[3839] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class expintegrals
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Exponential integral Ei(x)
|
---|
| 36 |
|
---|
| 37 | x
|
---|
| 38 | - t
|
---|
| 39 | | | e
|
---|
| 40 | Ei(x) = -|- --- dt .
|
---|
| 41 | | | t
|
---|
| 42 | -
|
---|
| 43 | -inf
|
---|
| 44 |
|
---|
| 45 | Not defined for x <= 0.
|
---|
| 46 | See also expn.c.
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | ACCURACY:
|
---|
| 51 |
|
---|
| 52 | Relative error:
|
---|
| 53 | arithmetic domain # trials peak rms
|
---|
| 54 | IEEE 0,100 50000 8.6e-16 1.3e-16
|
---|
| 55 |
|
---|
| 56 | Cephes Math Library Release 2.8: May, 1999
|
---|
| 57 | Copyright 1999 by Stephen L. Moshier
|
---|
| 58 | *************************************************************************/
|
---|
| 59 | public static double exponentialintegralei(double x)
|
---|
| 60 | {
|
---|
| 61 | double result = 0;
|
---|
| 62 | double eul = 0;
|
---|
| 63 | double f = 0;
|
---|
| 64 | double f1 = 0;
|
---|
| 65 | double f2 = 0;
|
---|
| 66 | double w = 0;
|
---|
| 67 |
|
---|
| 68 | eul = 0.5772156649015328606065;
|
---|
| 69 | if( (double)(x)<=(double)(0) )
|
---|
| 70 | {
|
---|
| 71 | result = 0;
|
---|
| 72 | return result;
|
---|
| 73 | }
|
---|
| 74 | if( (double)(x)<(double)(2) )
|
---|
| 75 | {
|
---|
| 76 | f1 = -5.350447357812542947283;
|
---|
| 77 | f1 = f1*x+218.5049168816613393830;
|
---|
| 78 | f1 = f1*x-4176.572384826693777058;
|
---|
| 79 | f1 = f1*x+55411.76756393557601232;
|
---|
| 80 | f1 = f1*x-331338.1331178144034309;
|
---|
| 81 | f1 = f1*x+1592627.163384945414220;
|
---|
| 82 | f2 = 1.000000000000000000000;
|
---|
| 83 | f2 = f2*x-52.50547959112862969197;
|
---|
| 84 | f2 = f2*x+1259.616186786790571525;
|
---|
| 85 | f2 = f2*x-17565.49581973534652631;
|
---|
| 86 | f2 = f2*x+149306.2117002725991967;
|
---|
| 87 | f2 = f2*x-729494.9239640527645655;
|
---|
| 88 | f2 = f2*x+1592627.163384945429726;
|
---|
| 89 | f = f1/f2;
|
---|
| 90 | result = eul+Math.Log(x)+x*f;
|
---|
| 91 | return result;
|
---|
| 92 | }
|
---|
| 93 | if( (double)(x)<(double)(4) )
|
---|
| 94 | {
|
---|
| 95 | w = 1/x;
|
---|
| 96 | f1 = 1.981808503259689673238E-2;
|
---|
| 97 | f1 = f1*w-1.271645625984917501326;
|
---|
| 98 | f1 = f1*w-2.088160335681228318920;
|
---|
| 99 | f1 = f1*w+2.755544509187936721172;
|
---|
| 100 | f1 = f1*w-4.409507048701600257171E-1;
|
---|
| 101 | f1 = f1*w+4.665623805935891391017E-2;
|
---|
| 102 | f1 = f1*w-1.545042679673485262580E-3;
|
---|
| 103 | f1 = f1*w+7.059980605299617478514E-5;
|
---|
| 104 | f2 = 1.000000000000000000000;
|
---|
| 105 | f2 = f2*w+1.476498670914921440652;
|
---|
| 106 | f2 = f2*w+5.629177174822436244827E-1;
|
---|
| 107 | f2 = f2*w+1.699017897879307263248E-1;
|
---|
| 108 | f2 = f2*w+2.291647179034212017463E-2;
|
---|
| 109 | f2 = f2*w+4.450150439728752875043E-3;
|
---|
| 110 | f2 = f2*w+1.727439612206521482874E-4;
|
---|
| 111 | f2 = f2*w+3.953167195549672482304E-5;
|
---|
| 112 | f = f1/f2;
|
---|
| 113 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 114 | return result;
|
---|
| 115 | }
|
---|
| 116 | if( (double)(x)<(double)(8) )
|
---|
| 117 | {
|
---|
| 118 | w = 1/x;
|
---|
| 119 | f1 = -1.373215375871208729803;
|
---|
| 120 | f1 = f1*w-7.084559133740838761406E-1;
|
---|
| 121 | f1 = f1*w+1.580806855547941010501;
|
---|
| 122 | f1 = f1*w-2.601500427425622944234E-1;
|
---|
| 123 | f1 = f1*w+2.994674694113713763365E-2;
|
---|
| 124 | f1 = f1*w-1.038086040188744005513E-3;
|
---|
| 125 | f1 = f1*w+4.371064420753005429514E-5;
|
---|
| 126 | f1 = f1*w+2.141783679522602903795E-6;
|
---|
| 127 | f2 = 1.000000000000000000000;
|
---|
| 128 | f2 = f2*w+8.585231423622028380768E-1;
|
---|
| 129 | f2 = f2*w+4.483285822873995129957E-1;
|
---|
| 130 | f2 = f2*w+7.687932158124475434091E-2;
|
---|
| 131 | f2 = f2*w+2.449868241021887685904E-2;
|
---|
| 132 | f2 = f2*w+8.832165941927796567926E-4;
|
---|
| 133 | f2 = f2*w+4.590952299511353531215E-4;
|
---|
| 134 | f2 = f2*w+-4.729848351866523044863E-6;
|
---|
| 135 | f2 = f2*w+2.665195537390710170105E-6;
|
---|
| 136 | f = f1/f2;
|
---|
| 137 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 138 | return result;
|
---|
| 139 | }
|
---|
| 140 | if( (double)(x)<(double)(16) )
|
---|
| 141 | {
|
---|
| 142 | w = 1/x;
|
---|
| 143 | f1 = -2.106934601691916512584;
|
---|
| 144 | f1 = f1*w+1.732733869664688041885;
|
---|
| 145 | f1 = f1*w-2.423619178935841904839E-1;
|
---|
| 146 | f1 = f1*w+2.322724180937565842585E-2;
|
---|
| 147 | f1 = f1*w+2.372880440493179832059E-4;
|
---|
| 148 | f1 = f1*w-8.343219561192552752335E-5;
|
---|
| 149 | f1 = f1*w+1.363408795605250394881E-5;
|
---|
| 150 | f1 = f1*w-3.655412321999253963714E-7;
|
---|
| 151 | f1 = f1*w+1.464941733975961318456E-8;
|
---|
| 152 | f1 = f1*w+6.176407863710360207074E-10;
|
---|
| 153 | f2 = 1.000000000000000000000;
|
---|
| 154 | f2 = f2*w-2.298062239901678075778E-1;
|
---|
| 155 | f2 = f2*w+1.105077041474037862347E-1;
|
---|
| 156 | f2 = f2*w-1.566542966630792353556E-2;
|
---|
| 157 | f2 = f2*w+2.761106850817352773874E-3;
|
---|
| 158 | f2 = f2*w-2.089148012284048449115E-4;
|
---|
| 159 | f2 = f2*w+1.708528938807675304186E-5;
|
---|
| 160 | f2 = f2*w-4.459311796356686423199E-7;
|
---|
| 161 | f2 = f2*w+1.394634930353847498145E-8;
|
---|
| 162 | f2 = f2*w+6.150865933977338354138E-10;
|
---|
| 163 | f = f1/f2;
|
---|
| 164 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 165 | return result;
|
---|
| 166 | }
|
---|
| 167 | if( (double)(x)<(double)(32) )
|
---|
| 168 | {
|
---|
| 169 | w = 1/x;
|
---|
| 170 | f1 = -2.458119367674020323359E-1;
|
---|
| 171 | f1 = f1*w-1.483382253322077687183E-1;
|
---|
| 172 | f1 = f1*w+7.248291795735551591813E-2;
|
---|
| 173 | f1 = f1*w-1.348315687380940523823E-2;
|
---|
| 174 | f1 = f1*w+1.342775069788636972294E-3;
|
---|
| 175 | f1 = f1*w-7.942465637159712264564E-5;
|
---|
| 176 | f1 = f1*w+2.644179518984235952241E-6;
|
---|
| 177 | f1 = f1*w-4.239473659313765177195E-8;
|
---|
| 178 | f2 = 1.000000000000000000000;
|
---|
| 179 | f2 = f2*w-1.044225908443871106315E-1;
|
---|
| 180 | f2 = f2*w-2.676453128101402655055E-1;
|
---|
| 181 | f2 = f2*w+9.695000254621984627876E-2;
|
---|
| 182 | f2 = f2*w-1.601745692712991078208E-2;
|
---|
| 183 | f2 = f2*w+1.496414899205908021882E-3;
|
---|
| 184 | f2 = f2*w-8.462452563778485013756E-5;
|
---|
| 185 | f2 = f2*w+2.728938403476726394024E-6;
|
---|
| 186 | f2 = f2*w-4.239462431819542051337E-8;
|
---|
| 187 | f = f1/f2;
|
---|
| 188 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 189 | return result;
|
---|
| 190 | }
|
---|
| 191 | if( (double)(x)<(double)(64) )
|
---|
| 192 | {
|
---|
| 193 | w = 1/x;
|
---|
| 194 | f1 = 1.212561118105456670844E-1;
|
---|
| 195 | f1 = f1*w-5.823133179043894485122E-1;
|
---|
| 196 | f1 = f1*w+2.348887314557016779211E-1;
|
---|
| 197 | f1 = f1*w-3.040034318113248237280E-2;
|
---|
| 198 | f1 = f1*w+1.510082146865190661777E-3;
|
---|
| 199 | f1 = f1*w-2.523137095499571377122E-5;
|
---|
| 200 | f2 = 1.000000000000000000000;
|
---|
| 201 | f2 = f2*w-1.002252150365854016662;
|
---|
| 202 | f2 = f2*w+2.928709694872224144953E-1;
|
---|
| 203 | f2 = f2*w-3.337004338674007801307E-2;
|
---|
| 204 | f2 = f2*w+1.560544881127388842819E-3;
|
---|
| 205 | f2 = f2*w-2.523137093603234562648E-5;
|
---|
| 206 | f = f1/f2;
|
---|
| 207 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 208 | return result;
|
---|
| 209 | }
|
---|
| 210 | w = 1/x;
|
---|
| 211 | f1 = -7.657847078286127362028E-1;
|
---|
| 212 | f1 = f1*w+6.886192415566705051750E-1;
|
---|
| 213 | f1 = f1*w-2.132598113545206124553E-1;
|
---|
| 214 | f1 = f1*w+3.346107552384193813594E-2;
|
---|
| 215 | f1 = f1*w-3.076541477344756050249E-3;
|
---|
| 216 | f1 = f1*w+1.747119316454907477380E-4;
|
---|
| 217 | f1 = f1*w-6.103711682274170530369E-6;
|
---|
| 218 | f1 = f1*w+1.218032765428652199087E-7;
|
---|
| 219 | f1 = f1*w-1.086076102793290233007E-9;
|
---|
| 220 | f2 = 1.000000000000000000000;
|
---|
| 221 | f2 = f2*w-1.888802868662308731041;
|
---|
| 222 | f2 = f2*w+1.066691687211408896850;
|
---|
| 223 | f2 = f2*w-2.751915982306380647738E-1;
|
---|
| 224 | f2 = f2*w+3.930852688233823569726E-2;
|
---|
| 225 | f2 = f2*w-3.414684558602365085394E-3;
|
---|
| 226 | f2 = f2*w+1.866844370703555398195E-4;
|
---|
| 227 | f2 = f2*w-6.345146083130515357861E-6;
|
---|
| 228 | f2 = f2*w+1.239754287483206878024E-7;
|
---|
| 229 | f2 = f2*w-1.086076102793126632978E-9;
|
---|
| 230 | f = f1/f2;
|
---|
| 231 | result = Math.Exp(x)*w*(1+w*f);
|
---|
| 232 | return result;
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 | /*************************************************************************
|
---|
| 237 | Exponential integral En(x)
|
---|
| 238 |
|
---|
| 239 | Evaluates the exponential integral
|
---|
| 240 |
|
---|
| 241 | inf.
|
---|
| 242 | -
|
---|
| 243 | | | -xt
|
---|
| 244 | | e
|
---|
| 245 | E (x) = | ---- dt.
|
---|
| 246 | n | n
|
---|
| 247 | | | t
|
---|
| 248 | -
|
---|
| 249 | 1
|
---|
| 250 |
|
---|
| 251 |
|
---|
| 252 | Both n and x must be nonnegative.
|
---|
| 253 |
|
---|
| 254 | The routine employs either a power series, a continued
|
---|
| 255 | fraction, or an asymptotic formula depending on the
|
---|
| 256 | relative values of n and x.
|
---|
| 257 |
|
---|
| 258 | ACCURACY:
|
---|
| 259 |
|
---|
| 260 | Relative error:
|
---|
| 261 | arithmetic domain # trials peak rms
|
---|
| 262 | IEEE 0, 30 10000 1.7e-15 3.6e-16
|
---|
| 263 |
|
---|
| 264 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 265 | Copyright 1985, 2000 by Stephen L. Moshier
|
---|
| 266 | *************************************************************************/
|
---|
| 267 | public static double exponentialintegralen(double x,
|
---|
| 268 | int n)
|
---|
| 269 | {
|
---|
| 270 | double result = 0;
|
---|
| 271 | double r = 0;
|
---|
| 272 | double t = 0;
|
---|
| 273 | double yk = 0;
|
---|
| 274 | double xk = 0;
|
---|
| 275 | double pk = 0;
|
---|
| 276 | double pkm1 = 0;
|
---|
| 277 | double pkm2 = 0;
|
---|
| 278 | double qk = 0;
|
---|
| 279 | double qkm1 = 0;
|
---|
| 280 | double qkm2 = 0;
|
---|
| 281 | double psi = 0;
|
---|
| 282 | double z = 0;
|
---|
| 283 | int i = 0;
|
---|
| 284 | int k = 0;
|
---|
| 285 | double big = 0;
|
---|
| 286 | double eul = 0;
|
---|
| 287 |
|
---|
| 288 | eul = 0.57721566490153286060;
|
---|
| 289 | big = 1.44115188075855872*Math.Pow(10, 17);
|
---|
| 290 | if( n<0 | (double)(x)<(double)(0) | (double)(x)>(double)(170) | (double)(x)==(double)(0) & n<2 )
|
---|
| 291 | {
|
---|
| 292 | result = -1;
|
---|
| 293 | return result;
|
---|
| 294 | }
|
---|
| 295 | if( (double)(x)==(double)(0) )
|
---|
| 296 | {
|
---|
| 297 | result = (double)(1)/((double)(n-1));
|
---|
| 298 | return result;
|
---|
| 299 | }
|
---|
| 300 | if( n==0 )
|
---|
| 301 | {
|
---|
| 302 | result = Math.Exp(-x)/x;
|
---|
| 303 | return result;
|
---|
| 304 | }
|
---|
| 305 | if( n>5000 )
|
---|
| 306 | {
|
---|
| 307 | xk = x+n;
|
---|
| 308 | yk = 1/(xk*xk);
|
---|
| 309 | t = n;
|
---|
| 310 | result = yk*t*(6*x*x-8*t*x+t*t);
|
---|
| 311 | result = yk*(result+t*(t-2.0*x));
|
---|
| 312 | result = yk*(result+t);
|
---|
| 313 | result = (result+1)*Math.Exp(-x)/xk;
|
---|
| 314 | return result;
|
---|
| 315 | }
|
---|
| 316 | if( (double)(x)<=(double)(1) )
|
---|
| 317 | {
|
---|
| 318 | psi = -eul-Math.Log(x);
|
---|
| 319 | for(i=1; i<=n-1; i++)
|
---|
| 320 | {
|
---|
| 321 | psi = psi+(double)(1)/(double)(i);
|
---|
| 322 | }
|
---|
| 323 | z = -x;
|
---|
| 324 | xk = 0;
|
---|
| 325 | yk = 1;
|
---|
| 326 | pk = 1-n;
|
---|
| 327 | if( n==1 )
|
---|
| 328 | {
|
---|
| 329 | result = 0.0;
|
---|
| 330 | }
|
---|
| 331 | else
|
---|
| 332 | {
|
---|
| 333 | result = 1.0/pk;
|
---|
| 334 | }
|
---|
| 335 | do
|
---|
| 336 | {
|
---|
| 337 | xk = xk+1;
|
---|
| 338 | yk = yk*z/xk;
|
---|
| 339 | pk = pk+1;
|
---|
| 340 | if( (double)(pk)!=(double)(0) )
|
---|
| 341 | {
|
---|
| 342 | result = result+yk/pk;
|
---|
| 343 | }
|
---|
| 344 | if( (double)(result)!=(double)(0) )
|
---|
| 345 | {
|
---|
| 346 | t = Math.Abs(yk/result);
|
---|
| 347 | }
|
---|
| 348 | else
|
---|
| 349 | {
|
---|
| 350 | t = 1;
|
---|
| 351 | }
|
---|
| 352 | }
|
---|
| 353 | while( (double)(t)>=(double)(AP.Math.MachineEpsilon) );
|
---|
| 354 | t = 1;
|
---|
| 355 | for(i=1; i<=n-1; i++)
|
---|
| 356 | {
|
---|
| 357 | t = t*z/i;
|
---|
| 358 | }
|
---|
| 359 | result = psi*t-result;
|
---|
| 360 | return result;
|
---|
| 361 | }
|
---|
| 362 | else
|
---|
| 363 | {
|
---|
| 364 | k = 1;
|
---|
| 365 | pkm2 = 1;
|
---|
| 366 | qkm2 = x;
|
---|
| 367 | pkm1 = 1.0;
|
---|
| 368 | qkm1 = x+n;
|
---|
| 369 | result = pkm1/qkm1;
|
---|
| 370 | do
|
---|
| 371 | {
|
---|
| 372 | k = k+1;
|
---|
| 373 | if( k%2==1 )
|
---|
| 374 | {
|
---|
| 375 | yk = 1;
|
---|
| 376 | xk = n+((double)(k-1))/(double)(2);
|
---|
| 377 | }
|
---|
| 378 | else
|
---|
| 379 | {
|
---|
| 380 | yk = x;
|
---|
| 381 | xk = (double)(k)/(double)(2);
|
---|
| 382 | }
|
---|
| 383 | pk = pkm1*yk+pkm2*xk;
|
---|
| 384 | qk = qkm1*yk+qkm2*xk;
|
---|
| 385 | if( (double)(qk)!=(double)(0) )
|
---|
| 386 | {
|
---|
| 387 | r = pk/qk;
|
---|
| 388 | t = Math.Abs((result-r)/r);
|
---|
| 389 | result = r;
|
---|
| 390 | }
|
---|
| 391 | else
|
---|
| 392 | {
|
---|
| 393 | t = 1;
|
---|
| 394 | }
|
---|
| 395 | pkm2 = pkm1;
|
---|
| 396 | pkm1 = pk;
|
---|
| 397 | qkm2 = qkm1;
|
---|
| 398 | qkm1 = qk;
|
---|
| 399 | if( (double)(Math.Abs(pk))>(double)(big) )
|
---|
| 400 | {
|
---|
| 401 | pkm2 = pkm2/big;
|
---|
| 402 | pkm1 = pkm1/big;
|
---|
| 403 | qkm2 = qkm2/big;
|
---|
| 404 | qkm1 = qkm1/big;
|
---|
| 405 | }
|
---|
| 406 | }
|
---|
| 407 | while( (double)(t)>=(double)(AP.Math.MachineEpsilon) );
|
---|
| 408 | result = result*Math.Exp(-x);
|
---|
| 409 | }
|
---|
| 410 | return result;
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 | }
|
---|