[3839] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class binomialdistr
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Binomial distribution
|
---|
| 36 |
|
---|
| 37 | Returns the sum of the terms 0 through k of the Binomial
|
---|
| 38 | probability density:
|
---|
| 39 |
|
---|
| 40 | k
|
---|
| 41 | -- ( n ) j n-j
|
---|
| 42 | > ( ) p (1-p)
|
---|
| 43 | -- ( j )
|
---|
| 44 | j=0
|
---|
| 45 |
|
---|
| 46 | The terms are not summed directly; instead the incomplete
|
---|
| 47 | beta integral is employed, according to the formula
|
---|
| 48 |
|
---|
| 49 | y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
|
---|
| 50 |
|
---|
| 51 | The arguments must be positive, with p ranging from 0 to 1.
|
---|
| 52 |
|
---|
| 53 | ACCURACY:
|
---|
| 54 |
|
---|
| 55 | Tested at random points (a,b,p), with p between 0 and 1.
|
---|
| 56 |
|
---|
| 57 | a,b Relative error:
|
---|
| 58 | arithmetic domain # trials peak rms
|
---|
| 59 | For p between 0.001 and 1:
|
---|
| 60 | IEEE 0,100 100000 4.3e-15 2.6e-16
|
---|
| 61 |
|
---|
| 62 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 63 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 64 | *************************************************************************/
|
---|
| 65 | public static double binomialdistribution(int k,
|
---|
| 66 | int n,
|
---|
| 67 | double p)
|
---|
| 68 | {
|
---|
| 69 | double result = 0;
|
---|
| 70 | double dk = 0;
|
---|
| 71 | double dn = 0;
|
---|
| 72 |
|
---|
| 73 | System.Diagnostics.Debug.Assert((double)(p)>=(double)(0) & (double)(p)<=(double)(1), "Domain error in BinomialDistribution");
|
---|
| 74 | System.Diagnostics.Debug.Assert(k>=-1 & k<=n, "Domain error in BinomialDistribution");
|
---|
| 75 | if( k==-1 )
|
---|
| 76 | {
|
---|
| 77 | result = 0;
|
---|
| 78 | return result;
|
---|
| 79 | }
|
---|
| 80 | if( k==n )
|
---|
| 81 | {
|
---|
| 82 | result = 1;
|
---|
| 83 | return result;
|
---|
| 84 | }
|
---|
| 85 | dn = n-k;
|
---|
| 86 | if( k==0 )
|
---|
| 87 | {
|
---|
| 88 | dk = Math.Pow(1.0-p, dn);
|
---|
| 89 | }
|
---|
| 90 | else
|
---|
| 91 | {
|
---|
| 92 | dk = k+1;
|
---|
| 93 | dk = ibetaf.incompletebeta(dn, dk, 1.0-p);
|
---|
| 94 | }
|
---|
| 95 | result = dk;
|
---|
| 96 | return result;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | /*************************************************************************
|
---|
| 101 | Complemented binomial distribution
|
---|
| 102 |
|
---|
| 103 | Returns the sum of the terms k+1 through n of the Binomial
|
---|
| 104 | probability density:
|
---|
| 105 |
|
---|
| 106 | n
|
---|
| 107 | -- ( n ) j n-j
|
---|
| 108 | > ( ) p (1-p)
|
---|
| 109 | -- ( j )
|
---|
| 110 | j=k+1
|
---|
| 111 |
|
---|
| 112 | The terms are not summed directly; instead the incomplete
|
---|
| 113 | beta integral is employed, according to the formula
|
---|
| 114 |
|
---|
| 115 | y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
|
---|
| 116 |
|
---|
| 117 | The arguments must be positive, with p ranging from 0 to 1.
|
---|
| 118 |
|
---|
| 119 | ACCURACY:
|
---|
| 120 |
|
---|
| 121 | Tested at random points (a,b,p).
|
---|
| 122 |
|
---|
| 123 | a,b Relative error:
|
---|
| 124 | arithmetic domain # trials peak rms
|
---|
| 125 | For p between 0.001 and 1:
|
---|
| 126 | IEEE 0,100 100000 6.7e-15 8.2e-16
|
---|
| 127 | For p between 0 and .001:
|
---|
| 128 | IEEE 0,100 100000 1.5e-13 2.7e-15
|
---|
| 129 |
|
---|
| 130 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 131 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 132 | *************************************************************************/
|
---|
| 133 | public static double binomialcdistribution(int k,
|
---|
| 134 | int n,
|
---|
| 135 | double p)
|
---|
| 136 | {
|
---|
| 137 | double result = 0;
|
---|
| 138 | double dk = 0;
|
---|
| 139 | double dn = 0;
|
---|
| 140 |
|
---|
| 141 | System.Diagnostics.Debug.Assert((double)(p)>=(double)(0) & (double)(p)<=(double)(1), "Domain error in BinomialDistributionC");
|
---|
| 142 | System.Diagnostics.Debug.Assert(k>=-1 & k<=n, "Domain error in BinomialDistributionC");
|
---|
| 143 | if( k==-1 )
|
---|
| 144 | {
|
---|
| 145 | result = 1;
|
---|
| 146 | return result;
|
---|
| 147 | }
|
---|
| 148 | if( k==n )
|
---|
| 149 | {
|
---|
| 150 | result = 0;
|
---|
| 151 | return result;
|
---|
| 152 | }
|
---|
| 153 | dn = n-k;
|
---|
| 154 | if( k==0 )
|
---|
| 155 | {
|
---|
| 156 | if( (double)(p)<(double)(0.01) )
|
---|
| 157 | {
|
---|
| 158 | dk = -nearunityunit.expm1(dn*nearunityunit.log1p(-p));
|
---|
| 159 | }
|
---|
| 160 | else
|
---|
| 161 | {
|
---|
| 162 | dk = 1.0-Math.Pow(1.0-p, dn);
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | else
|
---|
| 166 | {
|
---|
| 167 | dk = k+1;
|
---|
| 168 | dk = ibetaf.incompletebeta(dk, dn, p);
|
---|
| 169 | }
|
---|
| 170 | result = dk;
|
---|
| 171 | return result;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 |
|
---|
| 175 | /*************************************************************************
|
---|
| 176 | Inverse binomial distribution
|
---|
| 177 |
|
---|
| 178 | Finds the event probability p such that the sum of the
|
---|
| 179 | terms 0 through k of the Binomial probability density
|
---|
| 180 | is equal to the given cumulative probability y.
|
---|
| 181 |
|
---|
| 182 | This is accomplished using the inverse beta integral
|
---|
| 183 | function and the relation
|
---|
| 184 |
|
---|
| 185 | 1 - p = incbi( n-k, k+1, y ).
|
---|
| 186 |
|
---|
| 187 | ACCURACY:
|
---|
| 188 |
|
---|
| 189 | Tested at random points (a,b,p).
|
---|
| 190 |
|
---|
| 191 | a,b Relative error:
|
---|
| 192 | arithmetic domain # trials peak rms
|
---|
| 193 | For p between 0.001 and 1:
|
---|
| 194 | IEEE 0,100 100000 2.3e-14 6.4e-16
|
---|
| 195 | IEEE 0,10000 100000 6.6e-12 1.2e-13
|
---|
| 196 | For p between 10^-6 and 0.001:
|
---|
| 197 | IEEE 0,100 100000 2.0e-12 1.3e-14
|
---|
| 198 | IEEE 0,10000 100000 1.5e-12 3.2e-14
|
---|
| 199 |
|
---|
| 200 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 201 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
|
---|
| 202 | *************************************************************************/
|
---|
| 203 | public static double invbinomialdistribution(int k,
|
---|
| 204 | int n,
|
---|
| 205 | double y)
|
---|
| 206 | {
|
---|
| 207 | double result = 0;
|
---|
| 208 | double dk = 0;
|
---|
| 209 | double dn = 0;
|
---|
| 210 | double p = 0;
|
---|
| 211 |
|
---|
| 212 | System.Diagnostics.Debug.Assert(k>=0 & k<n, "Domain error in InvBinomialDistribution");
|
---|
| 213 | dn = n-k;
|
---|
| 214 | if( k==0 )
|
---|
| 215 | {
|
---|
| 216 | if( (double)(y)>(double)(0.8) )
|
---|
| 217 | {
|
---|
| 218 | p = -nearunityunit.expm1(nearunityunit.log1p(y-1.0)/dn);
|
---|
| 219 | }
|
---|
| 220 | else
|
---|
| 221 | {
|
---|
| 222 | p = 1.0-Math.Pow(y, 1.0/dn);
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | else
|
---|
| 226 | {
|
---|
| 227 | dk = k+1;
|
---|
| 228 | p = ibetaf.incompletebeta(dn, dk, 0.5);
|
---|
| 229 | if( (double)(p)>(double)(0.5) )
|
---|
| 230 | {
|
---|
| 231 | p = ibetaf.invincompletebeta(dk, dn, 1.0-y);
|
---|
| 232 | }
|
---|
| 233 | else
|
---|
| 234 | {
|
---|
| 235 | p = 1.0-ibetaf.invincompletebeta(dn, dk, y);
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | result = p;
|
---|
| 239 | return result;
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 | }
|
---|