1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class inverseupdate
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Inverse matrix update by the Sherman-Morrison formula
|
---|
29 |
|
---|
30 | The algorithm updates matrix A^-1 when adding a number to an element
|
---|
31 | of matrix A.
|
---|
32 |
|
---|
33 | Input parameters:
|
---|
34 | InvA - inverse of matrix A.
|
---|
35 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
36 | N - size of matrix A.
|
---|
37 | UpdRow - row where the element to be updated is stored.
|
---|
38 | UpdColumn - column where the element to be updated is stored.
|
---|
39 | UpdVal - a number to be added to the element.
|
---|
40 |
|
---|
41 |
|
---|
42 | Output parameters:
|
---|
43 | InvA - inverse of modified matrix A.
|
---|
44 |
|
---|
45 | -- ALGLIB --
|
---|
46 | Copyright 2005 by Bochkanov Sergey
|
---|
47 | *************************************************************************/
|
---|
48 | public static void rmatrixinvupdatesimple(ref double[,] inva,
|
---|
49 | int n,
|
---|
50 | int updrow,
|
---|
51 | int updcolumn,
|
---|
52 | double updval)
|
---|
53 | {
|
---|
54 | double[] t1 = new double[0];
|
---|
55 | double[] t2 = new double[0];
|
---|
56 | int i = 0;
|
---|
57 | double lambda = 0;
|
---|
58 | double vt = 0;
|
---|
59 | int i_ = 0;
|
---|
60 |
|
---|
61 | System.Diagnostics.Debug.Assert(updrow>=0 & updrow<n, "RMatrixInvUpdateSimple: incorrect UpdRow!");
|
---|
62 | System.Diagnostics.Debug.Assert(updcolumn>=0 & updcolumn<n, "RMatrixInvUpdateSimple: incorrect UpdColumn!");
|
---|
63 | t1 = new double[n-1+1];
|
---|
64 | t2 = new double[n-1+1];
|
---|
65 |
|
---|
66 | //
|
---|
67 | // T1 = InvA * U
|
---|
68 | //
|
---|
69 | for(i_=0; i_<=n-1;i_++)
|
---|
70 | {
|
---|
71 | t1[i_] = inva[i_,updrow];
|
---|
72 | }
|
---|
73 |
|
---|
74 | //
|
---|
75 | // T2 = v*InvA
|
---|
76 | //
|
---|
77 | for(i_=0; i_<=n-1;i_++)
|
---|
78 | {
|
---|
79 | t2[i_] = inva[updcolumn,i_];
|
---|
80 | }
|
---|
81 |
|
---|
82 | //
|
---|
83 | // Lambda = v * InvA * U
|
---|
84 | //
|
---|
85 | lambda = updval*inva[updcolumn,updrow];
|
---|
86 |
|
---|
87 | //
|
---|
88 | // InvA = InvA - correction
|
---|
89 | //
|
---|
90 | for(i=0; i<=n-1; i++)
|
---|
91 | {
|
---|
92 | vt = updval*t1[i];
|
---|
93 | vt = vt/(1+lambda);
|
---|
94 | for(i_=0; i_<=n-1;i_++)
|
---|
95 | {
|
---|
96 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | /*************************************************************************
|
---|
103 | Inverse matrix update by the Sherman-Morrison formula
|
---|
104 |
|
---|
105 | The algorithm updates matrix A^-1 when adding a vector to a row
|
---|
106 | of matrix A.
|
---|
107 |
|
---|
108 | Input parameters:
|
---|
109 | InvA - inverse of matrix A.
|
---|
110 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
111 | N - size of matrix A.
|
---|
112 | UpdRow - the row of A whose vector V was added.
|
---|
113 | 0 <= Row <= N-1
|
---|
114 | V - the vector to be added to a row.
|
---|
115 | Array whose index ranges within [0..N-1].
|
---|
116 |
|
---|
117 | Output parameters:
|
---|
118 | InvA - inverse of modified matrix A.
|
---|
119 |
|
---|
120 | -- ALGLIB --
|
---|
121 | Copyright 2005 by Bochkanov Sergey
|
---|
122 | *************************************************************************/
|
---|
123 | public static void rmatrixinvupdaterow(ref double[,] inva,
|
---|
124 | int n,
|
---|
125 | int updrow,
|
---|
126 | ref double[] v)
|
---|
127 | {
|
---|
128 | double[] t1 = new double[0];
|
---|
129 | double[] t2 = new double[0];
|
---|
130 | int i = 0;
|
---|
131 | int j = 0;
|
---|
132 | double lambda = 0;
|
---|
133 | double vt = 0;
|
---|
134 | int i_ = 0;
|
---|
135 |
|
---|
136 | t1 = new double[n-1+1];
|
---|
137 | t2 = new double[n-1+1];
|
---|
138 |
|
---|
139 | //
|
---|
140 | // T1 = InvA * U
|
---|
141 | //
|
---|
142 | for(i_=0; i_<=n-1;i_++)
|
---|
143 | {
|
---|
144 | t1[i_] = inva[i_,updrow];
|
---|
145 | }
|
---|
146 |
|
---|
147 | //
|
---|
148 | // T2 = v*InvA
|
---|
149 | // Lambda = v * InvA * U
|
---|
150 | //
|
---|
151 | for(j=0; j<=n-1; j++)
|
---|
152 | {
|
---|
153 | vt = 0.0;
|
---|
154 | for(i_=0; i_<=n-1;i_++)
|
---|
155 | {
|
---|
156 | vt += v[i_]*inva[i_,j];
|
---|
157 | }
|
---|
158 | t2[j] = vt;
|
---|
159 | }
|
---|
160 | lambda = t2[updrow];
|
---|
161 |
|
---|
162 | //
|
---|
163 | // InvA = InvA - correction
|
---|
164 | //
|
---|
165 | for(i=0; i<=n-1; i++)
|
---|
166 | {
|
---|
167 | vt = t1[i]/(1+lambda);
|
---|
168 | for(i_=0; i_<=n-1;i_++)
|
---|
169 | {
|
---|
170 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
171 | }
|
---|
172 | }
|
---|
173 | }
|
---|
174 |
|
---|
175 |
|
---|
176 | /*************************************************************************
|
---|
177 | Inverse matrix update by the Sherman-Morrison formula
|
---|
178 |
|
---|
179 | The algorithm updates matrix A^-1 when adding a vector to a column
|
---|
180 | of matrix A.
|
---|
181 |
|
---|
182 | Input parameters:
|
---|
183 | InvA - inverse of matrix A.
|
---|
184 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
185 | N - size of matrix A.
|
---|
186 | UpdColumn - the column of A whose vector U was added.
|
---|
187 | 0 <= UpdColumn <= N-1
|
---|
188 | U - the vector to be added to a column.
|
---|
189 | Array whose index ranges within [0..N-1].
|
---|
190 |
|
---|
191 | Output parameters:
|
---|
192 | InvA - inverse of modified matrix A.
|
---|
193 |
|
---|
194 | -- ALGLIB --
|
---|
195 | Copyright 2005 by Bochkanov Sergey
|
---|
196 | *************************************************************************/
|
---|
197 | public static void rmatrixinvupdatecolumn(ref double[,] inva,
|
---|
198 | int n,
|
---|
199 | int updcolumn,
|
---|
200 | ref double[] u)
|
---|
201 | {
|
---|
202 | double[] t1 = new double[0];
|
---|
203 | double[] t2 = new double[0];
|
---|
204 | int i = 0;
|
---|
205 | double lambda = 0;
|
---|
206 | double vt = 0;
|
---|
207 | int i_ = 0;
|
---|
208 |
|
---|
209 | t1 = new double[n-1+1];
|
---|
210 | t2 = new double[n-1+1];
|
---|
211 |
|
---|
212 | //
|
---|
213 | // T1 = InvA * U
|
---|
214 | // Lambda = v * InvA * U
|
---|
215 | //
|
---|
216 | for(i=0; i<=n-1; i++)
|
---|
217 | {
|
---|
218 | vt = 0.0;
|
---|
219 | for(i_=0; i_<=n-1;i_++)
|
---|
220 | {
|
---|
221 | vt += inva[i,i_]*u[i_];
|
---|
222 | }
|
---|
223 | t1[i] = vt;
|
---|
224 | }
|
---|
225 | lambda = t1[updcolumn];
|
---|
226 |
|
---|
227 | //
|
---|
228 | // T2 = v*InvA
|
---|
229 | //
|
---|
230 | for(i_=0; i_<=n-1;i_++)
|
---|
231 | {
|
---|
232 | t2[i_] = inva[updcolumn,i_];
|
---|
233 | }
|
---|
234 |
|
---|
235 | //
|
---|
236 | // InvA = InvA - correction
|
---|
237 | //
|
---|
238 | for(i=0; i<=n-1; i++)
|
---|
239 | {
|
---|
240 | vt = t1[i]/(1+lambda);
|
---|
241 | for(i_=0; i_<=n-1;i_++)
|
---|
242 | {
|
---|
243 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
244 | }
|
---|
245 | }
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | /*************************************************************************
|
---|
250 | Inverse matrix update by the Sherman-Morrison formula
|
---|
251 |
|
---|
252 | The algorithm computes the inverse of matrix A+u*v by using the given matrix
|
---|
253 | A^-1 and the vectors u and v.
|
---|
254 |
|
---|
255 | Input parameters:
|
---|
256 | InvA - inverse of matrix A.
|
---|
257 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
258 | N - size of matrix A.
|
---|
259 | U - the vector modifying the matrix.
|
---|
260 | Array whose index ranges within [0..N-1].
|
---|
261 | V - the vector modifying the matrix.
|
---|
262 | Array whose index ranges within [0..N-1].
|
---|
263 |
|
---|
264 | Output parameters:
|
---|
265 | InvA - inverse of matrix A + u*v'.
|
---|
266 |
|
---|
267 | -- ALGLIB --
|
---|
268 | Copyright 2005 by Bochkanov Sergey
|
---|
269 | *************************************************************************/
|
---|
270 | public static void rmatrixinvupdateuv(ref double[,] inva,
|
---|
271 | int n,
|
---|
272 | ref double[] u,
|
---|
273 | ref double[] v)
|
---|
274 | {
|
---|
275 | double[] t1 = new double[0];
|
---|
276 | double[] t2 = new double[0];
|
---|
277 | int i = 0;
|
---|
278 | int j = 0;
|
---|
279 | double lambda = 0;
|
---|
280 | double vt = 0;
|
---|
281 | int i_ = 0;
|
---|
282 |
|
---|
283 | t1 = new double[n-1+1];
|
---|
284 | t2 = new double[n-1+1];
|
---|
285 |
|
---|
286 | //
|
---|
287 | // T1 = InvA * U
|
---|
288 | // Lambda = v * T1
|
---|
289 | //
|
---|
290 | for(i=0; i<=n-1; i++)
|
---|
291 | {
|
---|
292 | vt = 0.0;
|
---|
293 | for(i_=0; i_<=n-1;i_++)
|
---|
294 | {
|
---|
295 | vt += inva[i,i_]*u[i_];
|
---|
296 | }
|
---|
297 | t1[i] = vt;
|
---|
298 | }
|
---|
299 | lambda = 0.0;
|
---|
300 | for(i_=0; i_<=n-1;i_++)
|
---|
301 | {
|
---|
302 | lambda += v[i_]*t1[i_];
|
---|
303 | }
|
---|
304 |
|
---|
305 | //
|
---|
306 | // T2 = v*InvA
|
---|
307 | //
|
---|
308 | for(j=0; j<=n-1; j++)
|
---|
309 | {
|
---|
310 | vt = 0.0;
|
---|
311 | for(i_=0; i_<=n-1;i_++)
|
---|
312 | {
|
---|
313 | vt += v[i_]*inva[i_,j];
|
---|
314 | }
|
---|
315 | t2[j] = vt;
|
---|
316 | }
|
---|
317 |
|
---|
318 | //
|
---|
319 | // InvA = InvA - correction
|
---|
320 | //
|
---|
321 | for(i=0; i<=n-1; i++)
|
---|
322 | {
|
---|
323 | vt = t1[i]/(1+lambda);
|
---|
324 | for(i_=0; i_<=n-1;i_++)
|
---|
325 | {
|
---|
326 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
327 | }
|
---|
328 | }
|
---|
329 | }
|
---|
330 |
|
---|
331 |
|
---|
332 | public static void shermanmorrisonsimpleupdate(ref double[,] inva,
|
---|
333 | int n,
|
---|
334 | int updrow,
|
---|
335 | int updcolumn,
|
---|
336 | double updval)
|
---|
337 | {
|
---|
338 | double[] t1 = new double[0];
|
---|
339 | double[] t2 = new double[0];
|
---|
340 | int i = 0;
|
---|
341 | double lambda = 0;
|
---|
342 | double vt = 0;
|
---|
343 | int i_ = 0;
|
---|
344 |
|
---|
345 | t1 = new double[n+1];
|
---|
346 | t2 = new double[n+1];
|
---|
347 |
|
---|
348 | //
|
---|
349 | // T1 = InvA * U
|
---|
350 | //
|
---|
351 | for(i_=1; i_<=n;i_++)
|
---|
352 | {
|
---|
353 | t1[i_] = inva[i_,updrow];
|
---|
354 | }
|
---|
355 |
|
---|
356 | //
|
---|
357 | // T2 = v*InvA
|
---|
358 | //
|
---|
359 | for(i_=1; i_<=n;i_++)
|
---|
360 | {
|
---|
361 | t2[i_] = inva[updcolumn,i_];
|
---|
362 | }
|
---|
363 |
|
---|
364 | //
|
---|
365 | // Lambda = v * InvA * U
|
---|
366 | //
|
---|
367 | lambda = updval*inva[updcolumn,updrow];
|
---|
368 |
|
---|
369 | //
|
---|
370 | // InvA = InvA - correction
|
---|
371 | //
|
---|
372 | for(i=1; i<=n; i++)
|
---|
373 | {
|
---|
374 | vt = updval*t1[i];
|
---|
375 | vt = vt/(1+lambda);
|
---|
376 | for(i_=1; i_<=n;i_++)
|
---|
377 | {
|
---|
378 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
379 | }
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 | public static void shermanmorrisonupdaterow(ref double[,] inva,
|
---|
385 | int n,
|
---|
386 | int updrow,
|
---|
387 | ref double[] v)
|
---|
388 | {
|
---|
389 | double[] t1 = new double[0];
|
---|
390 | double[] t2 = new double[0];
|
---|
391 | int i = 0;
|
---|
392 | int j = 0;
|
---|
393 | double lambda = 0;
|
---|
394 | double vt = 0;
|
---|
395 | int i_ = 0;
|
---|
396 |
|
---|
397 | t1 = new double[n+1];
|
---|
398 | t2 = new double[n+1];
|
---|
399 |
|
---|
400 | //
|
---|
401 | // T1 = InvA * U
|
---|
402 | //
|
---|
403 | for(i_=1; i_<=n;i_++)
|
---|
404 | {
|
---|
405 | t1[i_] = inva[i_,updrow];
|
---|
406 | }
|
---|
407 |
|
---|
408 | //
|
---|
409 | // T2 = v*InvA
|
---|
410 | // Lambda = v * InvA * U
|
---|
411 | //
|
---|
412 | for(j=1; j<=n; j++)
|
---|
413 | {
|
---|
414 | vt = 0.0;
|
---|
415 | for(i_=1; i_<=n;i_++)
|
---|
416 | {
|
---|
417 | vt += v[i_]*inva[i_,j];
|
---|
418 | }
|
---|
419 | t2[j] = vt;
|
---|
420 | }
|
---|
421 | lambda = t2[updrow];
|
---|
422 |
|
---|
423 | //
|
---|
424 | // InvA = InvA - correction
|
---|
425 | //
|
---|
426 | for(i=1; i<=n; i++)
|
---|
427 | {
|
---|
428 | vt = t1[i]/(1+lambda);
|
---|
429 | for(i_=1; i_<=n;i_++)
|
---|
430 | {
|
---|
431 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
432 | }
|
---|
433 | }
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | public static void shermanmorrisonupdatecolumn(ref double[,] inva,
|
---|
438 | int n,
|
---|
439 | int updcolumn,
|
---|
440 | ref double[] u)
|
---|
441 | {
|
---|
442 | double[] t1 = new double[0];
|
---|
443 | double[] t2 = new double[0];
|
---|
444 | int i = 0;
|
---|
445 | double lambda = 0;
|
---|
446 | double vt = 0;
|
---|
447 | int i_ = 0;
|
---|
448 |
|
---|
449 | t1 = new double[n+1];
|
---|
450 | t2 = new double[n+1];
|
---|
451 |
|
---|
452 | //
|
---|
453 | // T1 = InvA * U
|
---|
454 | // Lambda = v * InvA * U
|
---|
455 | //
|
---|
456 | for(i=1; i<=n; i++)
|
---|
457 | {
|
---|
458 | vt = 0.0;
|
---|
459 | for(i_=1; i_<=n;i_++)
|
---|
460 | {
|
---|
461 | vt += inva[i,i_]*u[i_];
|
---|
462 | }
|
---|
463 | t1[i] = vt;
|
---|
464 | }
|
---|
465 | lambda = t1[updcolumn];
|
---|
466 |
|
---|
467 | //
|
---|
468 | // T2 = v*InvA
|
---|
469 | //
|
---|
470 | for(i_=1; i_<=n;i_++)
|
---|
471 | {
|
---|
472 | t2[i_] = inva[updcolumn,i_];
|
---|
473 | }
|
---|
474 |
|
---|
475 | //
|
---|
476 | // InvA = InvA - correction
|
---|
477 | //
|
---|
478 | for(i=1; i<=n; i++)
|
---|
479 | {
|
---|
480 | vt = t1[i]/(1+lambda);
|
---|
481 | for(i_=1; i_<=n;i_++)
|
---|
482 | {
|
---|
483 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
484 | }
|
---|
485 | }
|
---|
486 | }
|
---|
487 |
|
---|
488 |
|
---|
489 | public static void shermanmorrisonupdateuv(ref double[,] inva,
|
---|
490 | int n,
|
---|
491 | ref double[] u,
|
---|
492 | ref double[] v)
|
---|
493 | {
|
---|
494 | double[] t1 = new double[0];
|
---|
495 | double[] t2 = new double[0];
|
---|
496 | int i = 0;
|
---|
497 | int j = 0;
|
---|
498 | double lambda = 0;
|
---|
499 | double vt = 0;
|
---|
500 | int i_ = 0;
|
---|
501 |
|
---|
502 | t1 = new double[n+1];
|
---|
503 | t2 = new double[n+1];
|
---|
504 |
|
---|
505 | //
|
---|
506 | // T1 = InvA * U
|
---|
507 | // Lambda = v * T1
|
---|
508 | //
|
---|
509 | for(i=1; i<=n; i++)
|
---|
510 | {
|
---|
511 | vt = 0.0;
|
---|
512 | for(i_=1; i_<=n;i_++)
|
---|
513 | {
|
---|
514 | vt += inva[i,i_]*u[i_];
|
---|
515 | }
|
---|
516 | t1[i] = vt;
|
---|
517 | }
|
---|
518 | lambda = 0.0;
|
---|
519 | for(i_=1; i_<=n;i_++)
|
---|
520 | {
|
---|
521 | lambda += v[i_]*t1[i_];
|
---|
522 | }
|
---|
523 |
|
---|
524 | //
|
---|
525 | // T2 = v*InvA
|
---|
526 | //
|
---|
527 | for(j=1; j<=n; j++)
|
---|
528 | {
|
---|
529 | vt = 0.0;
|
---|
530 | for(i_=1; i_<=n;i_++)
|
---|
531 | {
|
---|
532 | vt += v[i_]*inva[i_,j];
|
---|
533 | }
|
---|
534 | t2[j] = vt;
|
---|
535 | }
|
---|
536 |
|
---|
537 | //
|
---|
538 | // InvA = InvA - correction
|
---|
539 | //
|
---|
540 | for(i=1; i<=n; i++)
|
---|
541 | {
|
---|
542 | vt = t1[i]/(1+lambda);
|
---|
543 | for(i_=1; i_<=n;i_++)
|
---|
544 | {
|
---|
545 | inva[i,i_] = inva[i,i_] - vt*t2[i_];
|
---|
546 | }
|
---|
547 | }
|
---|
548 | }
|
---|
549 | }
|
---|
550 | }
|
---|