[2806] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class stest
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Sign test
|
---|
| 29 |
|
---|
| 30 | This test checks three hypotheses about the median of the given sample.
|
---|
| 31 | The following tests are performed:
|
---|
| 32 | * two-tailed test (null hypothesis - the median is equal to the given
|
---|
| 33 | value)
|
---|
| 34 | * left-tailed test (null hypothesis - the median is greater than or
|
---|
| 35 | equal to the given value)
|
---|
| 36 | * right-tailed test (null hypothesis - the median is less than or
|
---|
| 37 | equal to the given value)
|
---|
| 38 |
|
---|
| 39 | Requirements:
|
---|
| 40 | * the scale of measurement should be ordinal, interval or ratio (i.e.
|
---|
| 41 | the test could not be applied to nominal variables).
|
---|
| 42 |
|
---|
| 43 | The test is non-parametric and doesn't require distribution X to be normal
|
---|
| 44 |
|
---|
| 45 | Input parameters:
|
---|
| 46 | X - sample. Array whose index goes from 0 to N-1.
|
---|
| 47 | N - size of the sample.
|
---|
| 48 | Median - assumed median value.
|
---|
| 49 |
|
---|
| 50 | Output parameters:
|
---|
| 51 | BothTails - p-value for two-tailed test.
|
---|
| 52 | If BothTails is less than the given significance level
|
---|
| 53 | the null hypothesis is rejected.
|
---|
| 54 | LeftTail - p-value for left-tailed test.
|
---|
| 55 | If LeftTail is less than the given significance level,
|
---|
| 56 | the null hypothesis is rejected.
|
---|
| 57 | RightTail - p-value for right-tailed test.
|
---|
| 58 | If RightTail is less than the given significance level
|
---|
| 59 | the null hypothesis is rejected.
|
---|
| 60 |
|
---|
| 61 | While calculating p-values high-precision binomial distribution
|
---|
| 62 | approximation is used, so significance levels have about 15 exact digits.
|
---|
| 63 |
|
---|
| 64 | -- ALGLIB --
|
---|
| 65 | Copyright 08.09.2006 by Bochkanov Sergey
|
---|
| 66 | *************************************************************************/
|
---|
| 67 | public static void onesamplesigntest(ref double[] x,
|
---|
| 68 | int n,
|
---|
| 69 | double median,
|
---|
| 70 | ref double bothtails,
|
---|
| 71 | ref double lefttail,
|
---|
| 72 | ref double righttail)
|
---|
| 73 | {
|
---|
| 74 | int i = 0;
|
---|
| 75 | int gtcnt = 0;
|
---|
| 76 | int necnt = 0;
|
---|
| 77 |
|
---|
| 78 | if( n<=1 )
|
---|
| 79 | {
|
---|
| 80 | bothtails = 1.0;
|
---|
| 81 | lefttail = 1.0;
|
---|
| 82 | righttail = 1.0;
|
---|
| 83 | return;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | //
|
---|
| 87 | // Calculate:
|
---|
| 88 | // GTCnt - count of x[i]>Median
|
---|
| 89 | // NECnt - count of x[i]<>Median
|
---|
| 90 | //
|
---|
| 91 | gtcnt = 0;
|
---|
| 92 | necnt = 0;
|
---|
| 93 | for(i=0; i<=n-1; i++)
|
---|
| 94 | {
|
---|
| 95 | if( (double)(x[i])>(double)(median) )
|
---|
| 96 | {
|
---|
| 97 | gtcnt = gtcnt+1;
|
---|
| 98 | }
|
---|
| 99 | if( (double)(x[i])!=(double)(median) )
|
---|
| 100 | {
|
---|
| 101 | necnt = necnt+1;
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 | if( necnt==0 )
|
---|
| 105 | {
|
---|
| 106 |
|
---|
| 107 | //
|
---|
| 108 | // all x[i] are equal to Median.
|
---|
| 109 | // So we can conclude that Median is a true median :)
|
---|
| 110 | //
|
---|
| 111 | bothtails = 0.0;
|
---|
| 112 | lefttail = 0.0;
|
---|
| 113 | righttail = 0.0;
|
---|
| 114 | return;
|
---|
| 115 | }
|
---|
| 116 | bothtails = 2*binomialdistr.binomialdistribution(Math.Min(gtcnt, necnt-gtcnt), necnt, 0.5);
|
---|
| 117 | lefttail = binomialdistr.binomialdistribution(gtcnt, necnt, 0.5);
|
---|
| 118 | righttail = binomialdistr.binomialcdistribution(gtcnt-1, necnt, 0.5);
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | }
|
---|