1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class tdevd
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix
|
---|
35 |
|
---|
36 | The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by
|
---|
37 | using an QL/QR algorithm with implicit shifts.
|
---|
38 |
|
---|
39 | Input parameters:
|
---|
40 | D - the main diagonal of a tridiagonal matrix.
|
---|
41 | Array whose index ranges within [0..N-1].
|
---|
42 | E - the secondary diagonal of a tridiagonal matrix.
|
---|
43 | Array whose index ranges within [0..N-2].
|
---|
44 | N - size of matrix A.
|
---|
45 | ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
---|
46 | If ZNeeded is equal to:
|
---|
47 | * 0, the eigenvectors are not needed;
|
---|
48 | * 1, the eigenvectors of a tridiagonal matrix
|
---|
49 | are multiplied by the square matrix Z. It is used if the
|
---|
50 | tridiagonal matrix is obtained by the similarity
|
---|
51 | transformation of a symmetric matrix;
|
---|
52 | * 2, the eigenvectors of a tridiagonal matrix replace the
|
---|
53 | square matrix Z;
|
---|
54 | * 3, matrix Z contains the first row of the eigenvectors
|
---|
55 | matrix.
|
---|
56 | Z - if ZNeeded=1, Z contains the square matrix by which the
|
---|
57 | eigenvectors are multiplied.
|
---|
58 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
59 |
|
---|
60 | Output parameters:
|
---|
61 | D - eigenvalues in ascending order.
|
---|
62 | Array whose index ranges within [0..N-1].
|
---|
63 | Z - if ZNeeded is equal to:
|
---|
64 | * 0, Z hasnt changed;
|
---|
65 | * 1, Z contains the product of a given matrix (from the left)
|
---|
66 | and the eigenvectors matrix (from the right);
|
---|
67 | * 2, Z contains the eigenvectors.
|
---|
68 | * 3, Z contains the first row of the eigenvectors matrix.
|
---|
69 | If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1].
|
---|
70 | In that case, the eigenvectors are stored in the matrix columns.
|
---|
71 | If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1].
|
---|
72 |
|
---|
73 | Result:
|
---|
74 | True, if the algorithm has converged.
|
---|
75 | False, if the algorithm hasn't converged.
|
---|
76 |
|
---|
77 | -- LAPACK routine (version 3.0) --
|
---|
78 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
79 | Courant Institute, Argonne National Lab, and Rice University
|
---|
80 | September 30, 1994
|
---|
81 | *************************************************************************/
|
---|
82 | public static bool smatrixtdevd(ref double[] d,
|
---|
83 | double[] e,
|
---|
84 | int n,
|
---|
85 | int zneeded,
|
---|
86 | ref double[,] z)
|
---|
87 | {
|
---|
88 | bool result = new bool();
|
---|
89 | double[] d1 = new double[0];
|
---|
90 | double[] e1 = new double[0];
|
---|
91 | double[,] z1 = new double[0,0];
|
---|
92 | int i = 0;
|
---|
93 | int i_ = 0;
|
---|
94 | int i1_ = 0;
|
---|
95 |
|
---|
96 | e = (double[])e.Clone();
|
---|
97 |
|
---|
98 |
|
---|
99 | //
|
---|
100 | // Prepare 1-based task
|
---|
101 | //
|
---|
102 | d1 = new double[n+1];
|
---|
103 | e1 = new double[n+1];
|
---|
104 | i1_ = (0) - (1);
|
---|
105 | for(i_=1; i_<=n;i_++)
|
---|
106 | {
|
---|
107 | d1[i_] = d[i_+i1_];
|
---|
108 | }
|
---|
109 | if( n>1 )
|
---|
110 | {
|
---|
111 | i1_ = (0) - (1);
|
---|
112 | for(i_=1; i_<=n-1;i_++)
|
---|
113 | {
|
---|
114 | e1[i_] = e[i_+i1_];
|
---|
115 | }
|
---|
116 | }
|
---|
117 | if( zneeded==1 )
|
---|
118 | {
|
---|
119 | z1 = new double[n+1, n+1];
|
---|
120 | for(i=1; i<=n; i++)
|
---|
121 | {
|
---|
122 | i1_ = (0) - (1);
|
---|
123 | for(i_=1; i_<=n;i_++)
|
---|
124 | {
|
---|
125 | z1[i,i_] = z[i-1,i_+i1_];
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | //
|
---|
131 | // Solve 1-based task
|
---|
132 | //
|
---|
133 | result = tridiagonalevd(ref d1, e1, n, zneeded, ref z1);
|
---|
134 | if( !result )
|
---|
135 | {
|
---|
136 | return result;
|
---|
137 | }
|
---|
138 |
|
---|
139 | //
|
---|
140 | // Convert back to 0-based result
|
---|
141 | //
|
---|
142 | i1_ = (1) - (0);
|
---|
143 | for(i_=0; i_<=n-1;i_++)
|
---|
144 | {
|
---|
145 | d[i_] = d1[i_+i1_];
|
---|
146 | }
|
---|
147 | if( zneeded!=0 )
|
---|
148 | {
|
---|
149 | if( zneeded==1 )
|
---|
150 | {
|
---|
151 | for(i=1; i<=n; i++)
|
---|
152 | {
|
---|
153 | i1_ = (1) - (0);
|
---|
154 | for(i_=0; i_<=n-1;i_++)
|
---|
155 | {
|
---|
156 | z[i-1,i_] = z1[i,i_+i1_];
|
---|
157 | }
|
---|
158 | }
|
---|
159 | return result;
|
---|
160 | }
|
---|
161 | if( zneeded==2 )
|
---|
162 | {
|
---|
163 | z = new double[n-1+1, n-1+1];
|
---|
164 | for(i=1; i<=n; i++)
|
---|
165 | {
|
---|
166 | i1_ = (1) - (0);
|
---|
167 | for(i_=0; i_<=n-1;i_++)
|
---|
168 | {
|
---|
169 | z[i-1,i_] = z1[i,i_+i1_];
|
---|
170 | }
|
---|
171 | }
|
---|
172 | return result;
|
---|
173 | }
|
---|
174 | if( zneeded==3 )
|
---|
175 | {
|
---|
176 | z = new double[0+1, n-1+1];
|
---|
177 | i1_ = (1) - (0);
|
---|
178 | for(i_=0; i_<=n-1;i_++)
|
---|
179 | {
|
---|
180 | z[0,i_] = z1[1,i_+i1_];
|
---|
181 | }
|
---|
182 | return result;
|
---|
183 | }
|
---|
184 | System.Diagnostics.Debug.Assert(false, "SMatrixTDEVD: Incorrect ZNeeded!");
|
---|
185 | }
|
---|
186 | return result;
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | public static bool tridiagonalevd(ref double[] d,
|
---|
191 | double[] e,
|
---|
192 | int n,
|
---|
193 | int zneeded,
|
---|
194 | ref double[,] z)
|
---|
195 | {
|
---|
196 | bool result = new bool();
|
---|
197 | int maxit = 0;
|
---|
198 | int i = 0;
|
---|
199 | int ii = 0;
|
---|
200 | int iscale = 0;
|
---|
201 | int j = 0;
|
---|
202 | int jtot = 0;
|
---|
203 | int k = 0;
|
---|
204 | int t = 0;
|
---|
205 | int l = 0;
|
---|
206 | int l1 = 0;
|
---|
207 | int lend = 0;
|
---|
208 | int lendm1 = 0;
|
---|
209 | int lendp1 = 0;
|
---|
210 | int lendsv = 0;
|
---|
211 | int lm1 = 0;
|
---|
212 | int lsv = 0;
|
---|
213 | int m = 0;
|
---|
214 | int mm = 0;
|
---|
215 | int mm1 = 0;
|
---|
216 | int nm1 = 0;
|
---|
217 | int nmaxit = 0;
|
---|
218 | int tmpint = 0;
|
---|
219 | double anorm = 0;
|
---|
220 | double b = 0;
|
---|
221 | double c = 0;
|
---|
222 | double eps = 0;
|
---|
223 | double eps2 = 0;
|
---|
224 | double f = 0;
|
---|
225 | double g = 0;
|
---|
226 | double p = 0;
|
---|
227 | double r = 0;
|
---|
228 | double rt1 = 0;
|
---|
229 | double rt2 = 0;
|
---|
230 | double s = 0;
|
---|
231 | double safmax = 0;
|
---|
232 | double safmin = 0;
|
---|
233 | double ssfmax = 0;
|
---|
234 | double ssfmin = 0;
|
---|
235 | double tst = 0;
|
---|
236 | double tmp = 0;
|
---|
237 | double[] work1 = new double[0];
|
---|
238 | double[] work2 = new double[0];
|
---|
239 | double[] workc = new double[0];
|
---|
240 | double[] works = new double[0];
|
---|
241 | double[] wtemp = new double[0];
|
---|
242 | bool gotoflag = new bool();
|
---|
243 | int zrows = 0;
|
---|
244 | bool wastranspose = new bool();
|
---|
245 | int i_ = 0;
|
---|
246 |
|
---|
247 | e = (double[])e.Clone();
|
---|
248 |
|
---|
249 | System.Diagnostics.Debug.Assert(zneeded>=0 & zneeded<=3, "TridiagonalEVD: Incorrent ZNeeded");
|
---|
250 |
|
---|
251 | //
|
---|
252 | // Quick return if possible
|
---|
253 | //
|
---|
254 | if( zneeded<0 | zneeded>3 )
|
---|
255 | {
|
---|
256 | result = false;
|
---|
257 | return result;
|
---|
258 | }
|
---|
259 | result = true;
|
---|
260 | if( n==0 )
|
---|
261 | {
|
---|
262 | return result;
|
---|
263 | }
|
---|
264 | if( n==1 )
|
---|
265 | {
|
---|
266 | if( zneeded==2 | zneeded==3 )
|
---|
267 | {
|
---|
268 | z = new double[1+1, 1+1];
|
---|
269 | z[1,1] = 1;
|
---|
270 | }
|
---|
271 | return result;
|
---|
272 | }
|
---|
273 | maxit = 30;
|
---|
274 |
|
---|
275 | //
|
---|
276 | // Initialize arrays
|
---|
277 | //
|
---|
278 | wtemp = new double[n+1];
|
---|
279 | work1 = new double[n-1+1];
|
---|
280 | work2 = new double[n-1+1];
|
---|
281 | workc = new double[n+1];
|
---|
282 | works = new double[n+1];
|
---|
283 |
|
---|
284 | //
|
---|
285 | // Determine the unit roundoff and over/underflow thresholds.
|
---|
286 | //
|
---|
287 | eps = AP.Math.MachineEpsilon;
|
---|
288 | eps2 = AP.Math.Sqr(eps);
|
---|
289 | safmin = AP.Math.MinRealNumber;
|
---|
290 | safmax = AP.Math.MaxRealNumber;
|
---|
291 | ssfmax = Math.Sqrt(safmax)/3;
|
---|
292 | ssfmin = Math.Sqrt(safmin)/eps2;
|
---|
293 |
|
---|
294 | //
|
---|
295 | // Prepare Z
|
---|
296 | //
|
---|
297 | // Here we are using transposition to get rid of column operations
|
---|
298 | //
|
---|
299 | //
|
---|
300 | wastranspose = false;
|
---|
301 | if( zneeded==0 )
|
---|
302 | {
|
---|
303 | zrows = 0;
|
---|
304 | }
|
---|
305 | if( zneeded==1 )
|
---|
306 | {
|
---|
307 | zrows = n;
|
---|
308 | }
|
---|
309 | if( zneeded==2 )
|
---|
310 | {
|
---|
311 | zrows = n;
|
---|
312 | }
|
---|
313 | if( zneeded==3 )
|
---|
314 | {
|
---|
315 | zrows = 1;
|
---|
316 | }
|
---|
317 | if( zneeded==1 )
|
---|
318 | {
|
---|
319 | wastranspose = true;
|
---|
320 | blas.inplacetranspose(ref z, 1, n, 1, n, ref wtemp);
|
---|
321 | }
|
---|
322 | if( zneeded==2 )
|
---|
323 | {
|
---|
324 | wastranspose = true;
|
---|
325 | z = new double[n+1, n+1];
|
---|
326 | for(i=1; i<=n; i++)
|
---|
327 | {
|
---|
328 | for(j=1; j<=n; j++)
|
---|
329 | {
|
---|
330 | if( i==j )
|
---|
331 | {
|
---|
332 | z[i,j] = 1;
|
---|
333 | }
|
---|
334 | else
|
---|
335 | {
|
---|
336 | z[i,j] = 0;
|
---|
337 | }
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|
341 | if( zneeded==3 )
|
---|
342 | {
|
---|
343 | wastranspose = false;
|
---|
344 | z = new double[1+1, n+1];
|
---|
345 | for(j=1; j<=n; j++)
|
---|
346 | {
|
---|
347 | if( j==1 )
|
---|
348 | {
|
---|
349 | z[1,j] = 1;
|
---|
350 | }
|
---|
351 | else
|
---|
352 | {
|
---|
353 | z[1,j] = 0;
|
---|
354 | }
|
---|
355 | }
|
---|
356 | }
|
---|
357 | nmaxit = n*maxit;
|
---|
358 | jtot = 0;
|
---|
359 |
|
---|
360 | //
|
---|
361 | // Determine where the matrix splits and choose QL or QR iteration
|
---|
362 | // for each block, according to whether top or bottom diagonal
|
---|
363 | // element is smaller.
|
---|
364 | //
|
---|
365 | l1 = 1;
|
---|
366 | nm1 = n-1;
|
---|
367 | while( true )
|
---|
368 | {
|
---|
369 | if( l1>n )
|
---|
370 | {
|
---|
371 | break;
|
---|
372 | }
|
---|
373 | if( l1>1 )
|
---|
374 | {
|
---|
375 | e[l1-1] = 0;
|
---|
376 | }
|
---|
377 | gotoflag = false;
|
---|
378 | if( l1<=nm1 )
|
---|
379 | {
|
---|
380 | for(m=l1; m<=nm1; m++)
|
---|
381 | {
|
---|
382 | tst = Math.Abs(e[m]);
|
---|
383 | if( (double)(tst)==(double)(0) )
|
---|
384 | {
|
---|
385 | gotoflag = true;
|
---|
386 | break;
|
---|
387 | }
|
---|
388 | if( (double)(tst)<=(double)(Math.Sqrt(Math.Abs(d[m]))*Math.Sqrt(Math.Abs(d[m+1]))*eps) )
|
---|
389 | {
|
---|
390 | e[m] = 0;
|
---|
391 | gotoflag = true;
|
---|
392 | break;
|
---|
393 | }
|
---|
394 | }
|
---|
395 | }
|
---|
396 | if( !gotoflag )
|
---|
397 | {
|
---|
398 | m = n;
|
---|
399 | }
|
---|
400 |
|
---|
401 | //
|
---|
402 | // label 30:
|
---|
403 | //
|
---|
404 | l = l1;
|
---|
405 | lsv = l;
|
---|
406 | lend = m;
|
---|
407 | lendsv = lend;
|
---|
408 | l1 = m+1;
|
---|
409 | if( lend==l )
|
---|
410 | {
|
---|
411 | continue;
|
---|
412 | }
|
---|
413 |
|
---|
414 | //
|
---|
415 | // Scale submatrix in rows and columns L to LEND
|
---|
416 | //
|
---|
417 | if( l==lend )
|
---|
418 | {
|
---|
419 | anorm = Math.Abs(d[l]);
|
---|
420 | }
|
---|
421 | else
|
---|
422 | {
|
---|
423 | anorm = Math.Max(Math.Abs(d[l])+Math.Abs(e[l]), Math.Abs(e[lend-1])+Math.Abs(d[lend]));
|
---|
424 | for(i=l+1; i<=lend-1; i++)
|
---|
425 | {
|
---|
426 | anorm = Math.Max(anorm, Math.Abs(d[i])+Math.Abs(e[i])+Math.Abs(e[i-1]));
|
---|
427 | }
|
---|
428 | }
|
---|
429 | iscale = 0;
|
---|
430 | if( (double)(anorm)==(double)(0) )
|
---|
431 | {
|
---|
432 | continue;
|
---|
433 | }
|
---|
434 | if( (double)(anorm)>(double)(ssfmax) )
|
---|
435 | {
|
---|
436 | iscale = 1;
|
---|
437 | tmp = ssfmax/anorm;
|
---|
438 | tmpint = lend-1;
|
---|
439 | for(i_=l; i_<=lend;i_++)
|
---|
440 | {
|
---|
441 | d[i_] = tmp*d[i_];
|
---|
442 | }
|
---|
443 | for(i_=l; i_<=tmpint;i_++)
|
---|
444 | {
|
---|
445 | e[i_] = tmp*e[i_];
|
---|
446 | }
|
---|
447 | }
|
---|
448 | if( (double)(anorm)<(double)(ssfmin) )
|
---|
449 | {
|
---|
450 | iscale = 2;
|
---|
451 | tmp = ssfmin/anorm;
|
---|
452 | tmpint = lend-1;
|
---|
453 | for(i_=l; i_<=lend;i_++)
|
---|
454 | {
|
---|
455 | d[i_] = tmp*d[i_];
|
---|
456 | }
|
---|
457 | for(i_=l; i_<=tmpint;i_++)
|
---|
458 | {
|
---|
459 | e[i_] = tmp*e[i_];
|
---|
460 | }
|
---|
461 | }
|
---|
462 |
|
---|
463 | //
|
---|
464 | // Choose between QL and QR iteration
|
---|
465 | //
|
---|
466 | if( (double)(Math.Abs(d[lend]))<(double)(Math.Abs(d[l])) )
|
---|
467 | {
|
---|
468 | lend = lsv;
|
---|
469 | l = lendsv;
|
---|
470 | }
|
---|
471 | if( lend>l )
|
---|
472 | {
|
---|
473 |
|
---|
474 | //
|
---|
475 | // QL Iteration
|
---|
476 | //
|
---|
477 | // Look for small subdiagonal element.
|
---|
478 | //
|
---|
479 | while( true )
|
---|
480 | {
|
---|
481 | gotoflag = false;
|
---|
482 | if( l!=lend )
|
---|
483 | {
|
---|
484 | lendm1 = lend-1;
|
---|
485 | for(m=l; m<=lendm1; m++)
|
---|
486 | {
|
---|
487 | tst = AP.Math.Sqr(Math.Abs(e[m]));
|
---|
488 | if( (double)(tst)<=(double)(eps2*Math.Abs(d[m])*Math.Abs(d[m+1])+safmin) )
|
---|
489 | {
|
---|
490 | gotoflag = true;
|
---|
491 | break;
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 | if( !gotoflag )
|
---|
496 | {
|
---|
497 | m = lend;
|
---|
498 | }
|
---|
499 | if( m<lend )
|
---|
500 | {
|
---|
501 | e[m] = 0;
|
---|
502 | }
|
---|
503 | p = d[l];
|
---|
504 | if( m!=l )
|
---|
505 | {
|
---|
506 |
|
---|
507 | //
|
---|
508 | // If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
---|
509 | // to compute its eigensystem.
|
---|
510 | //
|
---|
511 | if( m==l+1 )
|
---|
512 | {
|
---|
513 | if( zneeded>0 )
|
---|
514 | {
|
---|
515 | tdevdev2(d[l], e[l], d[l+1], ref rt1, ref rt2, ref c, ref s);
|
---|
516 | work1[l] = c;
|
---|
517 | work2[l] = s;
|
---|
518 | workc[1] = work1[l];
|
---|
519 | works[1] = work2[l];
|
---|
520 | if( !wastranspose )
|
---|
521 | {
|
---|
522 | rotations.applyrotationsfromtheright(false, 1, zrows, l, l+1, ref workc, ref works, ref z, ref wtemp);
|
---|
523 | }
|
---|
524 | else
|
---|
525 | {
|
---|
526 | rotations.applyrotationsfromtheleft(false, l, l+1, 1, zrows, ref workc, ref works, ref z, ref wtemp);
|
---|
527 | }
|
---|
528 | }
|
---|
529 | else
|
---|
530 | {
|
---|
531 | tdevde2(d[l], e[l], d[l+1], ref rt1, ref rt2);
|
---|
532 | }
|
---|
533 | d[l] = rt1;
|
---|
534 | d[l+1] = rt2;
|
---|
535 | e[l] = 0;
|
---|
536 | l = l+2;
|
---|
537 | if( l<=lend )
|
---|
538 | {
|
---|
539 | continue;
|
---|
540 | }
|
---|
541 |
|
---|
542 | //
|
---|
543 | // GOTO 140
|
---|
544 | //
|
---|
545 | break;
|
---|
546 | }
|
---|
547 | if( jtot==nmaxit )
|
---|
548 | {
|
---|
549 |
|
---|
550 | //
|
---|
551 | // GOTO 140
|
---|
552 | //
|
---|
553 | break;
|
---|
554 | }
|
---|
555 | jtot = jtot+1;
|
---|
556 |
|
---|
557 | //
|
---|
558 | // Form shift.
|
---|
559 | //
|
---|
560 | g = (d[l+1]-p)/(2*e[l]);
|
---|
561 | r = tdevdpythag(g, 1);
|
---|
562 | g = d[m]-p+e[l]/(g+tdevdextsign(r, g));
|
---|
563 | s = 1;
|
---|
564 | c = 1;
|
---|
565 | p = 0;
|
---|
566 |
|
---|
567 | //
|
---|
568 | // Inner loop
|
---|
569 | //
|
---|
570 | mm1 = m-1;
|
---|
571 | for(i=mm1; i>=l; i--)
|
---|
572 | {
|
---|
573 | f = s*e[i];
|
---|
574 | b = c*e[i];
|
---|
575 | rotations.generaterotation(g, f, ref c, ref s, ref r);
|
---|
576 | if( i!=m-1 )
|
---|
577 | {
|
---|
578 | e[i+1] = r;
|
---|
579 | }
|
---|
580 | g = d[i+1]-p;
|
---|
581 | r = (d[i]-g)*s+2*c*b;
|
---|
582 | p = s*r;
|
---|
583 | d[i+1] = g+p;
|
---|
584 | g = c*r-b;
|
---|
585 |
|
---|
586 | //
|
---|
587 | // If eigenvectors are desired, then save rotations.
|
---|
588 | //
|
---|
589 | if( zneeded>0 )
|
---|
590 | {
|
---|
591 | work1[i] = c;
|
---|
592 | work2[i] = -s;
|
---|
593 | }
|
---|
594 | }
|
---|
595 |
|
---|
596 | //
|
---|
597 | // If eigenvectors are desired, then apply saved rotations.
|
---|
598 | //
|
---|
599 | if( zneeded>0 )
|
---|
600 | {
|
---|
601 | for(i=l; i<=m-1; i++)
|
---|
602 | {
|
---|
603 | workc[i-l+1] = work1[i];
|
---|
604 | works[i-l+1] = work2[i];
|
---|
605 | }
|
---|
606 | if( !wastranspose )
|
---|
607 | {
|
---|
608 | rotations.applyrotationsfromtheright(false, 1, zrows, l, m, ref workc, ref works, ref z, ref wtemp);
|
---|
609 | }
|
---|
610 | else
|
---|
611 | {
|
---|
612 | rotations.applyrotationsfromtheleft(false, l, m, 1, zrows, ref workc, ref works, ref z, ref wtemp);
|
---|
613 | }
|
---|
614 | }
|
---|
615 | d[l] = d[l]-p;
|
---|
616 | e[l] = g;
|
---|
617 | continue;
|
---|
618 | }
|
---|
619 |
|
---|
620 | //
|
---|
621 | // Eigenvalue found.
|
---|
622 | //
|
---|
623 | d[l] = p;
|
---|
624 | l = l+1;
|
---|
625 | if( l<=lend )
|
---|
626 | {
|
---|
627 | continue;
|
---|
628 | }
|
---|
629 | break;
|
---|
630 | }
|
---|
631 | }
|
---|
632 | else
|
---|
633 | {
|
---|
634 |
|
---|
635 | //
|
---|
636 | // QR Iteration
|
---|
637 | //
|
---|
638 | // Look for small superdiagonal element.
|
---|
639 | //
|
---|
640 | while( true )
|
---|
641 | {
|
---|
642 | gotoflag = false;
|
---|
643 | if( l!=lend )
|
---|
644 | {
|
---|
645 | lendp1 = lend+1;
|
---|
646 | for(m=l; m>=lendp1; m--)
|
---|
647 | {
|
---|
648 | tst = AP.Math.Sqr(Math.Abs(e[m-1]));
|
---|
649 | if( (double)(tst)<=(double)(eps2*Math.Abs(d[m])*Math.Abs(d[m-1])+safmin) )
|
---|
650 | {
|
---|
651 | gotoflag = true;
|
---|
652 | break;
|
---|
653 | }
|
---|
654 | }
|
---|
655 | }
|
---|
656 | if( !gotoflag )
|
---|
657 | {
|
---|
658 | m = lend;
|
---|
659 | }
|
---|
660 | if( m>lend )
|
---|
661 | {
|
---|
662 | e[m-1] = 0;
|
---|
663 | }
|
---|
664 | p = d[l];
|
---|
665 | if( m!=l )
|
---|
666 | {
|
---|
667 |
|
---|
668 | //
|
---|
669 | // If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
---|
670 | // to compute its eigensystem.
|
---|
671 | //
|
---|
672 | if( m==l-1 )
|
---|
673 | {
|
---|
674 | if( zneeded>0 )
|
---|
675 | {
|
---|
676 | tdevdev2(d[l-1], e[l-1], d[l], ref rt1, ref rt2, ref c, ref s);
|
---|
677 | work1[m] = c;
|
---|
678 | work2[m] = s;
|
---|
679 | workc[1] = c;
|
---|
680 | works[1] = s;
|
---|
681 | if( !wastranspose )
|
---|
682 | {
|
---|
683 | rotations.applyrotationsfromtheright(true, 1, zrows, l-1, l, ref workc, ref works, ref z, ref wtemp);
|
---|
684 | }
|
---|
685 | else
|
---|
686 | {
|
---|
687 | rotations.applyrotationsfromtheleft(true, l-1, l, 1, zrows, ref workc, ref works, ref z, ref wtemp);
|
---|
688 | }
|
---|
689 | }
|
---|
690 | else
|
---|
691 | {
|
---|
692 | tdevde2(d[l-1], e[l-1], d[l], ref rt1, ref rt2);
|
---|
693 | }
|
---|
694 | d[l-1] = rt1;
|
---|
695 | d[l] = rt2;
|
---|
696 | e[l-1] = 0;
|
---|
697 | l = l-2;
|
---|
698 | if( l>=lend )
|
---|
699 | {
|
---|
700 | continue;
|
---|
701 | }
|
---|
702 | break;
|
---|
703 | }
|
---|
704 | if( jtot==nmaxit )
|
---|
705 | {
|
---|
706 | break;
|
---|
707 | }
|
---|
708 | jtot = jtot+1;
|
---|
709 |
|
---|
710 | //
|
---|
711 | // Form shift.
|
---|
712 | //
|
---|
713 | g = (d[l-1]-p)/(2*e[l-1]);
|
---|
714 | r = tdevdpythag(g, 1);
|
---|
715 | g = d[m]-p+e[l-1]/(g+tdevdextsign(r, g));
|
---|
716 | s = 1;
|
---|
717 | c = 1;
|
---|
718 | p = 0;
|
---|
719 |
|
---|
720 | //
|
---|
721 | // Inner loop
|
---|
722 | //
|
---|
723 | lm1 = l-1;
|
---|
724 | for(i=m; i<=lm1; i++)
|
---|
725 | {
|
---|
726 | f = s*e[i];
|
---|
727 | b = c*e[i];
|
---|
728 | rotations.generaterotation(g, f, ref c, ref s, ref r);
|
---|
729 | if( i!=m )
|
---|
730 | {
|
---|
731 | e[i-1] = r;
|
---|
732 | }
|
---|
733 | g = d[i]-p;
|
---|
734 | r = (d[i+1]-g)*s+2*c*b;
|
---|
735 | p = s*r;
|
---|
736 | d[i] = g+p;
|
---|
737 | g = c*r-b;
|
---|
738 |
|
---|
739 | //
|
---|
740 | // If eigenvectors are desired, then save rotations.
|
---|
741 | //
|
---|
742 | if( zneeded>0 )
|
---|
743 | {
|
---|
744 | work1[i] = c;
|
---|
745 | work2[i] = s;
|
---|
746 | }
|
---|
747 | }
|
---|
748 |
|
---|
749 | //
|
---|
750 | // If eigenvectors are desired, then apply saved rotations.
|
---|
751 | //
|
---|
752 | if( zneeded>0 )
|
---|
753 | {
|
---|
754 | mm = l-m+1;
|
---|
755 | for(i=m; i<=l-1; i++)
|
---|
756 | {
|
---|
757 | workc[i-m+1] = work1[i];
|
---|
758 | works[i-m+1] = work2[i];
|
---|
759 | }
|
---|
760 | if( !wastranspose )
|
---|
761 | {
|
---|
762 | rotations.applyrotationsfromtheright(true, 1, zrows, m, l, ref workc, ref works, ref z, ref wtemp);
|
---|
763 | }
|
---|
764 | else
|
---|
765 | {
|
---|
766 | rotations.applyrotationsfromtheleft(true, m, l, 1, zrows, ref workc, ref works, ref z, ref wtemp);
|
---|
767 | }
|
---|
768 | }
|
---|
769 | d[l] = d[l]-p;
|
---|
770 | e[lm1] = g;
|
---|
771 | continue;
|
---|
772 | }
|
---|
773 |
|
---|
774 | //
|
---|
775 | // Eigenvalue found.
|
---|
776 | //
|
---|
777 | d[l] = p;
|
---|
778 | l = l-1;
|
---|
779 | if( l>=lend )
|
---|
780 | {
|
---|
781 | continue;
|
---|
782 | }
|
---|
783 | break;
|
---|
784 | }
|
---|
785 | }
|
---|
786 |
|
---|
787 | //
|
---|
788 | // Undo scaling if necessary
|
---|
789 | //
|
---|
790 | if( iscale==1 )
|
---|
791 | {
|
---|
792 | tmp = anorm/ssfmax;
|
---|
793 | tmpint = lendsv-1;
|
---|
794 | for(i_=lsv; i_<=lendsv;i_++)
|
---|
795 | {
|
---|
796 | d[i_] = tmp*d[i_];
|
---|
797 | }
|
---|
798 | for(i_=lsv; i_<=tmpint;i_++)
|
---|
799 | {
|
---|
800 | e[i_] = tmp*e[i_];
|
---|
801 | }
|
---|
802 | }
|
---|
803 | if( iscale==2 )
|
---|
804 | {
|
---|
805 | tmp = anorm/ssfmin;
|
---|
806 | tmpint = lendsv-1;
|
---|
807 | for(i_=lsv; i_<=lendsv;i_++)
|
---|
808 | {
|
---|
809 | d[i_] = tmp*d[i_];
|
---|
810 | }
|
---|
811 | for(i_=lsv; i_<=tmpint;i_++)
|
---|
812 | {
|
---|
813 | e[i_] = tmp*e[i_];
|
---|
814 | }
|
---|
815 | }
|
---|
816 |
|
---|
817 | //
|
---|
818 | // Check for no convergence to an eigenvalue after a total
|
---|
819 | // of N*MAXIT iterations.
|
---|
820 | //
|
---|
821 | if( jtot>=nmaxit )
|
---|
822 | {
|
---|
823 | result = false;
|
---|
824 | if( wastranspose )
|
---|
825 | {
|
---|
826 | blas.inplacetranspose(ref z, 1, n, 1, n, ref wtemp);
|
---|
827 | }
|
---|
828 | return result;
|
---|
829 | }
|
---|
830 | }
|
---|
831 |
|
---|
832 | //
|
---|
833 | // Order eigenvalues and eigenvectors.
|
---|
834 | //
|
---|
835 | if( zneeded==0 )
|
---|
836 | {
|
---|
837 |
|
---|
838 | //
|
---|
839 | // Sort
|
---|
840 | //
|
---|
841 | if( n==1 )
|
---|
842 | {
|
---|
843 | return result;
|
---|
844 | }
|
---|
845 | if( n==2 )
|
---|
846 | {
|
---|
847 | if( (double)(d[1])>(double)(d[2]) )
|
---|
848 | {
|
---|
849 | tmp = d[1];
|
---|
850 | d[1] = d[2];
|
---|
851 | d[2] = tmp;
|
---|
852 | }
|
---|
853 | return result;
|
---|
854 | }
|
---|
855 | i = 2;
|
---|
856 | do
|
---|
857 | {
|
---|
858 | t = i;
|
---|
859 | while( t!=1 )
|
---|
860 | {
|
---|
861 | k = t/2;
|
---|
862 | if( (double)(d[k])>=(double)(d[t]) )
|
---|
863 | {
|
---|
864 | t = 1;
|
---|
865 | }
|
---|
866 | else
|
---|
867 | {
|
---|
868 | tmp = d[k];
|
---|
869 | d[k] = d[t];
|
---|
870 | d[t] = tmp;
|
---|
871 | t = k;
|
---|
872 | }
|
---|
873 | }
|
---|
874 | i = i+1;
|
---|
875 | }
|
---|
876 | while( i<=n );
|
---|
877 | i = n-1;
|
---|
878 | do
|
---|
879 | {
|
---|
880 | tmp = d[i+1];
|
---|
881 | d[i+1] = d[1];
|
---|
882 | d[+1] = tmp;
|
---|
883 | t = 1;
|
---|
884 | while( t!=0 )
|
---|
885 | {
|
---|
886 | k = 2*t;
|
---|
887 | if( k>i )
|
---|
888 | {
|
---|
889 | t = 0;
|
---|
890 | }
|
---|
891 | else
|
---|
892 | {
|
---|
893 | if( k<i )
|
---|
894 | {
|
---|
895 | if( (double)(d[k+1])>(double)(d[k]) )
|
---|
896 | {
|
---|
897 | k = k+1;
|
---|
898 | }
|
---|
899 | }
|
---|
900 | if( (double)(d[t])>=(double)(d[k]) )
|
---|
901 | {
|
---|
902 | t = 0;
|
---|
903 | }
|
---|
904 | else
|
---|
905 | {
|
---|
906 | tmp = d[k];
|
---|
907 | d[k] = d[t];
|
---|
908 | d[t] = tmp;
|
---|
909 | t = k;
|
---|
910 | }
|
---|
911 | }
|
---|
912 | }
|
---|
913 | i = i-1;
|
---|
914 | }
|
---|
915 | while( i>=1 );
|
---|
916 | }
|
---|
917 | else
|
---|
918 | {
|
---|
919 |
|
---|
920 | //
|
---|
921 | // Use Selection Sort to minimize swaps of eigenvectors
|
---|
922 | //
|
---|
923 | for(ii=2; ii<=n; ii++)
|
---|
924 | {
|
---|
925 | i = ii-1;
|
---|
926 | k = i;
|
---|
927 | p = d[i];
|
---|
928 | for(j=ii; j<=n; j++)
|
---|
929 | {
|
---|
930 | if( (double)(d[j])<(double)(p) )
|
---|
931 | {
|
---|
932 | k = j;
|
---|
933 | p = d[j];
|
---|
934 | }
|
---|
935 | }
|
---|
936 | if( k!=i )
|
---|
937 | {
|
---|
938 | d[k] = d[i];
|
---|
939 | d[i] = p;
|
---|
940 | if( wastranspose )
|
---|
941 | {
|
---|
942 | for(i_=1; i_<=n;i_++)
|
---|
943 | {
|
---|
944 | wtemp[i_] = z[i,i_];
|
---|
945 | }
|
---|
946 | for(i_=1; i_<=n;i_++)
|
---|
947 | {
|
---|
948 | z[i,i_] = z[k,i_];
|
---|
949 | }
|
---|
950 | for(i_=1; i_<=n;i_++)
|
---|
951 | {
|
---|
952 | z[k,i_] = wtemp[i_];
|
---|
953 | }
|
---|
954 | }
|
---|
955 | else
|
---|
956 | {
|
---|
957 | for(i_=1; i_<=zrows;i_++)
|
---|
958 | {
|
---|
959 | wtemp[i_] = z[i_,i];
|
---|
960 | }
|
---|
961 | for(i_=1; i_<=zrows;i_++)
|
---|
962 | {
|
---|
963 | z[i_,i] = z[i_,k];
|
---|
964 | }
|
---|
965 | for(i_=1; i_<=zrows;i_++)
|
---|
966 | {
|
---|
967 | z[i_,k] = wtemp[i_];
|
---|
968 | }
|
---|
969 | }
|
---|
970 | }
|
---|
971 | }
|
---|
972 | if( wastranspose )
|
---|
973 | {
|
---|
974 | blas.inplacetranspose(ref z, 1, n, 1, n, ref wtemp);
|
---|
975 | }
|
---|
976 | }
|
---|
977 | return result;
|
---|
978 | }
|
---|
979 |
|
---|
980 |
|
---|
981 | /*************************************************************************
|
---|
982 | DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
|
---|
983 | [ A B ]
|
---|
984 | [ B C ].
|
---|
985 | On return, RT1 is the eigenvalue of larger absolute value, and RT2
|
---|
986 | is the eigenvalue of smaller absolute value.
|
---|
987 |
|
---|
988 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
989 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
990 | Courant Institute, Argonne National Lab, and Rice University
|
---|
991 | October 31, 1992
|
---|
992 | *************************************************************************/
|
---|
993 | private static void tdevde2(double a,
|
---|
994 | double b,
|
---|
995 | double c,
|
---|
996 | ref double rt1,
|
---|
997 | ref double rt2)
|
---|
998 | {
|
---|
999 | double ab = 0;
|
---|
1000 | double acmn = 0;
|
---|
1001 | double acmx = 0;
|
---|
1002 | double adf = 0;
|
---|
1003 | double df = 0;
|
---|
1004 | double rt = 0;
|
---|
1005 | double sm = 0;
|
---|
1006 | double tb = 0;
|
---|
1007 |
|
---|
1008 | sm = a+c;
|
---|
1009 | df = a-c;
|
---|
1010 | adf = Math.Abs(df);
|
---|
1011 | tb = b+b;
|
---|
1012 | ab = Math.Abs(tb);
|
---|
1013 | if( (double)(Math.Abs(a))>(double)(Math.Abs(c)) )
|
---|
1014 | {
|
---|
1015 | acmx = a;
|
---|
1016 | acmn = c;
|
---|
1017 | }
|
---|
1018 | else
|
---|
1019 | {
|
---|
1020 | acmx = c;
|
---|
1021 | acmn = a;
|
---|
1022 | }
|
---|
1023 | if( (double)(adf)>(double)(ab) )
|
---|
1024 | {
|
---|
1025 | rt = adf*Math.Sqrt(1+AP.Math.Sqr(ab/adf));
|
---|
1026 | }
|
---|
1027 | else
|
---|
1028 | {
|
---|
1029 | if( (double)(adf)<(double)(ab) )
|
---|
1030 | {
|
---|
1031 | rt = ab*Math.Sqrt(1+AP.Math.Sqr(adf/ab));
|
---|
1032 | }
|
---|
1033 | else
|
---|
1034 | {
|
---|
1035 |
|
---|
1036 | //
|
---|
1037 | // Includes case AB=ADF=0
|
---|
1038 | //
|
---|
1039 | rt = ab*Math.Sqrt(2);
|
---|
1040 | }
|
---|
1041 | }
|
---|
1042 | if( (double)(sm)<(double)(0) )
|
---|
1043 | {
|
---|
1044 | rt1 = 0.5*(sm-rt);
|
---|
1045 |
|
---|
1046 | //
|
---|
1047 | // Order of execution important.
|
---|
1048 | // To get fully accurate smaller eigenvalue,
|
---|
1049 | // next line needs to be executed in higher precision.
|
---|
1050 | //
|
---|
1051 | rt2 = acmx/rt1*acmn-b/rt1*b;
|
---|
1052 | }
|
---|
1053 | else
|
---|
1054 | {
|
---|
1055 | if( (double)(sm)>(double)(0) )
|
---|
1056 | {
|
---|
1057 | rt1 = 0.5*(sm+rt);
|
---|
1058 |
|
---|
1059 | //
|
---|
1060 | // Order of execution important.
|
---|
1061 | // To get fully accurate smaller eigenvalue,
|
---|
1062 | // next line needs to be executed in higher precision.
|
---|
1063 | //
|
---|
1064 | rt2 = acmx/rt1*acmn-b/rt1*b;
|
---|
1065 | }
|
---|
1066 | else
|
---|
1067 | {
|
---|
1068 |
|
---|
1069 | //
|
---|
1070 | // Includes case RT1 = RT2 = 0
|
---|
1071 | //
|
---|
1072 | rt1 = 0.5*rt;
|
---|
1073 | rt2 = -(0.5*rt);
|
---|
1074 | }
|
---|
1075 | }
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 |
|
---|
1079 | /*************************************************************************
|
---|
1080 | DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
|
---|
1081 |
|
---|
1082 | [ A B ]
|
---|
1083 | [ B C ].
|
---|
1084 |
|
---|
1085 | On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
|
---|
1086 | eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
|
---|
1087 | eigenvector for RT1, giving the decomposition
|
---|
1088 |
|
---|
1089 | [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
|
---|
1090 | [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
|
---|
1091 |
|
---|
1092 |
|
---|
1093 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
1094 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
1095 | Courant Institute, Argonne National Lab, and Rice University
|
---|
1096 | October 31, 1992
|
---|
1097 | *************************************************************************/
|
---|
1098 | private static void tdevdev2(double a,
|
---|
1099 | double b,
|
---|
1100 | double c,
|
---|
1101 | ref double rt1,
|
---|
1102 | ref double rt2,
|
---|
1103 | ref double cs1,
|
---|
1104 | ref double sn1)
|
---|
1105 | {
|
---|
1106 | int sgn1 = 0;
|
---|
1107 | int sgn2 = 0;
|
---|
1108 | double ab = 0;
|
---|
1109 | double acmn = 0;
|
---|
1110 | double acmx = 0;
|
---|
1111 | double acs = 0;
|
---|
1112 | double adf = 0;
|
---|
1113 | double cs = 0;
|
---|
1114 | double ct = 0;
|
---|
1115 | double df = 0;
|
---|
1116 | double rt = 0;
|
---|
1117 | double sm = 0;
|
---|
1118 | double tb = 0;
|
---|
1119 | double tn = 0;
|
---|
1120 |
|
---|
1121 |
|
---|
1122 | //
|
---|
1123 | // Compute the eigenvalues
|
---|
1124 | //
|
---|
1125 | sm = a+c;
|
---|
1126 | df = a-c;
|
---|
1127 | adf = Math.Abs(df);
|
---|
1128 | tb = b+b;
|
---|
1129 | ab = Math.Abs(tb);
|
---|
1130 | if( (double)(Math.Abs(a))>(double)(Math.Abs(c)) )
|
---|
1131 | {
|
---|
1132 | acmx = a;
|
---|
1133 | acmn = c;
|
---|
1134 | }
|
---|
1135 | else
|
---|
1136 | {
|
---|
1137 | acmx = c;
|
---|
1138 | acmn = a;
|
---|
1139 | }
|
---|
1140 | if( (double)(adf)>(double)(ab) )
|
---|
1141 | {
|
---|
1142 | rt = adf*Math.Sqrt(1+AP.Math.Sqr(ab/adf));
|
---|
1143 | }
|
---|
1144 | else
|
---|
1145 | {
|
---|
1146 | if( (double)(adf)<(double)(ab) )
|
---|
1147 | {
|
---|
1148 | rt = ab*Math.Sqrt(1+AP.Math.Sqr(adf/ab));
|
---|
1149 | }
|
---|
1150 | else
|
---|
1151 | {
|
---|
1152 |
|
---|
1153 | //
|
---|
1154 | // Includes case AB=ADF=0
|
---|
1155 | //
|
---|
1156 | rt = ab*Math.Sqrt(2);
|
---|
1157 | }
|
---|
1158 | }
|
---|
1159 | if( (double)(sm)<(double)(0) )
|
---|
1160 | {
|
---|
1161 | rt1 = 0.5*(sm-rt);
|
---|
1162 | sgn1 = -1;
|
---|
1163 |
|
---|
1164 | //
|
---|
1165 | // Order of execution important.
|
---|
1166 | // To get fully accurate smaller eigenvalue,
|
---|
1167 | // next line needs to be executed in higher precision.
|
---|
1168 | //
|
---|
1169 | rt2 = acmx/rt1*acmn-b/rt1*b;
|
---|
1170 | }
|
---|
1171 | else
|
---|
1172 | {
|
---|
1173 | if( (double)(sm)>(double)(0) )
|
---|
1174 | {
|
---|
1175 | rt1 = 0.5*(sm+rt);
|
---|
1176 | sgn1 = 1;
|
---|
1177 |
|
---|
1178 | //
|
---|
1179 | // Order of execution important.
|
---|
1180 | // To get fully accurate smaller eigenvalue,
|
---|
1181 | // next line needs to be executed in higher precision.
|
---|
1182 | //
|
---|
1183 | rt2 = acmx/rt1*acmn-b/rt1*b;
|
---|
1184 | }
|
---|
1185 | else
|
---|
1186 | {
|
---|
1187 |
|
---|
1188 | //
|
---|
1189 | // Includes case RT1 = RT2 = 0
|
---|
1190 | //
|
---|
1191 | rt1 = 0.5*rt;
|
---|
1192 | rt2 = -(0.5*rt);
|
---|
1193 | sgn1 = 1;
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 |
|
---|
1197 | //
|
---|
1198 | // Compute the eigenvector
|
---|
1199 | //
|
---|
1200 | if( (double)(df)>=(double)(0) )
|
---|
1201 | {
|
---|
1202 | cs = df+rt;
|
---|
1203 | sgn2 = 1;
|
---|
1204 | }
|
---|
1205 | else
|
---|
1206 | {
|
---|
1207 | cs = df-rt;
|
---|
1208 | sgn2 = -1;
|
---|
1209 | }
|
---|
1210 | acs = Math.Abs(cs);
|
---|
1211 | if( (double)(acs)>(double)(ab) )
|
---|
1212 | {
|
---|
1213 | ct = -(tb/cs);
|
---|
1214 | sn1 = 1/Math.Sqrt(1+ct*ct);
|
---|
1215 | cs1 = ct*sn1;
|
---|
1216 | }
|
---|
1217 | else
|
---|
1218 | {
|
---|
1219 | if( (double)(ab)==(double)(0) )
|
---|
1220 | {
|
---|
1221 | cs1 = 1;
|
---|
1222 | sn1 = 0;
|
---|
1223 | }
|
---|
1224 | else
|
---|
1225 | {
|
---|
1226 | tn = -(cs/tb);
|
---|
1227 | cs1 = 1/Math.Sqrt(1+tn*tn);
|
---|
1228 | sn1 = tn*cs1;
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 | if( sgn1==sgn2 )
|
---|
1232 | {
|
---|
1233 | tn = cs1;
|
---|
1234 | cs1 = -sn1;
|
---|
1235 | sn1 = tn;
|
---|
1236 | }
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 |
|
---|
1240 | /*************************************************************************
|
---|
1241 | Internal routine
|
---|
1242 | *************************************************************************/
|
---|
1243 | private static double tdevdpythag(double a,
|
---|
1244 | double b)
|
---|
1245 | {
|
---|
1246 | double result = 0;
|
---|
1247 |
|
---|
1248 | if( (double)(Math.Abs(a))<(double)(Math.Abs(b)) )
|
---|
1249 | {
|
---|
1250 | result = Math.Abs(b)*Math.Sqrt(1+AP.Math.Sqr(a/b));
|
---|
1251 | }
|
---|
1252 | else
|
---|
1253 | {
|
---|
1254 | result = Math.Abs(a)*Math.Sqrt(1+AP.Math.Sqr(b/a));
|
---|
1255 | }
|
---|
1256 | return result;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 |
|
---|
1260 | /*************************************************************************
|
---|
1261 | Internal routine
|
---|
1262 | *************************************************************************/
|
---|
1263 | private static double tdevdextsign(double a,
|
---|
1264 | double b)
|
---|
1265 | {
|
---|
1266 | double result = 0;
|
---|
1267 |
|
---|
1268 | if( (double)(b)>=(double)(0) )
|
---|
1269 | {
|
---|
1270 | result = Math.Abs(a);
|
---|
1271 | }
|
---|
1272 | else
|
---|
1273 | {
|
---|
1274 | result = -Math.Abs(a);
|
---|
1275 | }
|
---|
1276 | return result;
|
---|
1277 | }
|
---|
1278 | }
|
---|
1279 | }
|
---|