[3839] | 1 | /*************************************************************************
|
---|
| 2 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 3 | Copyright by Stephen L. Moshier
|
---|
| 4 |
|
---|
| 5 | Contributors:
|
---|
| 6 | * Sergey Bochkanov (ALGLIB project). Translation from C to
|
---|
| 7 | pseudocode.
|
---|
| 8 |
|
---|
| 9 | See subroutines comments for additional copyrights.
|
---|
| 10 |
|
---|
| 11 | >>> SOURCE LICENSE >>>
|
---|
| 12 | This program is free software; you can redistribute it and/or modify
|
---|
| 13 | it under the terms of the GNU General Public License as published by
|
---|
| 14 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 15 | License, or (at your option) any later version.
|
---|
| 16 |
|
---|
| 17 | This program is distributed in the hope that it will be useful,
|
---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | GNU General Public License for more details.
|
---|
| 21 |
|
---|
| 22 | A copy of the GNU General Public License is available at
|
---|
| 23 | http://www.fsf.org/licensing/licenses
|
---|
| 24 |
|
---|
| 25 | >>> END OF LICENSE >>>
|
---|
| 26 | *************************************************************************/
|
---|
| 27 |
|
---|
| 28 | using System;
|
---|
| 29 |
|
---|
| 30 | namespace alglib
|
---|
| 31 | {
|
---|
| 32 | public class bessel
|
---|
| 33 | {
|
---|
| 34 | /*************************************************************************
|
---|
| 35 | Bessel function of order zero
|
---|
| 36 |
|
---|
| 37 | Returns Bessel function of order zero of the argument.
|
---|
| 38 |
|
---|
| 39 | The domain is divided into the intervals [0, 5] and
|
---|
| 40 | (5, infinity). In the first interval the following rational
|
---|
| 41 | approximation is used:
|
---|
| 42 |
|
---|
| 43 |
|
---|
| 44 | 2 2
|
---|
| 45 | (w - r ) (w - r ) P (w) / Q (w)
|
---|
| 46 | 1 2 3 8
|
---|
| 47 |
|
---|
| 48 | 2
|
---|
| 49 | where w = x and the two r's are zeros of the function.
|
---|
| 50 |
|
---|
| 51 | In the second interval, the Hankel asymptotic expansion
|
---|
| 52 | is employed with two rational functions of degree 6/6
|
---|
| 53 | and 7/7.
|
---|
| 54 |
|
---|
| 55 | ACCURACY:
|
---|
| 56 |
|
---|
| 57 | Absolute error:
|
---|
| 58 | arithmetic domain # trials peak rms
|
---|
| 59 | IEEE 0, 30 60000 4.2e-16 1.1e-16
|
---|
| 60 |
|
---|
| 61 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 62 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
---|
| 63 | *************************************************************************/
|
---|
| 64 | public static double besselj0(double x)
|
---|
| 65 | {
|
---|
| 66 | double result = 0;
|
---|
| 67 | double xsq = 0;
|
---|
| 68 | double nn = 0;
|
---|
| 69 | double pzero = 0;
|
---|
| 70 | double qzero = 0;
|
---|
| 71 | double p1 = 0;
|
---|
| 72 | double q1 = 0;
|
---|
| 73 |
|
---|
| 74 | if( (double)(x)<(double)(0) )
|
---|
| 75 | {
|
---|
| 76 | x = -x;
|
---|
| 77 | }
|
---|
| 78 | if( (double)(x)>(double)(8.0) )
|
---|
| 79 | {
|
---|
| 80 | besselasympt0(x, ref pzero, ref qzero);
|
---|
| 81 | nn = x-Math.PI/4;
|
---|
| 82 | result = Math.Sqrt(2/Math.PI/x)*(pzero*Math.Cos(nn)-qzero*Math.Sin(nn));
|
---|
| 83 | return result;
|
---|
| 84 | }
|
---|
| 85 | xsq = AP.Math.Sqr(x);
|
---|
| 86 | p1 = 26857.86856980014981415848441;
|
---|
| 87 | p1 = -40504123.71833132706360663322+xsq*p1;
|
---|
| 88 | p1 = 25071582855.36881945555156435+xsq*p1;
|
---|
| 89 | p1 = -8085222034853.793871199468171+xsq*p1;
|
---|
| 90 | p1 = 1434354939140344.111664316553+xsq*p1;
|
---|
| 91 | p1 = -136762035308817138.6865416609+xsq*p1;
|
---|
| 92 | p1 = 6382059341072356562.289432465+xsq*p1;
|
---|
| 93 | p1 = -117915762910761053603.8440800+xsq*p1;
|
---|
| 94 | p1 = 493378725179413356181.6813446+xsq*p1;
|
---|
| 95 | q1 = 1.0;
|
---|
| 96 | q1 = 1363.063652328970604442810507+xsq*q1;
|
---|
| 97 | q1 = 1114636.098462985378182402543+xsq*q1;
|
---|
| 98 | q1 = 669998767.2982239671814028660+xsq*q1;
|
---|
| 99 | q1 = 312304311494.1213172572469442+xsq*q1;
|
---|
| 100 | q1 = 112775673967979.8507056031594+xsq*q1;
|
---|
| 101 | q1 = 30246356167094626.98627330784+xsq*q1;
|
---|
| 102 | q1 = 5428918384092285160.200195092+xsq*q1;
|
---|
| 103 | q1 = 493378725179413356211.3278438+xsq*q1;
|
---|
| 104 | result = p1/q1;
|
---|
| 105 | return result;
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 |
|
---|
| 109 | /*************************************************************************
|
---|
| 110 | Bessel function of order one
|
---|
| 111 |
|
---|
| 112 | Returns Bessel function of order one of the argument.
|
---|
| 113 |
|
---|
| 114 | The domain is divided into the intervals [0, 8] and
|
---|
| 115 | (8, infinity). In the first interval a 24 term Chebyshev
|
---|
| 116 | expansion is used. In the second, the asymptotic
|
---|
| 117 | trigonometric representation is employed using two
|
---|
| 118 | rational functions of degree 5/5.
|
---|
| 119 |
|
---|
| 120 | ACCURACY:
|
---|
| 121 |
|
---|
| 122 | Absolute error:
|
---|
| 123 | arithmetic domain # trials peak rms
|
---|
| 124 | IEEE 0, 30 30000 2.6e-16 1.1e-16
|
---|
| 125 |
|
---|
| 126 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 127 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
---|
| 128 | *************************************************************************/
|
---|
| 129 | public static double besselj1(double x)
|
---|
| 130 | {
|
---|
| 131 | double result = 0;
|
---|
| 132 | double s = 0;
|
---|
| 133 | double xsq = 0;
|
---|
| 134 | double nn = 0;
|
---|
| 135 | double pzero = 0;
|
---|
| 136 | double qzero = 0;
|
---|
| 137 | double p1 = 0;
|
---|
| 138 | double q1 = 0;
|
---|
| 139 |
|
---|
| 140 | s = Math.Sign(x);
|
---|
| 141 | if( (double)(x)<(double)(0) )
|
---|
| 142 | {
|
---|
| 143 | x = -x;
|
---|
| 144 | }
|
---|
| 145 | if( (double)(x)>(double)(8.0) )
|
---|
| 146 | {
|
---|
| 147 | besselasympt1(x, ref pzero, ref qzero);
|
---|
| 148 | nn = x-3*Math.PI/4;
|
---|
| 149 | result = Math.Sqrt(2/Math.PI/x)*(pzero*Math.Cos(nn)-qzero*Math.Sin(nn));
|
---|
| 150 | if( (double)(s)<(double)(0) )
|
---|
| 151 | {
|
---|
| 152 | result = -result;
|
---|
| 153 | }
|
---|
| 154 | return result;
|
---|
| 155 | }
|
---|
| 156 | xsq = AP.Math.Sqr(x);
|
---|
| 157 | p1 = 2701.122710892323414856790990;
|
---|
| 158 | p1 = -4695753.530642995859767162166+xsq*p1;
|
---|
| 159 | p1 = 3413234182.301700539091292655+xsq*p1;
|
---|
| 160 | p1 = -1322983480332.126453125473247+xsq*p1;
|
---|
| 161 | p1 = 290879526383477.5409737601689+xsq*p1;
|
---|
| 162 | p1 = -35888175699101060.50743641413+xsq*p1;
|
---|
| 163 | p1 = 2316433580634002297.931815435+xsq*p1;
|
---|
| 164 | p1 = -66721065689249162980.20941484+xsq*p1;
|
---|
| 165 | p1 = 581199354001606143928.050809+xsq*p1;
|
---|
| 166 | q1 = 1.0;
|
---|
| 167 | q1 = 1606.931573481487801970916749+xsq*q1;
|
---|
| 168 | q1 = 1501793.594998585505921097578+xsq*q1;
|
---|
| 169 | q1 = 1013863514.358673989967045588+xsq*q1;
|
---|
| 170 | q1 = 524371026216.7649715406728642+xsq*q1;
|
---|
| 171 | q1 = 208166122130760.7351240184229+xsq*q1;
|
---|
| 172 | q1 = 60920613989175217.46105196863+xsq*q1;
|
---|
| 173 | q1 = 11857707121903209998.37113348+xsq*q1;
|
---|
| 174 | q1 = 1162398708003212287858.529400+xsq*q1;
|
---|
| 175 | result = s*x*p1/q1;
|
---|
| 176 | return result;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 |
|
---|
| 180 | /*************************************************************************
|
---|
| 181 | Bessel function of integer order
|
---|
| 182 |
|
---|
| 183 | Returns Bessel function of order n, where n is a
|
---|
| 184 | (possibly negative) integer.
|
---|
| 185 |
|
---|
| 186 | The ratio of jn(x) to j0(x) is computed by backward
|
---|
| 187 | recurrence. First the ratio jn/jn-1 is found by a
|
---|
| 188 | continued fraction expansion. Then the recurrence
|
---|
| 189 | relating successive orders is applied until j0 or j1 is
|
---|
| 190 | reached.
|
---|
| 191 |
|
---|
| 192 | If n = 0 or 1 the routine for j0 or j1 is called
|
---|
| 193 | directly.
|
---|
| 194 |
|
---|
| 195 | ACCURACY:
|
---|
| 196 |
|
---|
| 197 | Absolute error:
|
---|
| 198 | arithmetic range # trials peak rms
|
---|
| 199 | IEEE 0, 30 5000 4.4e-16 7.9e-17
|
---|
| 200 |
|
---|
| 201 |
|
---|
| 202 | Not suitable for large n or x. Use jv() (fractional order) instead.
|
---|
| 203 |
|
---|
| 204 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 205 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 206 | *************************************************************************/
|
---|
| 207 | public static double besseljn(int n,
|
---|
| 208 | double x)
|
---|
| 209 | {
|
---|
| 210 | double result = 0;
|
---|
| 211 | double pkm2 = 0;
|
---|
| 212 | double pkm1 = 0;
|
---|
| 213 | double pk = 0;
|
---|
| 214 | double xk = 0;
|
---|
| 215 | double r = 0;
|
---|
| 216 | double ans = 0;
|
---|
| 217 | int k = 0;
|
---|
| 218 | int sg = 0;
|
---|
| 219 |
|
---|
| 220 | if( n<0 )
|
---|
| 221 | {
|
---|
| 222 | n = -n;
|
---|
| 223 | if( n%2==0 )
|
---|
| 224 | {
|
---|
| 225 | sg = 1;
|
---|
| 226 | }
|
---|
| 227 | else
|
---|
| 228 | {
|
---|
| 229 | sg = -1;
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | else
|
---|
| 233 | {
|
---|
| 234 | sg = 1;
|
---|
| 235 | }
|
---|
| 236 | if( (double)(x)<(double)(0) )
|
---|
| 237 | {
|
---|
| 238 | if( n%2!=0 )
|
---|
| 239 | {
|
---|
| 240 | sg = -sg;
|
---|
| 241 | }
|
---|
| 242 | x = -x;
|
---|
| 243 | }
|
---|
| 244 | if( n==0 )
|
---|
| 245 | {
|
---|
| 246 | result = sg*besselj0(x);
|
---|
| 247 | return result;
|
---|
| 248 | }
|
---|
| 249 | if( n==1 )
|
---|
| 250 | {
|
---|
| 251 | result = sg*besselj1(x);
|
---|
| 252 | return result;
|
---|
| 253 | }
|
---|
| 254 | if( n==2 )
|
---|
| 255 | {
|
---|
| 256 | if( (double)(x)==(double)(0) )
|
---|
| 257 | {
|
---|
| 258 | result = 0;
|
---|
| 259 | }
|
---|
| 260 | else
|
---|
| 261 | {
|
---|
| 262 | result = sg*(2.0*besselj1(x)/x-besselj0(x));
|
---|
| 263 | }
|
---|
| 264 | return result;
|
---|
| 265 | }
|
---|
| 266 | if( (double)(x)<(double)(AP.Math.MachineEpsilon) )
|
---|
| 267 | {
|
---|
| 268 | result = 0;
|
---|
| 269 | return result;
|
---|
| 270 | }
|
---|
| 271 | k = 53;
|
---|
| 272 | pk = 2*(n+k);
|
---|
| 273 | ans = pk;
|
---|
| 274 | xk = x*x;
|
---|
| 275 | do
|
---|
| 276 | {
|
---|
| 277 | pk = pk-2.0;
|
---|
| 278 | ans = pk-xk/ans;
|
---|
| 279 | k = k-1;
|
---|
| 280 | }
|
---|
| 281 | while( k!=0 );
|
---|
| 282 | ans = x/ans;
|
---|
| 283 | pk = 1.0;
|
---|
| 284 | pkm1 = 1.0/ans;
|
---|
| 285 | k = n-1;
|
---|
| 286 | r = 2*k;
|
---|
| 287 | do
|
---|
| 288 | {
|
---|
| 289 | pkm2 = (pkm1*r-pk*x)/x;
|
---|
| 290 | pk = pkm1;
|
---|
| 291 | pkm1 = pkm2;
|
---|
| 292 | r = r-2.0;
|
---|
| 293 | k = k-1;
|
---|
| 294 | }
|
---|
| 295 | while( k!=0 );
|
---|
| 296 | if( (double)(Math.Abs(pk))>(double)(Math.Abs(pkm1)) )
|
---|
| 297 | {
|
---|
| 298 | ans = besselj1(x)/pk;
|
---|
| 299 | }
|
---|
| 300 | else
|
---|
| 301 | {
|
---|
| 302 | ans = besselj0(x)/pkm1;
|
---|
| 303 | }
|
---|
| 304 | result = sg*ans;
|
---|
| 305 | return result;
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 |
|
---|
| 309 | /*************************************************************************
|
---|
| 310 | Bessel function of the second kind, order zero
|
---|
| 311 |
|
---|
| 312 | Returns Bessel function of the second kind, of order
|
---|
| 313 | zero, of the argument.
|
---|
| 314 |
|
---|
| 315 | The domain is divided into the intervals [0, 5] and
|
---|
| 316 | (5, infinity). In the first interval a rational approximation
|
---|
| 317 | R(x) is employed to compute
|
---|
| 318 | y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
|
---|
| 319 | Thus a call to j0() is required.
|
---|
| 320 |
|
---|
| 321 | In the second interval, the Hankel asymptotic expansion
|
---|
| 322 | is employed with two rational functions of degree 6/6
|
---|
| 323 | and 7/7.
|
---|
| 324 |
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 | ACCURACY:
|
---|
| 328 |
|
---|
| 329 | Absolute error, when y0(x) < 1; else relative error:
|
---|
| 330 |
|
---|
| 331 | arithmetic domain # trials peak rms
|
---|
| 332 | IEEE 0, 30 30000 1.3e-15 1.6e-16
|
---|
| 333 |
|
---|
| 334 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 335 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
---|
| 336 | *************************************************************************/
|
---|
| 337 | public static double bessely0(double x)
|
---|
| 338 | {
|
---|
| 339 | double result = 0;
|
---|
| 340 | double nn = 0;
|
---|
| 341 | double xsq = 0;
|
---|
| 342 | double pzero = 0;
|
---|
| 343 | double qzero = 0;
|
---|
| 344 | double p4 = 0;
|
---|
| 345 | double q4 = 0;
|
---|
| 346 |
|
---|
| 347 | if( (double)(x)>(double)(8.0) )
|
---|
| 348 | {
|
---|
| 349 | besselasympt0(x, ref pzero, ref qzero);
|
---|
| 350 | nn = x-Math.PI/4;
|
---|
| 351 | result = Math.Sqrt(2/Math.PI/x)*(pzero*Math.Sin(nn)+qzero*Math.Cos(nn));
|
---|
| 352 | return result;
|
---|
| 353 | }
|
---|
| 354 | xsq = AP.Math.Sqr(x);
|
---|
| 355 | p4 = -41370.35497933148554125235152;
|
---|
| 356 | p4 = 59152134.65686889654273830069+xsq*p4;
|
---|
| 357 | p4 = -34363712229.79040378171030138+xsq*p4;
|
---|
| 358 | p4 = 10255208596863.94284509167421+xsq*p4;
|
---|
| 359 | p4 = -1648605817185729.473122082537+xsq*p4;
|
---|
| 360 | p4 = 137562431639934407.8571335453+xsq*p4;
|
---|
| 361 | p4 = -5247065581112764941.297350814+xsq*p4;
|
---|
| 362 | p4 = 65874732757195549259.99402049+xsq*p4;
|
---|
| 363 | p4 = -27502866786291095837.01933175+xsq*p4;
|
---|
| 364 | q4 = 1.0;
|
---|
| 365 | q4 = 1282.452772478993804176329391+xsq*q4;
|
---|
| 366 | q4 = 1001702.641288906265666651753+xsq*q4;
|
---|
| 367 | q4 = 579512264.0700729537480087915+xsq*q4;
|
---|
| 368 | q4 = 261306575504.1081249568482092+xsq*q4;
|
---|
| 369 | q4 = 91620380340751.85262489147968+xsq*q4;
|
---|
| 370 | q4 = 23928830434997818.57439356652+xsq*q4;
|
---|
| 371 | q4 = 4192417043410839973.904769661+xsq*q4;
|
---|
| 372 | q4 = 372645883898616588198.9980+xsq*q4;
|
---|
| 373 | result = p4/q4+2/Math.PI*besselj0(x)*Math.Log(x);
|
---|
| 374 | return result;
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 |
|
---|
| 378 | /*************************************************************************
|
---|
| 379 | Bessel function of second kind of order one
|
---|
| 380 |
|
---|
| 381 | Returns Bessel function of the second kind of order one
|
---|
| 382 | of the argument.
|
---|
| 383 |
|
---|
| 384 | The domain is divided into the intervals [0, 8] and
|
---|
| 385 | (8, infinity). In the first interval a 25 term Chebyshev
|
---|
| 386 | expansion is used, and a call to j1() is required.
|
---|
| 387 | In the second, the asymptotic trigonometric representation
|
---|
| 388 | is employed using two rational functions of degree 5/5.
|
---|
| 389 |
|
---|
| 390 | ACCURACY:
|
---|
| 391 |
|
---|
| 392 | Absolute error:
|
---|
| 393 | arithmetic domain # trials peak rms
|
---|
| 394 | IEEE 0, 30 30000 1.0e-15 1.3e-16
|
---|
| 395 |
|
---|
| 396 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 397 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
---|
| 398 | *************************************************************************/
|
---|
| 399 | public static double bessely1(double x)
|
---|
| 400 | {
|
---|
| 401 | double result = 0;
|
---|
| 402 | double nn = 0;
|
---|
| 403 | double xsq = 0;
|
---|
| 404 | double pzero = 0;
|
---|
| 405 | double qzero = 0;
|
---|
| 406 | double p4 = 0;
|
---|
| 407 | double q4 = 0;
|
---|
| 408 |
|
---|
| 409 | if( (double)(x)>(double)(8.0) )
|
---|
| 410 | {
|
---|
| 411 | besselasympt1(x, ref pzero, ref qzero);
|
---|
| 412 | nn = x-3*Math.PI/4;
|
---|
| 413 | result = Math.Sqrt(2/Math.PI/x)*(pzero*Math.Sin(nn)+qzero*Math.Cos(nn));
|
---|
| 414 | return result;
|
---|
| 415 | }
|
---|
| 416 | xsq = AP.Math.Sqr(x);
|
---|
| 417 | p4 = -2108847.540133123652824139923;
|
---|
| 418 | p4 = 3639488548.124002058278999428+xsq*p4;
|
---|
| 419 | p4 = -2580681702194.450950541426399+xsq*p4;
|
---|
| 420 | p4 = 956993023992168.3481121552788+xsq*p4;
|
---|
| 421 | p4 = -196588746272214065.8820322248+xsq*p4;
|
---|
| 422 | p4 = 21931073399177975921.11427556+xsq*p4;
|
---|
| 423 | p4 = -1212297555414509577913.561535+xsq*p4;
|
---|
| 424 | p4 = 26554738314348543268942.48968+xsq*p4;
|
---|
| 425 | p4 = -99637534243069222259967.44354+xsq*p4;
|
---|
| 426 | q4 = 1.0;
|
---|
| 427 | q4 = 1612.361029677000859332072312+xsq*q4;
|
---|
| 428 | q4 = 1563282.754899580604737366452+xsq*q4;
|
---|
| 429 | q4 = 1128686837.169442121732366891+xsq*q4;
|
---|
| 430 | q4 = 646534088126.5275571961681500+xsq*q4;
|
---|
| 431 | q4 = 297663212564727.6729292742282+xsq*q4;
|
---|
| 432 | q4 = 108225825940881955.2553850180+xsq*q4;
|
---|
| 433 | q4 = 29549879358971486742.90758119+xsq*q4;
|
---|
| 434 | q4 = 5435310377188854170800.653097+xsq*q4;
|
---|
| 435 | q4 = 508206736694124324531442.4152+xsq*q4;
|
---|
| 436 | result = x*p4/q4+2/Math.PI*(besselj1(x)*Math.Log(x)-1/x);
|
---|
| 437 | return result;
|
---|
| 438 | }
|
---|
| 439 |
|
---|
| 440 |
|
---|
| 441 | /*************************************************************************
|
---|
| 442 | Bessel function of second kind of integer order
|
---|
| 443 |
|
---|
| 444 | Returns Bessel function of order n, where n is a
|
---|
| 445 | (possibly negative) integer.
|
---|
| 446 |
|
---|
| 447 | The function is evaluated by forward recurrence on
|
---|
| 448 | n, starting with values computed by the routines
|
---|
| 449 | y0() and y1().
|
---|
| 450 |
|
---|
| 451 | If n = 0 or 1 the routine for y0 or y1 is called
|
---|
| 452 | directly.
|
---|
| 453 |
|
---|
| 454 | ACCURACY:
|
---|
| 455 | Absolute error, except relative
|
---|
| 456 | when y > 1:
|
---|
| 457 | arithmetic domain # trials peak rms
|
---|
| 458 | IEEE 0, 30 30000 3.4e-15 4.3e-16
|
---|
| 459 |
|
---|
| 460 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 461 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 462 | *************************************************************************/
|
---|
| 463 | public static double besselyn(int n,
|
---|
| 464 | double x)
|
---|
| 465 | {
|
---|
| 466 | double result = 0;
|
---|
| 467 | int i = 0;
|
---|
| 468 | double a = 0;
|
---|
| 469 | double b = 0;
|
---|
| 470 | double tmp = 0;
|
---|
| 471 | double s = 0;
|
---|
| 472 |
|
---|
| 473 | s = 1;
|
---|
| 474 | if( n<0 )
|
---|
| 475 | {
|
---|
| 476 | n = -n;
|
---|
| 477 | if( n%2!=0 )
|
---|
| 478 | {
|
---|
| 479 | s = -1;
|
---|
| 480 | }
|
---|
| 481 | }
|
---|
| 482 | if( n==0 )
|
---|
| 483 | {
|
---|
| 484 | result = bessely0(x);
|
---|
| 485 | return result;
|
---|
| 486 | }
|
---|
| 487 | if( n==1 )
|
---|
| 488 | {
|
---|
| 489 | result = s*bessely1(x);
|
---|
| 490 | return result;
|
---|
| 491 | }
|
---|
| 492 | a = bessely0(x);
|
---|
| 493 | b = bessely1(x);
|
---|
| 494 | for(i=1; i<=n-1; i++)
|
---|
| 495 | {
|
---|
| 496 | tmp = b;
|
---|
| 497 | b = 2*i/x*b-a;
|
---|
| 498 | a = tmp;
|
---|
| 499 | }
|
---|
| 500 | result = s*b;
|
---|
| 501 | return result;
|
---|
| 502 | }
|
---|
| 503 |
|
---|
| 504 |
|
---|
| 505 | /*************************************************************************
|
---|
| 506 | Modified Bessel function of order zero
|
---|
| 507 |
|
---|
| 508 | Returns modified Bessel function of order zero of the
|
---|
| 509 | argument.
|
---|
| 510 |
|
---|
| 511 | The function is defined as i0(x) = j0( ix ).
|
---|
| 512 |
|
---|
| 513 | The range is partitioned into the two intervals [0,8] and
|
---|
| 514 | (8, infinity). Chebyshev polynomial expansions are employed
|
---|
| 515 | in each interval.
|
---|
| 516 |
|
---|
| 517 | ACCURACY:
|
---|
| 518 |
|
---|
| 519 | Relative error:
|
---|
| 520 | arithmetic domain # trials peak rms
|
---|
| 521 | IEEE 0,30 30000 5.8e-16 1.4e-16
|
---|
| 522 |
|
---|
| 523 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 524 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 525 | *************************************************************************/
|
---|
| 526 | public static double besseli0(double x)
|
---|
| 527 | {
|
---|
| 528 | double result = 0;
|
---|
| 529 | double y = 0;
|
---|
| 530 | double v = 0;
|
---|
| 531 | double z = 0;
|
---|
| 532 | double b0 = 0;
|
---|
| 533 | double b1 = 0;
|
---|
| 534 | double b2 = 0;
|
---|
| 535 |
|
---|
| 536 | if( (double)(x)<(double)(0) )
|
---|
| 537 | {
|
---|
| 538 | x = -x;
|
---|
| 539 | }
|
---|
| 540 | if( (double)(x)<=(double)(8.0) )
|
---|
| 541 | {
|
---|
| 542 | y = x/2.0-2.0;
|
---|
| 543 | besselmfirstcheb(-4.41534164647933937950E-18, ref b0, ref b1, ref b2);
|
---|
| 544 | besselmnextcheb(y, 3.33079451882223809783E-17, ref b0, ref b1, ref b2);
|
---|
| 545 | besselmnextcheb(y, -2.43127984654795469359E-16, ref b0, ref b1, ref b2);
|
---|
| 546 | besselmnextcheb(y, 1.71539128555513303061E-15, ref b0, ref b1, ref b2);
|
---|
| 547 | besselmnextcheb(y, -1.16853328779934516808E-14, ref b0, ref b1, ref b2);
|
---|
| 548 | besselmnextcheb(y, 7.67618549860493561688E-14, ref b0, ref b1, ref b2);
|
---|
| 549 | besselmnextcheb(y, -4.85644678311192946090E-13, ref b0, ref b1, ref b2);
|
---|
| 550 | besselmnextcheb(y, 2.95505266312963983461E-12, ref b0, ref b1, ref b2);
|
---|
| 551 | besselmnextcheb(y, -1.72682629144155570723E-11, ref b0, ref b1, ref b2);
|
---|
| 552 | besselmnextcheb(y, 9.67580903537323691224E-11, ref b0, ref b1, ref b2);
|
---|
| 553 | besselmnextcheb(y, -5.18979560163526290666E-10, ref b0, ref b1, ref b2);
|
---|
| 554 | besselmnextcheb(y, 2.65982372468238665035E-9, ref b0, ref b1, ref b2);
|
---|
| 555 | besselmnextcheb(y, -1.30002500998624804212E-8, ref b0, ref b1, ref b2);
|
---|
| 556 | besselmnextcheb(y, 6.04699502254191894932E-8, ref b0, ref b1, ref b2);
|
---|
| 557 | besselmnextcheb(y, -2.67079385394061173391E-7, ref b0, ref b1, ref b2);
|
---|
| 558 | besselmnextcheb(y, 1.11738753912010371815E-6, ref b0, ref b1, ref b2);
|
---|
| 559 | besselmnextcheb(y, -4.41673835845875056359E-6, ref b0, ref b1, ref b2);
|
---|
| 560 | besselmnextcheb(y, 1.64484480707288970893E-5, ref b0, ref b1, ref b2);
|
---|
| 561 | besselmnextcheb(y, -5.75419501008210370398E-5, ref b0, ref b1, ref b2);
|
---|
| 562 | besselmnextcheb(y, 1.88502885095841655729E-4, ref b0, ref b1, ref b2);
|
---|
| 563 | besselmnextcheb(y, -5.76375574538582365885E-4, ref b0, ref b1, ref b2);
|
---|
| 564 | besselmnextcheb(y, 1.63947561694133579842E-3, ref b0, ref b1, ref b2);
|
---|
| 565 | besselmnextcheb(y, -4.32430999505057594430E-3, ref b0, ref b1, ref b2);
|
---|
| 566 | besselmnextcheb(y, 1.05464603945949983183E-2, ref b0, ref b1, ref b2);
|
---|
| 567 | besselmnextcheb(y, -2.37374148058994688156E-2, ref b0, ref b1, ref b2);
|
---|
| 568 | besselmnextcheb(y, 4.93052842396707084878E-2, ref b0, ref b1, ref b2);
|
---|
| 569 | besselmnextcheb(y, -9.49010970480476444210E-2, ref b0, ref b1, ref b2);
|
---|
| 570 | besselmnextcheb(y, 1.71620901522208775349E-1, ref b0, ref b1, ref b2);
|
---|
| 571 | besselmnextcheb(y, -3.04682672343198398683E-1, ref b0, ref b1, ref b2);
|
---|
| 572 | besselmnextcheb(y, 6.76795274409476084995E-1, ref b0, ref b1, ref b2);
|
---|
| 573 | v = 0.5*(b0-b2);
|
---|
| 574 | result = Math.Exp(x)*v;
|
---|
| 575 | return result;
|
---|
| 576 | }
|
---|
| 577 | z = 32.0/x-2.0;
|
---|
| 578 | besselmfirstcheb(-7.23318048787475395456E-18, ref b0, ref b1, ref b2);
|
---|
| 579 | besselmnextcheb(z, -4.83050448594418207126E-18, ref b0, ref b1, ref b2);
|
---|
| 580 | besselmnextcheb(z, 4.46562142029675999901E-17, ref b0, ref b1, ref b2);
|
---|
| 581 | besselmnextcheb(z, 3.46122286769746109310E-17, ref b0, ref b1, ref b2);
|
---|
| 582 | besselmnextcheb(z, -2.82762398051658348494E-16, ref b0, ref b1, ref b2);
|
---|
| 583 | besselmnextcheb(z, -3.42548561967721913462E-16, ref b0, ref b1, ref b2);
|
---|
| 584 | besselmnextcheb(z, 1.77256013305652638360E-15, ref b0, ref b1, ref b2);
|
---|
| 585 | besselmnextcheb(z, 3.81168066935262242075E-15, ref b0, ref b1, ref b2);
|
---|
| 586 | besselmnextcheb(z, -9.55484669882830764870E-15, ref b0, ref b1, ref b2);
|
---|
| 587 | besselmnextcheb(z, -4.15056934728722208663E-14, ref b0, ref b1, ref b2);
|
---|
| 588 | besselmnextcheb(z, 1.54008621752140982691E-14, ref b0, ref b1, ref b2);
|
---|
| 589 | besselmnextcheb(z, 3.85277838274214270114E-13, ref b0, ref b1, ref b2);
|
---|
| 590 | besselmnextcheb(z, 7.18012445138366623367E-13, ref b0, ref b1, ref b2);
|
---|
| 591 | besselmnextcheb(z, -1.79417853150680611778E-12, ref b0, ref b1, ref b2);
|
---|
| 592 | besselmnextcheb(z, -1.32158118404477131188E-11, ref b0, ref b1, ref b2);
|
---|
| 593 | besselmnextcheb(z, -3.14991652796324136454E-11, ref b0, ref b1, ref b2);
|
---|
| 594 | besselmnextcheb(z, 1.18891471078464383424E-11, ref b0, ref b1, ref b2);
|
---|
| 595 | besselmnextcheb(z, 4.94060238822496958910E-10, ref b0, ref b1, ref b2);
|
---|
| 596 | besselmnextcheb(z, 3.39623202570838634515E-9, ref b0, ref b1, ref b2);
|
---|
| 597 | besselmnextcheb(z, 2.26666899049817806459E-8, ref b0, ref b1, ref b2);
|
---|
| 598 | besselmnextcheb(z, 2.04891858946906374183E-7, ref b0, ref b1, ref b2);
|
---|
| 599 | besselmnextcheb(z, 2.89137052083475648297E-6, ref b0, ref b1, ref b2);
|
---|
| 600 | besselmnextcheb(z, 6.88975834691682398426E-5, ref b0, ref b1, ref b2);
|
---|
| 601 | besselmnextcheb(z, 3.36911647825569408990E-3, ref b0, ref b1, ref b2);
|
---|
| 602 | besselmnextcheb(z, 8.04490411014108831608E-1, ref b0, ref b1, ref b2);
|
---|
| 603 | v = 0.5*(b0-b2);
|
---|
| 604 | result = Math.Exp(x)*v/Math.Sqrt(x);
|
---|
| 605 | return result;
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 |
|
---|
| 609 | /*************************************************************************
|
---|
| 610 | Modified Bessel function of order one
|
---|
| 611 |
|
---|
| 612 | Returns modified Bessel function of order one of the
|
---|
| 613 | argument.
|
---|
| 614 |
|
---|
| 615 | The function is defined as i1(x) = -i j1( ix ).
|
---|
| 616 |
|
---|
| 617 | The range is partitioned into the two intervals [0,8] and
|
---|
| 618 | (8, infinity). Chebyshev polynomial expansions are employed
|
---|
| 619 | in each interval.
|
---|
| 620 |
|
---|
| 621 | ACCURACY:
|
---|
| 622 |
|
---|
| 623 | Relative error:
|
---|
| 624 | arithmetic domain # trials peak rms
|
---|
| 625 | IEEE 0, 30 30000 1.9e-15 2.1e-16
|
---|
| 626 |
|
---|
| 627 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 628 | Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
---|
| 629 | *************************************************************************/
|
---|
| 630 | public static double besseli1(double x)
|
---|
| 631 | {
|
---|
| 632 | double result = 0;
|
---|
| 633 | double y = 0;
|
---|
| 634 | double z = 0;
|
---|
| 635 | double v = 0;
|
---|
| 636 | double b0 = 0;
|
---|
| 637 | double b1 = 0;
|
---|
| 638 | double b2 = 0;
|
---|
| 639 |
|
---|
| 640 | z = Math.Abs(x);
|
---|
| 641 | if( (double)(z)<=(double)(8.0) )
|
---|
| 642 | {
|
---|
| 643 | y = z/2.0-2.0;
|
---|
| 644 | besselm1firstcheb(2.77791411276104639959E-18, ref b0, ref b1, ref b2);
|
---|
| 645 | besselm1nextcheb(y, -2.11142121435816608115E-17, ref b0, ref b1, ref b2);
|
---|
| 646 | besselm1nextcheb(y, 1.55363195773620046921E-16, ref b0, ref b1, ref b2);
|
---|
| 647 | besselm1nextcheb(y, -1.10559694773538630805E-15, ref b0, ref b1, ref b2);
|
---|
| 648 | besselm1nextcheb(y, 7.60068429473540693410E-15, ref b0, ref b1, ref b2);
|
---|
| 649 | besselm1nextcheb(y, -5.04218550472791168711E-14, ref b0, ref b1, ref b2);
|
---|
| 650 | besselm1nextcheb(y, 3.22379336594557470981E-13, ref b0, ref b1, ref b2);
|
---|
| 651 | besselm1nextcheb(y, -1.98397439776494371520E-12, ref b0, ref b1, ref b2);
|
---|
| 652 | besselm1nextcheb(y, 1.17361862988909016308E-11, ref b0, ref b1, ref b2);
|
---|
| 653 | besselm1nextcheb(y, -6.66348972350202774223E-11, ref b0, ref b1, ref b2);
|
---|
| 654 | besselm1nextcheb(y, 3.62559028155211703701E-10, ref b0, ref b1, ref b2);
|
---|
| 655 | besselm1nextcheb(y, -1.88724975172282928790E-9, ref b0, ref b1, ref b2);
|
---|
| 656 | besselm1nextcheb(y, 9.38153738649577178388E-9, ref b0, ref b1, ref b2);
|
---|
| 657 | besselm1nextcheb(y, -4.44505912879632808065E-8, ref b0, ref b1, ref b2);
|
---|
| 658 | besselm1nextcheb(y, 2.00329475355213526229E-7, ref b0, ref b1, ref b2);
|
---|
| 659 | besselm1nextcheb(y, -8.56872026469545474066E-7, ref b0, ref b1, ref b2);
|
---|
| 660 | besselm1nextcheb(y, 3.47025130813767847674E-6, ref b0, ref b1, ref b2);
|
---|
| 661 | besselm1nextcheb(y, -1.32731636560394358279E-5, ref b0, ref b1, ref b2);
|
---|
| 662 | besselm1nextcheb(y, 4.78156510755005422638E-5, ref b0, ref b1, ref b2);
|
---|
| 663 | besselm1nextcheb(y, -1.61760815825896745588E-4, ref b0, ref b1, ref b2);
|
---|
| 664 | besselm1nextcheb(y, 5.12285956168575772895E-4, ref b0, ref b1, ref b2);
|
---|
| 665 | besselm1nextcheb(y, -1.51357245063125314899E-3, ref b0, ref b1, ref b2);
|
---|
| 666 | besselm1nextcheb(y, 4.15642294431288815669E-3, ref b0, ref b1, ref b2);
|
---|
| 667 | besselm1nextcheb(y, -1.05640848946261981558E-2, ref b0, ref b1, ref b2);
|
---|
| 668 | besselm1nextcheb(y, 2.47264490306265168283E-2, ref b0, ref b1, ref b2);
|
---|
| 669 | besselm1nextcheb(y, -5.29459812080949914269E-2, ref b0, ref b1, ref b2);
|
---|
| 670 | besselm1nextcheb(y, 1.02643658689847095384E-1, ref b0, ref b1, ref b2);
|
---|
| 671 | besselm1nextcheb(y, -1.76416518357834055153E-1, ref b0, ref b1, ref b2);
|
---|
| 672 | besselm1nextcheb(y, 2.52587186443633654823E-1, ref b0, ref b1, ref b2);
|
---|
| 673 | v = 0.5*(b0-b2);
|
---|
| 674 | z = v*z*Math.Exp(z);
|
---|
| 675 | }
|
---|
| 676 | else
|
---|
| 677 | {
|
---|
| 678 | y = 32.0/z-2.0;
|
---|
| 679 | besselm1firstcheb(7.51729631084210481353E-18, ref b0, ref b1, ref b2);
|
---|
| 680 | besselm1nextcheb(y, 4.41434832307170791151E-18, ref b0, ref b1, ref b2);
|
---|
| 681 | besselm1nextcheb(y, -4.65030536848935832153E-17, ref b0, ref b1, ref b2);
|
---|
| 682 | besselm1nextcheb(y, -3.20952592199342395980E-17, ref b0, ref b1, ref b2);
|
---|
| 683 | besselm1nextcheb(y, 2.96262899764595013876E-16, ref b0, ref b1, ref b2);
|
---|
| 684 | besselm1nextcheb(y, 3.30820231092092828324E-16, ref b0, ref b1, ref b2);
|
---|
| 685 | besselm1nextcheb(y, -1.88035477551078244854E-15, ref b0, ref b1, ref b2);
|
---|
| 686 | besselm1nextcheb(y, -3.81440307243700780478E-15, ref b0, ref b1, ref b2);
|
---|
| 687 | besselm1nextcheb(y, 1.04202769841288027642E-14, ref b0, ref b1, ref b2);
|
---|
| 688 | besselm1nextcheb(y, 4.27244001671195135429E-14, ref b0, ref b1, ref b2);
|
---|
| 689 | besselm1nextcheb(y, -2.10154184277266431302E-14, ref b0, ref b1, ref b2);
|
---|
| 690 | besselm1nextcheb(y, -4.08355111109219731823E-13, ref b0, ref b1, ref b2);
|
---|
| 691 | besselm1nextcheb(y, -7.19855177624590851209E-13, ref b0, ref b1, ref b2);
|
---|
| 692 | besselm1nextcheb(y, 2.03562854414708950722E-12, ref b0, ref b1, ref b2);
|
---|
| 693 | besselm1nextcheb(y, 1.41258074366137813316E-11, ref b0, ref b1, ref b2);
|
---|
| 694 | besselm1nextcheb(y, 3.25260358301548823856E-11, ref b0, ref b1, ref b2);
|
---|
| 695 | besselm1nextcheb(y, -1.89749581235054123450E-11, ref b0, ref b1, ref b2);
|
---|
| 696 | besselm1nextcheb(y, -5.58974346219658380687E-10, ref b0, ref b1, ref b2);
|
---|
| 697 | besselm1nextcheb(y, -3.83538038596423702205E-9, ref b0, ref b1, ref b2);
|
---|
| 698 | besselm1nextcheb(y, -2.63146884688951950684E-8, ref b0, ref b1, ref b2);
|
---|
| 699 | besselm1nextcheb(y, -2.51223623787020892529E-7, ref b0, ref b1, ref b2);
|
---|
| 700 | besselm1nextcheb(y, -3.88256480887769039346E-6, ref b0, ref b1, ref b2);
|
---|
| 701 | besselm1nextcheb(y, -1.10588938762623716291E-4, ref b0, ref b1, ref b2);
|
---|
| 702 | besselm1nextcheb(y, -9.76109749136146840777E-3, ref b0, ref b1, ref b2);
|
---|
| 703 | besselm1nextcheb(y, 7.78576235018280120474E-1, ref b0, ref b1, ref b2);
|
---|
| 704 | v = 0.5*(b0-b2);
|
---|
| 705 | z = v*Math.Exp(z)/Math.Sqrt(z);
|
---|
| 706 | }
|
---|
| 707 | if( (double)(x)<(double)(0) )
|
---|
| 708 | {
|
---|
| 709 | z = -z;
|
---|
| 710 | }
|
---|
| 711 | result = z;
|
---|
| 712 | return result;
|
---|
| 713 | }
|
---|
| 714 |
|
---|
| 715 |
|
---|
| 716 | /*************************************************************************
|
---|
| 717 | Modified Bessel function, second kind, order zero
|
---|
| 718 |
|
---|
| 719 | Returns modified Bessel function of the second kind
|
---|
| 720 | of order zero of the argument.
|
---|
| 721 |
|
---|
| 722 | The range is partitioned into the two intervals [0,8] and
|
---|
| 723 | (8, infinity). Chebyshev polynomial expansions are employed
|
---|
| 724 | in each interval.
|
---|
| 725 |
|
---|
| 726 | ACCURACY:
|
---|
| 727 |
|
---|
| 728 | Tested at 2000 random points between 0 and 8. Peak absolute
|
---|
| 729 | error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
|
---|
| 730 | Relative error:
|
---|
| 731 | arithmetic domain # trials peak rms
|
---|
| 732 | IEEE 0, 30 30000 1.2e-15 1.6e-16
|
---|
| 733 |
|
---|
| 734 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 735 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 736 | *************************************************************************/
|
---|
| 737 | public static double besselk0(double x)
|
---|
| 738 | {
|
---|
| 739 | double result = 0;
|
---|
| 740 | double y = 0;
|
---|
| 741 | double z = 0;
|
---|
| 742 | double v = 0;
|
---|
| 743 | double b0 = 0;
|
---|
| 744 | double b1 = 0;
|
---|
| 745 | double b2 = 0;
|
---|
| 746 |
|
---|
| 747 | System.Diagnostics.Debug.Assert((double)(x)>(double)(0), "Domain error in BesselK0: x<=0");
|
---|
| 748 | if( (double)(x)<=(double)(2) )
|
---|
| 749 | {
|
---|
| 750 | y = x*x-2.0;
|
---|
| 751 | besselmfirstcheb(1.37446543561352307156E-16, ref b0, ref b1, ref b2);
|
---|
| 752 | besselmnextcheb(y, 4.25981614279661018399E-14, ref b0, ref b1, ref b2);
|
---|
| 753 | besselmnextcheb(y, 1.03496952576338420167E-11, ref b0, ref b1, ref b2);
|
---|
| 754 | besselmnextcheb(y, 1.90451637722020886025E-9, ref b0, ref b1, ref b2);
|
---|
| 755 | besselmnextcheb(y, 2.53479107902614945675E-7, ref b0, ref b1, ref b2);
|
---|
| 756 | besselmnextcheb(y, 2.28621210311945178607E-5, ref b0, ref b1, ref b2);
|
---|
| 757 | besselmnextcheb(y, 1.26461541144692592338E-3, ref b0, ref b1, ref b2);
|
---|
| 758 | besselmnextcheb(y, 3.59799365153615016266E-2, ref b0, ref b1, ref b2);
|
---|
| 759 | besselmnextcheb(y, 3.44289899924628486886E-1, ref b0, ref b1, ref b2);
|
---|
| 760 | besselmnextcheb(y, -5.35327393233902768720E-1, ref b0, ref b1, ref b2);
|
---|
| 761 | v = 0.5*(b0-b2);
|
---|
| 762 | v = v-Math.Log(0.5*x)*besseli0(x);
|
---|
| 763 | }
|
---|
| 764 | else
|
---|
| 765 | {
|
---|
| 766 | z = 8.0/x-2.0;
|
---|
| 767 | besselmfirstcheb(5.30043377268626276149E-18, ref b0, ref b1, ref b2);
|
---|
| 768 | besselmnextcheb(z, -1.64758043015242134646E-17, ref b0, ref b1, ref b2);
|
---|
| 769 | besselmnextcheb(z, 5.21039150503902756861E-17, ref b0, ref b1, ref b2);
|
---|
| 770 | besselmnextcheb(z, -1.67823109680541210385E-16, ref b0, ref b1, ref b2);
|
---|
| 771 | besselmnextcheb(z, 5.51205597852431940784E-16, ref b0, ref b1, ref b2);
|
---|
| 772 | besselmnextcheb(z, -1.84859337734377901440E-15, ref b0, ref b1, ref b2);
|
---|
| 773 | besselmnextcheb(z, 6.34007647740507060557E-15, ref b0, ref b1, ref b2);
|
---|
| 774 | besselmnextcheb(z, -2.22751332699166985548E-14, ref b0, ref b1, ref b2);
|
---|
| 775 | besselmnextcheb(z, 8.03289077536357521100E-14, ref b0, ref b1, ref b2);
|
---|
| 776 | besselmnextcheb(z, -2.98009692317273043925E-13, ref b0, ref b1, ref b2);
|
---|
| 777 | besselmnextcheb(z, 1.14034058820847496303E-12, ref b0, ref b1, ref b2);
|
---|
| 778 | besselmnextcheb(z, -4.51459788337394416547E-12, ref b0, ref b1, ref b2);
|
---|
| 779 | besselmnextcheb(z, 1.85594911495471785253E-11, ref b0, ref b1, ref b2);
|
---|
| 780 | besselmnextcheb(z, -7.95748924447710747776E-11, ref b0, ref b1, ref b2);
|
---|
| 781 | besselmnextcheb(z, 3.57739728140030116597E-10, ref b0, ref b1, ref b2);
|
---|
| 782 | besselmnextcheb(z, -1.69753450938905987466E-9, ref b0, ref b1, ref b2);
|
---|
| 783 | besselmnextcheb(z, 8.57403401741422608519E-9, ref b0, ref b1, ref b2);
|
---|
| 784 | besselmnextcheb(z, -4.66048989768794782956E-8, ref b0, ref b1, ref b2);
|
---|
| 785 | besselmnextcheb(z, 2.76681363944501510342E-7, ref b0, ref b1, ref b2);
|
---|
| 786 | besselmnextcheb(z, -1.83175552271911948767E-6, ref b0, ref b1, ref b2);
|
---|
| 787 | besselmnextcheb(z, 1.39498137188764993662E-5, ref b0, ref b1, ref b2);
|
---|
| 788 | besselmnextcheb(z, -1.28495495816278026384E-4, ref b0, ref b1, ref b2);
|
---|
| 789 | besselmnextcheb(z, 1.56988388573005337491E-3, ref b0, ref b1, ref b2);
|
---|
| 790 | besselmnextcheb(z, -3.14481013119645005427E-2, ref b0, ref b1, ref b2);
|
---|
| 791 | besselmnextcheb(z, 2.44030308206595545468E0, ref b0, ref b1, ref b2);
|
---|
| 792 | v = 0.5*(b0-b2);
|
---|
| 793 | v = v*Math.Exp(-x)/Math.Sqrt(x);
|
---|
| 794 | }
|
---|
| 795 | result = v;
|
---|
| 796 | return result;
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 |
|
---|
| 800 | /*************************************************************************
|
---|
| 801 | Modified Bessel function, second kind, order one
|
---|
| 802 |
|
---|
| 803 | Computes the modified Bessel function of the second kind
|
---|
| 804 | of order one of the argument.
|
---|
| 805 |
|
---|
| 806 | The range is partitioned into the two intervals [0,2] and
|
---|
| 807 | (2, infinity). Chebyshev polynomial expansions are employed
|
---|
| 808 | in each interval.
|
---|
| 809 |
|
---|
| 810 | ACCURACY:
|
---|
| 811 |
|
---|
| 812 | Relative error:
|
---|
| 813 | arithmetic domain # trials peak rms
|
---|
| 814 | IEEE 0, 30 30000 1.2e-15 1.6e-16
|
---|
| 815 |
|
---|
| 816 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 817 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 818 | *************************************************************************/
|
---|
| 819 | public static double besselk1(double x)
|
---|
| 820 | {
|
---|
| 821 | double result = 0;
|
---|
| 822 | double y = 0;
|
---|
| 823 | double z = 0;
|
---|
| 824 | double v = 0;
|
---|
| 825 | double b0 = 0;
|
---|
| 826 | double b1 = 0;
|
---|
| 827 | double b2 = 0;
|
---|
| 828 |
|
---|
| 829 | z = 0.5*x;
|
---|
| 830 | System.Diagnostics.Debug.Assert((double)(z)>(double)(0), "Domain error in K1");
|
---|
| 831 | if( (double)(x)<=(double)(2) )
|
---|
| 832 | {
|
---|
| 833 | y = x*x-2.0;
|
---|
| 834 | besselm1firstcheb(-7.02386347938628759343E-18, ref b0, ref b1, ref b2);
|
---|
| 835 | besselm1nextcheb(y, -2.42744985051936593393E-15, ref b0, ref b1, ref b2);
|
---|
| 836 | besselm1nextcheb(y, -6.66690169419932900609E-13, ref b0, ref b1, ref b2);
|
---|
| 837 | besselm1nextcheb(y, -1.41148839263352776110E-10, ref b0, ref b1, ref b2);
|
---|
| 838 | besselm1nextcheb(y, -2.21338763073472585583E-8, ref b0, ref b1, ref b2);
|
---|
| 839 | besselm1nextcheb(y, -2.43340614156596823496E-6, ref b0, ref b1, ref b2);
|
---|
| 840 | besselm1nextcheb(y, -1.73028895751305206302E-4, ref b0, ref b1, ref b2);
|
---|
| 841 | besselm1nextcheb(y, -6.97572385963986435018E-3, ref b0, ref b1, ref b2);
|
---|
| 842 | besselm1nextcheb(y, -1.22611180822657148235E-1, ref b0, ref b1, ref b2);
|
---|
| 843 | besselm1nextcheb(y, -3.53155960776544875667E-1, ref b0, ref b1, ref b2);
|
---|
| 844 | besselm1nextcheb(y, 1.52530022733894777053E0, ref b0, ref b1, ref b2);
|
---|
| 845 | v = 0.5*(b0-b2);
|
---|
| 846 | result = Math.Log(z)*besseli1(x)+v/x;
|
---|
| 847 | }
|
---|
| 848 | else
|
---|
| 849 | {
|
---|
| 850 | y = 8.0/x-2.0;
|
---|
| 851 | besselm1firstcheb(-5.75674448366501715755E-18, ref b0, ref b1, ref b2);
|
---|
| 852 | besselm1nextcheb(y, 1.79405087314755922667E-17, ref b0, ref b1, ref b2);
|
---|
| 853 | besselm1nextcheb(y, -5.68946255844285935196E-17, ref b0, ref b1, ref b2);
|
---|
| 854 | besselm1nextcheb(y, 1.83809354436663880070E-16, ref b0, ref b1, ref b2);
|
---|
| 855 | besselm1nextcheb(y, -6.05704724837331885336E-16, ref b0, ref b1, ref b2);
|
---|
| 856 | besselm1nextcheb(y, 2.03870316562433424052E-15, ref b0, ref b1, ref b2);
|
---|
| 857 | besselm1nextcheb(y, -7.01983709041831346144E-15, ref b0, ref b1, ref b2);
|
---|
| 858 | besselm1nextcheb(y, 2.47715442448130437068E-14, ref b0, ref b1, ref b2);
|
---|
| 859 | besselm1nextcheb(y, -8.97670518232499435011E-14, ref b0, ref b1, ref b2);
|
---|
| 860 | besselm1nextcheb(y, 3.34841966607842919884E-13, ref b0, ref b1, ref b2);
|
---|
| 861 | besselm1nextcheb(y, -1.28917396095102890680E-12, ref b0, ref b1, ref b2);
|
---|
| 862 | besselm1nextcheb(y, 5.13963967348173025100E-12, ref b0, ref b1, ref b2);
|
---|
| 863 | besselm1nextcheb(y, -2.12996783842756842877E-11, ref b0, ref b1, ref b2);
|
---|
| 864 | besselm1nextcheb(y, 9.21831518760500529508E-11, ref b0, ref b1, ref b2);
|
---|
| 865 | besselm1nextcheb(y, -4.19035475934189648750E-10, ref b0, ref b1, ref b2);
|
---|
| 866 | besselm1nextcheb(y, 2.01504975519703286596E-9, ref b0, ref b1, ref b2);
|
---|
| 867 | besselm1nextcheb(y, -1.03457624656780970260E-8, ref b0, ref b1, ref b2);
|
---|
| 868 | besselm1nextcheb(y, 5.74108412545004946722E-8, ref b0, ref b1, ref b2);
|
---|
| 869 | besselm1nextcheb(y, -3.50196060308781257119E-7, ref b0, ref b1, ref b2);
|
---|
| 870 | besselm1nextcheb(y, 2.40648494783721712015E-6, ref b0, ref b1, ref b2);
|
---|
| 871 | besselm1nextcheb(y, -1.93619797416608296024E-5, ref b0, ref b1, ref b2);
|
---|
| 872 | besselm1nextcheb(y, 1.95215518471351631108E-4, ref b0, ref b1, ref b2);
|
---|
| 873 | besselm1nextcheb(y, -2.85781685962277938680E-3, ref b0, ref b1, ref b2);
|
---|
| 874 | besselm1nextcheb(y, 1.03923736576817238437E-1, ref b0, ref b1, ref b2);
|
---|
| 875 | besselm1nextcheb(y, 2.72062619048444266945E0, ref b0, ref b1, ref b2);
|
---|
| 876 | v = 0.5*(b0-b2);
|
---|
| 877 | result = Math.Exp(-x)*v/Math.Sqrt(x);
|
---|
| 878 | }
|
---|
| 879 | return result;
|
---|
| 880 | }
|
---|
| 881 |
|
---|
| 882 |
|
---|
| 883 | /*************************************************************************
|
---|
| 884 | Modified Bessel function, second kind, integer order
|
---|
| 885 |
|
---|
| 886 | Returns modified Bessel function of the second kind
|
---|
| 887 | of order n of the argument.
|
---|
| 888 |
|
---|
| 889 | The range is partitioned into the two intervals [0,9.55] and
|
---|
| 890 | (9.55, infinity). An ascending power series is used in the
|
---|
| 891 | low range, and an asymptotic expansion in the high range.
|
---|
| 892 |
|
---|
| 893 | ACCURACY:
|
---|
| 894 |
|
---|
| 895 | Relative error:
|
---|
| 896 | arithmetic domain # trials peak rms
|
---|
| 897 | IEEE 0,30 90000 1.8e-8 3.0e-10
|
---|
| 898 |
|
---|
| 899 | Error is high only near the crossover point x = 9.55
|
---|
| 900 | between the two expansions used.
|
---|
| 901 |
|
---|
| 902 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 903 | Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
|
---|
| 904 | *************************************************************************/
|
---|
| 905 | public static double besselkn(int nn,
|
---|
| 906 | double x)
|
---|
| 907 | {
|
---|
| 908 | double result = 0;
|
---|
| 909 | double k = 0;
|
---|
| 910 | double kf = 0;
|
---|
| 911 | double nk1f = 0;
|
---|
| 912 | double nkf = 0;
|
---|
| 913 | double zn = 0;
|
---|
| 914 | double t = 0;
|
---|
| 915 | double s = 0;
|
---|
| 916 | double z0 = 0;
|
---|
| 917 | double z = 0;
|
---|
| 918 | double ans = 0;
|
---|
| 919 | double fn = 0;
|
---|
| 920 | double pn = 0;
|
---|
| 921 | double pk = 0;
|
---|
| 922 | double zmn = 0;
|
---|
| 923 | double tlg = 0;
|
---|
| 924 | double tox = 0;
|
---|
| 925 | int i = 0;
|
---|
| 926 | int n = 0;
|
---|
| 927 | double eul = 0;
|
---|
| 928 |
|
---|
| 929 | eul = 5.772156649015328606065e-1;
|
---|
| 930 | if( nn<0 )
|
---|
| 931 | {
|
---|
| 932 | n = -nn;
|
---|
| 933 | }
|
---|
| 934 | else
|
---|
| 935 | {
|
---|
| 936 | n = nn;
|
---|
| 937 | }
|
---|
| 938 | System.Diagnostics.Debug.Assert(n<=31, "Overflow in BesselKN");
|
---|
| 939 | System.Diagnostics.Debug.Assert((double)(x)>(double)(0), "Domain error in BesselKN");
|
---|
| 940 | if( (double)(x)<=(double)(9.55) )
|
---|
| 941 | {
|
---|
| 942 | ans = 0.0;
|
---|
| 943 | z0 = 0.25*x*x;
|
---|
| 944 | fn = 1.0;
|
---|
| 945 | pn = 0.0;
|
---|
| 946 | zmn = 1.0;
|
---|
| 947 | tox = 2.0/x;
|
---|
| 948 | if( n>0 )
|
---|
| 949 | {
|
---|
| 950 | pn = -eul;
|
---|
| 951 | k = 1.0;
|
---|
| 952 | for(i=1; i<=n-1; i++)
|
---|
| 953 | {
|
---|
| 954 | pn = pn+1.0/k;
|
---|
| 955 | k = k+1.0;
|
---|
| 956 | fn = fn*k;
|
---|
| 957 | }
|
---|
| 958 | zmn = tox;
|
---|
| 959 | if( n==1 )
|
---|
| 960 | {
|
---|
| 961 | ans = 1.0/x;
|
---|
| 962 | }
|
---|
| 963 | else
|
---|
| 964 | {
|
---|
| 965 | nk1f = fn/n;
|
---|
| 966 | kf = 1.0;
|
---|
| 967 | s = nk1f;
|
---|
| 968 | z = -z0;
|
---|
| 969 | zn = 1.0;
|
---|
| 970 | for(i=1; i<=n-1; i++)
|
---|
| 971 | {
|
---|
| 972 | nk1f = nk1f/(n-i);
|
---|
| 973 | kf = kf*i;
|
---|
| 974 | zn = zn*z;
|
---|
| 975 | t = nk1f*zn/kf;
|
---|
| 976 | s = s+t;
|
---|
| 977 | System.Diagnostics.Debug.Assert((double)(AP.Math.MaxRealNumber-Math.Abs(t))>(double)(Math.Abs(s)), "Overflow in BesselKN");
|
---|
| 978 | System.Diagnostics.Debug.Assert(!((double)(tox)>(double)(1.0) & (double)(AP.Math.MaxRealNumber/tox)<(double)(zmn)), "Overflow in BesselKN");
|
---|
| 979 | zmn = zmn*tox;
|
---|
| 980 | }
|
---|
| 981 | s = s*0.5;
|
---|
| 982 | t = Math.Abs(s);
|
---|
| 983 | System.Diagnostics.Debug.Assert(!((double)(zmn)>(double)(1.0) & (double)(AP.Math.MaxRealNumber/zmn)<(double)(t)), "Overflow in BesselKN");
|
---|
| 984 | System.Diagnostics.Debug.Assert(!((double)(t)>(double)(1.0) & (double)(AP.Math.MaxRealNumber/t)<(double)(zmn)), "Overflow in BesselKN");
|
---|
| 985 | ans = s*zmn;
|
---|
| 986 | }
|
---|
| 987 | }
|
---|
| 988 | tlg = 2.0*Math.Log(0.5*x);
|
---|
| 989 | pk = -eul;
|
---|
| 990 | if( n==0 )
|
---|
| 991 | {
|
---|
| 992 | pn = pk;
|
---|
| 993 | t = 1.0;
|
---|
| 994 | }
|
---|
| 995 | else
|
---|
| 996 | {
|
---|
| 997 | pn = pn+1.0/n;
|
---|
| 998 | t = 1.0/fn;
|
---|
| 999 | }
|
---|
| 1000 | s = (pk+pn-tlg)*t;
|
---|
| 1001 | k = 1.0;
|
---|
| 1002 | do
|
---|
| 1003 | {
|
---|
| 1004 | t = t*(z0/(k*(k+n)));
|
---|
| 1005 | pk = pk+1.0/k;
|
---|
| 1006 | pn = pn+1.0/(k+n);
|
---|
| 1007 | s = s+(pk+pn-tlg)*t;
|
---|
| 1008 | k = k+1.0;
|
---|
| 1009 | }
|
---|
| 1010 | while( (double)(Math.Abs(t/s))>(double)(AP.Math.MachineEpsilon) );
|
---|
| 1011 | s = 0.5*s/zmn;
|
---|
| 1012 | if( n%2!=0 )
|
---|
| 1013 | {
|
---|
| 1014 | s = -s;
|
---|
| 1015 | }
|
---|
| 1016 | ans = ans+s;
|
---|
| 1017 | result = ans;
|
---|
| 1018 | return result;
|
---|
| 1019 | }
|
---|
| 1020 | if( (double)(x)>(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
| 1021 | {
|
---|
| 1022 | result = 0;
|
---|
| 1023 | return result;
|
---|
| 1024 | }
|
---|
| 1025 | k = n;
|
---|
| 1026 | pn = 4.0*k*k;
|
---|
| 1027 | pk = 1.0;
|
---|
| 1028 | z0 = 8.0*x;
|
---|
| 1029 | fn = 1.0;
|
---|
| 1030 | t = 1.0;
|
---|
| 1031 | s = t;
|
---|
| 1032 | nkf = AP.Math.MaxRealNumber;
|
---|
| 1033 | i = 0;
|
---|
| 1034 | do
|
---|
| 1035 | {
|
---|
| 1036 | z = pn-pk*pk;
|
---|
| 1037 | t = t*z/(fn*z0);
|
---|
| 1038 | nk1f = Math.Abs(t);
|
---|
| 1039 | if( i>=n & (double)(nk1f)>(double)(nkf) )
|
---|
| 1040 | {
|
---|
| 1041 | break;
|
---|
| 1042 | }
|
---|
| 1043 | nkf = nk1f;
|
---|
| 1044 | s = s+t;
|
---|
| 1045 | fn = fn+1.0;
|
---|
| 1046 | pk = pk+2.0;
|
---|
| 1047 | i = i+1;
|
---|
| 1048 | }
|
---|
| 1049 | while( (double)(Math.Abs(t/s))>(double)(AP.Math.MachineEpsilon) );
|
---|
| 1050 | result = Math.Exp(-x)*Math.Sqrt(Math.PI/(2.0*x))*s;
|
---|
| 1051 | return result;
|
---|
| 1052 | }
|
---|
| 1053 |
|
---|
| 1054 |
|
---|
| 1055 | /*************************************************************************
|
---|
| 1056 | Internal subroutine
|
---|
| 1057 |
|
---|
| 1058 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 1059 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 1060 | *************************************************************************/
|
---|
| 1061 | private static void besselmfirstcheb(double c,
|
---|
| 1062 | ref double b0,
|
---|
| 1063 | ref double b1,
|
---|
| 1064 | ref double b2)
|
---|
| 1065 | {
|
---|
| 1066 | b0 = c;
|
---|
| 1067 | b1 = 0.0;
|
---|
| 1068 | b2 = 0.0;
|
---|
| 1069 | }
|
---|
| 1070 |
|
---|
| 1071 |
|
---|
| 1072 | /*************************************************************************
|
---|
| 1073 | Internal subroutine
|
---|
| 1074 |
|
---|
| 1075 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 1076 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 1077 | *************************************************************************/
|
---|
| 1078 | private static void besselmnextcheb(double x,
|
---|
| 1079 | double c,
|
---|
| 1080 | ref double b0,
|
---|
| 1081 | ref double b1,
|
---|
| 1082 | ref double b2)
|
---|
| 1083 | {
|
---|
| 1084 | b2 = b1;
|
---|
| 1085 | b1 = b0;
|
---|
| 1086 | b0 = x*b1-b2+c;
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
| 1089 |
|
---|
| 1090 | /*************************************************************************
|
---|
| 1091 | Internal subroutine
|
---|
| 1092 |
|
---|
| 1093 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 1094 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 1095 | *************************************************************************/
|
---|
| 1096 | private static void besselm1firstcheb(double c,
|
---|
| 1097 | ref double b0,
|
---|
| 1098 | ref double b1,
|
---|
| 1099 | ref double b2)
|
---|
| 1100 | {
|
---|
| 1101 | b0 = c;
|
---|
| 1102 | b1 = 0.0;
|
---|
| 1103 | b2 = 0.0;
|
---|
| 1104 | }
|
---|
| 1105 |
|
---|
| 1106 |
|
---|
| 1107 | /*************************************************************************
|
---|
| 1108 | Internal subroutine
|
---|
| 1109 |
|
---|
| 1110 | Cephes Math Library Release 2.8: June, 2000
|
---|
| 1111 | Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
---|
| 1112 | *************************************************************************/
|
---|
| 1113 | private static void besselm1nextcheb(double x,
|
---|
| 1114 | double c,
|
---|
| 1115 | ref double b0,
|
---|
| 1116 | ref double b1,
|
---|
| 1117 | ref double b2)
|
---|
| 1118 | {
|
---|
| 1119 | b2 = b1;
|
---|
| 1120 | b1 = b0;
|
---|
| 1121 | b0 = x*b1-b2+c;
|
---|
| 1122 | }
|
---|
| 1123 |
|
---|
| 1124 |
|
---|
| 1125 | private static void besselasympt0(double x,
|
---|
| 1126 | ref double pzero,
|
---|
| 1127 | ref double qzero)
|
---|
| 1128 | {
|
---|
| 1129 | double xsq = 0;
|
---|
| 1130 | double p2 = 0;
|
---|
| 1131 | double q2 = 0;
|
---|
| 1132 | double p3 = 0;
|
---|
| 1133 | double q3 = 0;
|
---|
| 1134 |
|
---|
| 1135 | xsq = 64.0/(x*x);
|
---|
| 1136 | p2 = 0.0;
|
---|
| 1137 | p2 = 2485.271928957404011288128951+xsq*p2;
|
---|
| 1138 | p2 = 153982.6532623911470917825993+xsq*p2;
|
---|
| 1139 | p2 = 2016135.283049983642487182349+xsq*p2;
|
---|
| 1140 | p2 = 8413041.456550439208464315611+xsq*p2;
|
---|
| 1141 | p2 = 12332384.76817638145232406055+xsq*p2;
|
---|
| 1142 | p2 = 5393485.083869438325262122897+xsq*p2;
|
---|
| 1143 | q2 = 1.0;
|
---|
| 1144 | q2 = 2615.700736920839685159081813+xsq*q2;
|
---|
| 1145 | q2 = 156001.7276940030940592769933+xsq*q2;
|
---|
| 1146 | q2 = 2025066.801570134013891035236+xsq*q2;
|
---|
| 1147 | q2 = 8426449.050629797331554404810+xsq*q2;
|
---|
| 1148 | q2 = 12338310.22786324960844856182+xsq*q2;
|
---|
| 1149 | q2 = 5393485.083869438325560444960+xsq*q2;
|
---|
| 1150 | p3 = -0.0;
|
---|
| 1151 | p3 = -4.887199395841261531199129300+xsq*p3;
|
---|
| 1152 | p3 = -226.2630641933704113967255053+xsq*p3;
|
---|
| 1153 | p3 = -2365.956170779108192723612816+xsq*p3;
|
---|
| 1154 | p3 = -8239.066313485606568803548860+xsq*p3;
|
---|
| 1155 | p3 = -10381.41698748464093880530341+xsq*p3;
|
---|
| 1156 | p3 = -3984.617357595222463506790588+xsq*p3;
|
---|
| 1157 | q3 = 1.0;
|
---|
| 1158 | q3 = 408.7714673983499223402830260+xsq*q3;
|
---|
| 1159 | q3 = 15704.89191515395519392882766+xsq*q3;
|
---|
| 1160 | q3 = 156021.3206679291652539287109+xsq*q3;
|
---|
| 1161 | q3 = 533291.3634216897168722255057+xsq*q3;
|
---|
| 1162 | q3 = 666745.4239319826986004038103+xsq*q3;
|
---|
| 1163 | q3 = 255015.5108860942382983170882+xsq*q3;
|
---|
| 1164 | pzero = p2/q2;
|
---|
| 1165 | qzero = 8*p3/q3/x;
|
---|
| 1166 | }
|
---|
| 1167 |
|
---|
| 1168 |
|
---|
| 1169 | private static void besselasympt1(double x,
|
---|
| 1170 | ref double pzero,
|
---|
| 1171 | ref double qzero)
|
---|
| 1172 | {
|
---|
| 1173 | double xsq = 0;
|
---|
| 1174 | double p2 = 0;
|
---|
| 1175 | double q2 = 0;
|
---|
| 1176 | double p3 = 0;
|
---|
| 1177 | double q3 = 0;
|
---|
| 1178 |
|
---|
| 1179 | xsq = 64.0/(x*x);
|
---|
| 1180 | p2 = -1611.616644324610116477412898;
|
---|
| 1181 | p2 = -109824.0554345934672737413139+xsq*p2;
|
---|
| 1182 | p2 = -1523529.351181137383255105722+xsq*p2;
|
---|
| 1183 | p2 = -6603373.248364939109255245434+xsq*p2;
|
---|
| 1184 | p2 = -9942246.505077641195658377899+xsq*p2;
|
---|
| 1185 | p2 = -4435757.816794127857114720794+xsq*p2;
|
---|
| 1186 | q2 = 1.0;
|
---|
| 1187 | q2 = -1455.009440190496182453565068+xsq*q2;
|
---|
| 1188 | q2 = -107263.8599110382011903063867+xsq*q2;
|
---|
| 1189 | q2 = -1511809.506634160881644546358+xsq*q2;
|
---|
| 1190 | q2 = -6585339.479723087072826915069+xsq*q2;
|
---|
| 1191 | q2 = -9934124.389934585658967556309+xsq*q2;
|
---|
| 1192 | q2 = -4435757.816794127856828016962+xsq*q2;
|
---|
| 1193 | p3 = 35.26513384663603218592175580;
|
---|
| 1194 | p3 = 1706.375429020768002061283546+xsq*p3;
|
---|
| 1195 | p3 = 18494.26287322386679652009819+xsq*p3;
|
---|
| 1196 | p3 = 66178.83658127083517939992166+xsq*p3;
|
---|
| 1197 | p3 = 85145.16067533570196555001171+xsq*p3;
|
---|
| 1198 | p3 = 33220.91340985722351859704442+xsq*p3;
|
---|
| 1199 | q3 = 1.0;
|
---|
| 1200 | q3 = 863.8367769604990967475517183+xsq*q3;
|
---|
| 1201 | q3 = 37890.22974577220264142952256+xsq*q3;
|
---|
| 1202 | q3 = 400294.4358226697511708610813+xsq*q3;
|
---|
| 1203 | q3 = 1419460.669603720892855755253+xsq*q3;
|
---|
| 1204 | q3 = 1819458.042243997298924553839+xsq*q3;
|
---|
| 1205 | q3 = 708712.8194102874357377502472+xsq*q3;
|
---|
| 1206 | pzero = p2/q2;
|
---|
| 1207 | qzero = 8*p3/q3/x;
|
---|
| 1208 | }
|
---|
| 1209 | }
|
---|
| 1210 | }
|
---|