/(double)(2))-1; i++)
|
---|
| 329 | {
|
---|
| 330 | h[i] = f[i].x-f[i].y;
|
---|
| 331 | h[n-i] = f[i].x+f[i].y;
|
---|
| 332 | }
|
---|
| 333 | if( n%2==0 )
|
---|
| 334 | {
|
---|
| 335 | h[(int)Math.Floor((double)(n)/(double)(2))] = f[(int)Math.Floor((double)(n)/(double)(2))].x;
|
---|
| 336 | }
|
---|
| 337 | else
|
---|
| 338 | {
|
---|
| 339 | h[(int)Math.Floor((double)(n)/(double)(2))] = f[(int)Math.Floor((double)(n)/(double)(2))].x-f[(int)Math.Floor((double)(n)/(double)(2))].y;
|
---|
| 340 | h[(int)Math.Floor((double)(n)/(double)(2))+1] = f[(int)Math.Floor((double)(n)/(double)(2))].x+f[(int)Math.Floor((double)(n)/(double)(2))].y;
|
---|
| 341 | }
|
---|
| 342 | fftr1d(ref h, n, ref fh);
|
---|
| 343 | for(i=0; i<=n-1; i++)
|
---|
| 344 | {
|
---|
| 345 | a[i] = (fh[i].x-fh[i].y)/n;
|
---|
| 346 | }
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 |
|
---|
| 350 | /*************************************************************************
|
---|
| 351 | Internal subroutine. Never call it directly!
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 | -- ALGLIB --
|
---|
| 355 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
| 356 | *************************************************************************/
|
---|
| 357 | public static void fftr1dinternaleven(ref double[] a,
|
---|
| 358 | int n,
|
---|
| 359 | ref double[] buf,
|
---|
| 360 | ref ftbase.ftplan plan)
|
---|
| 361 | {
|
---|
| 362 | double x = 0;
|
---|
| 363 | double y = 0;
|
---|
| 364 | int i = 0;
|
---|
| 365 | int n2 = 0;
|
---|
| 366 | int idx = 0;
|
---|
| 367 | AP.Complex hn = 0;
|
---|
| 368 | AP.Complex hmnc = 0;
|
---|
| 369 | AP.Complex v = 0;
|
---|
| 370 | int i_ = 0;
|
---|
| 371 |
|
---|
| 372 | System.Diagnostics.Debug.Assert(n>0 & n%2==0, "FFTR1DEvenInplace: incorrect N!");
|
---|
| 373 |
|
---|
| 374 | //
|
---|
| 375 | // Special cases:
|
---|
| 376 | // * N=2
|
---|
| 377 | //
|
---|
| 378 | // After this block we assume that N is strictly greater than 2
|
---|
| 379 | //
|
---|
| 380 | if( n==2 )
|
---|
| 381 | {
|
---|
| 382 | x = a[0]+a[1];
|
---|
| 383 | y = a[0]-a[1];
|
---|
| 384 | a[0] = x;
|
---|
| 385 | a[1] = y;
|
---|
| 386 | return;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | //
|
---|
| 390 | // even-size real FFT, use reduction to the complex task
|
---|
| 391 | //
|
---|
| 392 | n2 = n/2;
|
---|
| 393 | for(i_=0; i_<=n-1;i_++)
|
---|
| 394 | {
|
---|
| 395 | buf[i_] = a[i_];
|
---|
| 396 | }
|
---|
| 397 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, ref plan);
|
---|
| 398 | a[0] = buf[0]+buf[1];
|
---|
| 399 | for(i=1; i<=n2-1; i++)
|
---|
| 400 | {
|
---|
| 401 | idx = 2*(i%n2);
|
---|
| 402 | hn.x = buf[idx+0];
|
---|
| 403 | hn.y = buf[idx+1];
|
---|
| 404 | idx = 2*(n2-i);
|
---|
| 405 | hmnc.x = buf[idx+0];
|
---|
| 406 | hmnc.y = -buf[idx+1];
|
---|
| 407 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
| 408 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
| 409 | v = hn+hmnc-v*(hn-hmnc);
|
---|
| 410 | a[2*i+0] = 0.5*v.x;
|
---|
| 411 | a[2*i+1] = 0.5*v.y;
|
---|
| 412 | }
|
---|
| 413 | a[1] = buf[0]-buf[1];
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 |
|
---|
| 417 | /*************************************************************************
|
---|
| 418 | Internal subroutine. Never call it directly!
|
---|
| 419 |
|
---|
| 420 |
|
---|
| 421 | -- ALGLIB --
|
---|
| 422 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
| 423 | *************************************************************************/
|
---|
| 424 | public static void fftr1dinvinternaleven(ref double[] a,
|
---|
| 425 | int n,
|
---|
| 426 | ref double[] buf,
|
---|
| 427 | ref ftbase.ftplan plan)
|
---|
| 428 | {
|
---|
| 429 | double x = 0;
|
---|
| 430 | double y = 0;
|
---|
| 431 | double t = 0;
|
---|
| 432 | int i = 0;
|
---|
| 433 | int n2 = 0;
|
---|
| 434 |
|
---|
| 435 | System.Diagnostics.Debug.Assert(n>0 & n%2==0, "FFTR1DInvInternalEven: incorrect N!");
|
---|
| 436 |
|
---|
| 437 | //
|
---|
| 438 | // Special cases:
|
---|
| 439 | // * N=2
|
---|
| 440 | //
|
---|
| 441 | // After this block we assume that N is strictly greater than 2
|
---|
| 442 | //
|
---|
| 443 | if( n==2 )
|
---|
| 444 | {
|
---|
| 445 | x = 0.5*(a[0]+a[1]);
|
---|
| 446 | y = 0.5*(a[0]-a[1]);
|
---|
| 447 | a[0] = x;
|
---|
| 448 | a[1] = y;
|
---|
| 449 | return;
|
---|
| 450 | }
|
---|
| 451 |
|
---|
| 452 | //
|
---|
| 453 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
| 454 | // which is reduced to the forward real FHT,
|
---|
| 455 | // which is reduced to the forward real FFT.
|
---|
| 456 | //
|
---|
| 457 | // Don't worry, it is really compact and efficient reduction :)
|
---|
| 458 | //
|
---|
| 459 | n2 = n/2;
|
---|
| 460 | buf[0] = a[0];
|
---|
| 461 | for(i=1; i<=n2-1; i++)
|
---|
| 462 | {
|
---|
| 463 | x = a[2*i+0];
|
---|
| 464 | y = a[2*i+1];
|
---|
| 465 | buf[i] = x-y;
|
---|
| 466 | buf[n-i] = x+y;
|
---|
| 467 | }
|
---|
| 468 | buf[n2] = a[1];
|
---|
| 469 | fftr1dinternaleven(ref buf, n, ref a, ref plan);
|
---|
| 470 | a[0] = buf[0]/n;
|
---|
| 471 | t = (double)(1)/(double)(n);
|
---|
| 472 | for(i=1; i<=n2-1; i++)
|
---|
| 473 | {
|
---|
| 474 | x = buf[2*i+0];
|
---|
| 475 | y = buf[2*i+1];
|
---|
| 476 | a[i] = t*(x-y);
|
---|
| 477 | a[n-i] = t*(x+y);
|
---|
| 478 | }
|
---|
| 479 | a[n2] = buf[1]/n;
|
---|
| 480 | }
|
---|
| 481 | }
|
---|
| 482 | }
|
---|