1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class gq
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Computation of nodes and weights for a Gauss quadrature formula
|
---|
29 |
|
---|
30 | The algorithm generates the N-point Gauss quadrature formula with weight
|
---|
31 | function given by coefficients alpha and beta of a recurrence relation
|
---|
32 | which generates a system of orthogonal polynomials:
|
---|
33 |
|
---|
34 | P-1(x) = 0
|
---|
35 | P0(x) = 1
|
---|
36 | Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
---|
37 |
|
---|
38 | and zeroth moment Mu0
|
---|
39 |
|
---|
40 | Mu0 = integral(W(x)dx,a,b)
|
---|
41 |
|
---|
42 | INPUT PARAMETERS:
|
---|
43 | Alpha array[0..N-1], alpha coefficients
|
---|
44 | Beta array[0..N-1], beta coefficients
|
---|
45 | Zero-indexed element is not used and may be arbitrary.
|
---|
46 | Beta[I]>0.
|
---|
47 | Mu0 zeroth moment of the weight function.
|
---|
48 | N number of nodes of the quadrature formula, N>=1
|
---|
49 |
|
---|
50 | OUTPUT PARAMETERS:
|
---|
51 | Info - error code:
|
---|
52 | * -3 internal eigenproblem solver hasn't converged
|
---|
53 | * -2 Beta[i]<=0
|
---|
54 | * -1 incorrect N was passed
|
---|
55 | * 1 OK
|
---|
56 | X - array[0..N-1] - array of quadrature nodes,
|
---|
57 | in ascending order.
|
---|
58 | W - array[0..N-1] - array of quadrature weights.
|
---|
59 |
|
---|
60 | -- ALGLIB --
|
---|
61 | Copyright 2005-2009 by Bochkanov Sergey
|
---|
62 | *************************************************************************/
|
---|
63 | public static void gqgeneraterec(ref double[] alpha,
|
---|
64 | ref double[] beta,
|
---|
65 | double mu0,
|
---|
66 | int n,
|
---|
67 | ref int info,
|
---|
68 | ref double[] x,
|
---|
69 | ref double[] w)
|
---|
70 | {
|
---|
71 | int i = 0;
|
---|
72 | double[] d = new double[0];
|
---|
73 | double[] e = new double[0];
|
---|
74 | double[,] z = new double[0,0];
|
---|
75 |
|
---|
76 | if( n<1 )
|
---|
77 | {
|
---|
78 | info = -1;
|
---|
79 | return;
|
---|
80 | }
|
---|
81 | info = 1;
|
---|
82 |
|
---|
83 | //
|
---|
84 | // Initialize
|
---|
85 | //
|
---|
86 | d = new double[n+1];
|
---|
87 | e = new double[n+1];
|
---|
88 | for(i=1; i<=n-1; i++)
|
---|
89 | {
|
---|
90 | d[i] = alpha[i-1];
|
---|
91 | if( (double)(beta[i])<=(double)(0) )
|
---|
92 | {
|
---|
93 | info = -2;
|
---|
94 | return;
|
---|
95 | }
|
---|
96 | e[i] = Math.Sqrt(beta[i]);
|
---|
97 | }
|
---|
98 | d[n] = alpha[n-1];
|
---|
99 |
|
---|
100 | //
|
---|
101 | // EVD
|
---|
102 | //
|
---|
103 | if( !tdevd.tridiagonalevd(ref d, e, n, 3, ref z) )
|
---|
104 | {
|
---|
105 | info = -3;
|
---|
106 | return;
|
---|
107 | }
|
---|
108 |
|
---|
109 | //
|
---|
110 | // Generate
|
---|
111 | //
|
---|
112 | x = new double[n];
|
---|
113 | w = new double[n];
|
---|
114 | for(i=1; i<=n; i++)
|
---|
115 | {
|
---|
116 | x[i-1] = d[i];
|
---|
117 | w[i-1] = mu0*AP.Math.Sqr(z[1,i]);
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 | /*************************************************************************
|
---|
123 | Computation of nodes and weights for a Gauss-Lobatto quadrature formula
|
---|
124 |
|
---|
125 | The algorithm generates the N-point Gauss-Lobatto quadrature formula with
|
---|
126 | weight function given by coefficients alpha and beta of a recurrence which
|
---|
127 | generates a system of orthogonal polynomials.
|
---|
128 |
|
---|
129 | P-1(x) = 0
|
---|
130 | P0(x) = 1
|
---|
131 | Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
---|
132 |
|
---|
133 | and zeroth moment Mu0
|
---|
134 |
|
---|
135 | Mu0 = integral(W(x)dx,a,b)
|
---|
136 |
|
---|
137 | INPUT PARAMETERS:
|
---|
138 | Alpha array[0..N-2], alpha coefficients
|
---|
139 | Beta array[0..N-2], beta coefficients.
|
---|
140 | Zero-indexed element is not used, may be arbitrary.
|
---|
141 | Beta[I]>0
|
---|
142 | Mu0 zeroth moment of the weighting function.
|
---|
143 | A left boundary of the integration interval.
|
---|
144 | B right boundary of the integration interval.
|
---|
145 | N number of nodes of the quadrature formula, N>=3
|
---|
146 | (including the left and right boundary nodes).
|
---|
147 |
|
---|
148 | OUTPUT PARAMETERS:
|
---|
149 | Info - error code:
|
---|
150 | * -3 internal eigenproblem solver hasn't converged
|
---|
151 | * -2 Beta[i]<=0
|
---|
152 | * -1 incorrect N was passed
|
---|
153 | * 1 OK
|
---|
154 | X - array[0..N-1] - array of quadrature nodes,
|
---|
155 | in ascending order.
|
---|
156 | W - array[0..N-1] - array of quadrature weights.
|
---|
157 |
|
---|
158 | -- ALGLIB --
|
---|
159 | Copyright 2005-2009 by Bochkanov Sergey
|
---|
160 | *************************************************************************/
|
---|
161 | public static void gqgenerategausslobattorec(double[] alpha,
|
---|
162 | double[] beta,
|
---|
163 | double mu0,
|
---|
164 | double a,
|
---|
165 | double b,
|
---|
166 | int n,
|
---|
167 | ref int info,
|
---|
168 | ref double[] x,
|
---|
169 | ref double[] w)
|
---|
170 | {
|
---|
171 | int i = 0;
|
---|
172 | double[] d = new double[0];
|
---|
173 | double[] e = new double[0];
|
---|
174 | double[,] z = new double[0,0];
|
---|
175 | double pim1a = 0;
|
---|
176 | double pia = 0;
|
---|
177 | double pim1b = 0;
|
---|
178 | double pib = 0;
|
---|
179 | double t = 0;
|
---|
180 | double a11 = 0;
|
---|
181 | double a12 = 0;
|
---|
182 | double a21 = 0;
|
---|
183 | double a22 = 0;
|
---|
184 | double b1 = 0;
|
---|
185 | double b2 = 0;
|
---|
186 | double alph = 0;
|
---|
187 | double bet = 0;
|
---|
188 |
|
---|
189 | alpha = (double[])alpha.Clone();
|
---|
190 | beta = (double[])beta.Clone();
|
---|
191 |
|
---|
192 | if( n<=2 )
|
---|
193 | {
|
---|
194 | info = -1;
|
---|
195 | return;
|
---|
196 | }
|
---|
197 | info = 1;
|
---|
198 |
|
---|
199 | //
|
---|
200 | // Initialize, D[1:N+1], E[1:N]
|
---|
201 | //
|
---|
202 | n = n-2;
|
---|
203 | d = new double[n+3];
|
---|
204 | e = new double[n+2];
|
---|
205 | for(i=1; i<=n+1; i++)
|
---|
206 | {
|
---|
207 | d[i] = alpha[i-1];
|
---|
208 | }
|
---|
209 | for(i=1; i<=n; i++)
|
---|
210 | {
|
---|
211 | if( (double)(beta[i])<=(double)(0) )
|
---|
212 | {
|
---|
213 | info = -2;
|
---|
214 | return;
|
---|
215 | }
|
---|
216 | e[i] = Math.Sqrt(beta[i]);
|
---|
217 | }
|
---|
218 |
|
---|
219 | //
|
---|
220 | // Caclulate Pn(a), Pn+1(a), Pn(b), Pn+1(b)
|
---|
221 | //
|
---|
222 | beta[0] = 0;
|
---|
223 | pim1a = 0;
|
---|
224 | pia = 1;
|
---|
225 | pim1b = 0;
|
---|
226 | pib = 1;
|
---|
227 | for(i=1; i<=n+1; i++)
|
---|
228 | {
|
---|
229 |
|
---|
230 | //
|
---|
231 | // Pi(a)
|
---|
232 | //
|
---|
233 | t = (a-alpha[i-1])*pia-beta[i-1]*pim1a;
|
---|
234 | pim1a = pia;
|
---|
235 | pia = t;
|
---|
236 |
|
---|
237 | //
|
---|
238 | // Pi(b)
|
---|
239 | //
|
---|
240 | t = (b-alpha[i-1])*pib-beta[i-1]*pim1b;
|
---|
241 | pim1b = pib;
|
---|
242 | pib = t;
|
---|
243 | }
|
---|
244 |
|
---|
245 | //
|
---|
246 | // Calculate alpha'(n+1), beta'(n+1)
|
---|
247 | //
|
---|
248 | a11 = pia;
|
---|
249 | a12 = pim1a;
|
---|
250 | a21 = pib;
|
---|
251 | a22 = pim1b;
|
---|
252 | b1 = a*pia;
|
---|
253 | b2 = b*pib;
|
---|
254 | if( (double)(Math.Abs(a11))>(double)(Math.Abs(a21)) )
|
---|
255 | {
|
---|
256 | a22 = a22-a12*a21/a11;
|
---|
257 | b2 = b2-b1*a21/a11;
|
---|
258 | bet = b2/a22;
|
---|
259 | alph = (b1-bet*a12)/a11;
|
---|
260 | }
|
---|
261 | else
|
---|
262 | {
|
---|
263 | a12 = a12-a22*a11/a21;
|
---|
264 | b1 = b1-b2*a11/a21;
|
---|
265 | bet = b1/a12;
|
---|
266 | alph = (b2-bet*a22)/a21;
|
---|
267 | }
|
---|
268 | if( (double)(bet)<(double)(0) )
|
---|
269 | {
|
---|
270 | info = -3;
|
---|
271 | return;
|
---|
272 | }
|
---|
273 | d[n+2] = alph;
|
---|
274 | e[n+1] = Math.Sqrt(bet);
|
---|
275 |
|
---|
276 | //
|
---|
277 | // EVD
|
---|
278 | //
|
---|
279 | if( !tdevd.tridiagonalevd(ref d, e, n+2, 3, ref z) )
|
---|
280 | {
|
---|
281 | info = -3;
|
---|
282 | return;
|
---|
283 | }
|
---|
284 |
|
---|
285 | //
|
---|
286 | // Generate
|
---|
287 | //
|
---|
288 | x = new double[n+2];
|
---|
289 | w = new double[n+2];
|
---|
290 | for(i=1; i<=n+2; i++)
|
---|
291 | {
|
---|
292 | x[i-1] = d[i];
|
---|
293 | w[i-1] = mu0*AP.Math.Sqr(z[1,i]);
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 |
|
---|
298 | /*************************************************************************
|
---|
299 | Computation of nodes and weights for a Gauss-Radau quadrature formula
|
---|
300 |
|
---|
301 | The algorithm generates the N-point Gauss-Radau quadrature formula with
|
---|
302 | weight function given by the coefficients alpha and beta of a recurrence
|
---|
303 | which generates a system of orthogonal polynomials.
|
---|
304 |
|
---|
305 | P-1(x) = 0
|
---|
306 | P0(x) = 1
|
---|
307 | Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x)
|
---|
308 |
|
---|
309 | and zeroth moment Mu0
|
---|
310 |
|
---|
311 | Mu0 = integral(W(x)dx,a,b)
|
---|
312 |
|
---|
313 | INPUT PARAMETERS:
|
---|
314 | Alpha array[0..N-2], alpha coefficients.
|
---|
315 | Beta array[0..N-1], beta coefficients
|
---|
316 | Zero-indexed element is not used.
|
---|
317 | Beta[I]>0
|
---|
318 | Mu0 zeroth moment of the weighting function.
|
---|
319 | A left boundary of the integration interval.
|
---|
320 | N number of nodes of the quadrature formula, N>=2
|
---|
321 | (including the left boundary node).
|
---|
322 |
|
---|
323 | OUTPUT PARAMETERS:
|
---|
324 | Info - error code:
|
---|
325 | * -3 internal eigenproblem solver hasn't converged
|
---|
326 | * -2 Beta[i]<=0
|
---|
327 | * -1 incorrect N was passed
|
---|
328 | * 1 OK
|
---|
329 | X - array[0..N-1] - array of quadrature nodes,
|
---|
330 | in ascending order.
|
---|
331 | W - array[0..N-1] - array of quadrature weights.
|
---|
332 |
|
---|
333 |
|
---|
334 | -- ALGLIB --
|
---|
335 | Copyright 2005-2009 by Bochkanov Sergey
|
---|
336 | *************************************************************************/
|
---|
337 | public static void gqgenerategaussradaurec(double[] alpha,
|
---|
338 | double[] beta,
|
---|
339 | double mu0,
|
---|
340 | double a,
|
---|
341 | int n,
|
---|
342 | ref int info,
|
---|
343 | ref double[] x,
|
---|
344 | ref double[] w)
|
---|
345 | {
|
---|
346 | int i = 0;
|
---|
347 | double[] d = new double[0];
|
---|
348 | double[] e = new double[0];
|
---|
349 | double[,] z = new double[0,0];
|
---|
350 | double polim1 = 0;
|
---|
351 | double poli = 0;
|
---|
352 | double t = 0;
|
---|
353 |
|
---|
354 | alpha = (double[])alpha.Clone();
|
---|
355 | beta = (double[])beta.Clone();
|
---|
356 |
|
---|
357 | if( n<2 )
|
---|
358 | {
|
---|
359 | info = -1;
|
---|
360 | return;
|
---|
361 | }
|
---|
362 | info = 1;
|
---|
363 |
|
---|
364 | //
|
---|
365 | // Initialize, D[1:N], E[1:N]
|
---|
366 | //
|
---|
367 | n = n-1;
|
---|
368 | d = new double[n+1+1];
|
---|
369 | e = new double[n+1];
|
---|
370 | for(i=1; i<=n; i++)
|
---|
371 | {
|
---|
372 | d[i] = alpha[i-1];
|
---|
373 | if( (double)(beta[i])<=(double)(0) )
|
---|
374 | {
|
---|
375 | info = -2;
|
---|
376 | return;
|
---|
377 | }
|
---|
378 | e[i] = Math.Sqrt(beta[i]);
|
---|
379 | }
|
---|
380 |
|
---|
381 | //
|
---|
382 | // Caclulate Pn(a), Pn-1(a), and D[N+1]
|
---|
383 | //
|
---|
384 | beta[0] = 0;
|
---|
385 | polim1 = 0;
|
---|
386 | poli = 1;
|
---|
387 | for(i=1; i<=n; i++)
|
---|
388 | {
|
---|
389 | t = (a-alpha[i-1])*poli-beta[i-1]*polim1;
|
---|
390 | polim1 = poli;
|
---|
391 | poli = t;
|
---|
392 | }
|
---|
393 | d[n+1] = a-beta[n]*polim1/poli;
|
---|
394 |
|
---|
395 | //
|
---|
396 | // EVD
|
---|
397 | //
|
---|
398 | if( !tdevd.tridiagonalevd(ref d, e, n+1, 3, ref z) )
|
---|
399 | {
|
---|
400 | info = -3;
|
---|
401 | return;
|
---|
402 | }
|
---|
403 |
|
---|
404 | //
|
---|
405 | // Generate
|
---|
406 | //
|
---|
407 | x = new double[n+1];
|
---|
408 | w = new double[n+1];
|
---|
409 | for(i=1; i<=n+1; i++)
|
---|
410 | {
|
---|
411 | x[i-1] = d[i];
|
---|
412 | w[i-1] = mu0*AP.Math.Sqr(z[1,i]);
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | /*************************************************************************
|
---|
418 | Returns nodes/weights for Gauss-Legendre quadrature on [-1,1] with N
|
---|
419 | nodes.
|
---|
420 |
|
---|
421 | INPUT PARAMETERS:
|
---|
422 | N - number of nodes, >=1
|
---|
423 |
|
---|
424 | OUTPUT PARAMETERS:
|
---|
425 | Info - error code:
|
---|
426 | * -4 an error was detected when calculating
|
---|
427 | weights/nodes. N is too large to obtain
|
---|
428 | weights/nodes with high enough accuracy.
|
---|
429 | Try to use multiple precision version.
|
---|
430 | * -3 internal eigenproblem solver hasn't converged
|
---|
431 | * -1 incorrect N was passed
|
---|
432 | * +1 OK
|
---|
433 | X - array[0..N-1] - array of quadrature nodes,
|
---|
434 | in ascending order.
|
---|
435 | W - array[0..N-1] - array of quadrature weights.
|
---|
436 |
|
---|
437 |
|
---|
438 | -- ALGLIB --
|
---|
439 | Copyright 12.05.2009 by Bochkanov Sergey
|
---|
440 | *************************************************************************/
|
---|
441 | public static void gqgenerategausslegendre(int n,
|
---|
442 | ref int info,
|
---|
443 | ref double[] x,
|
---|
444 | ref double[] w)
|
---|
445 | {
|
---|
446 | double[] alpha = new double[0];
|
---|
447 | double[] beta = new double[0];
|
---|
448 | int i = 0;
|
---|
449 |
|
---|
450 | if( n<1 )
|
---|
451 | {
|
---|
452 | info = -1;
|
---|
453 | return;
|
---|
454 | }
|
---|
455 | alpha = new double[n];
|
---|
456 | beta = new double[n];
|
---|
457 | for(i=0; i<=n-1; i++)
|
---|
458 | {
|
---|
459 | alpha[i] = 0;
|
---|
460 | }
|
---|
461 | beta[0] = 2;
|
---|
462 | for(i=1; i<=n-1; i++)
|
---|
463 | {
|
---|
464 | beta[i] = 1/(4-1/AP.Math.Sqr(i));
|
---|
465 | }
|
---|
466 | gqgeneraterec(ref alpha, ref beta, beta[0], n, ref info, ref x, ref w);
|
---|
467 |
|
---|
468 | //
|
---|
469 | // test basic properties to detect errors
|
---|
470 | //
|
---|
471 | if( info>0 )
|
---|
472 | {
|
---|
473 | if( (double)(x[0])<(double)(-1) | (double)(x[n-1])>(double)(+1) )
|
---|
474 | {
|
---|
475 | info = -4;
|
---|
476 | }
|
---|
477 | for(i=0; i<=n-2; i++)
|
---|
478 | {
|
---|
479 | if( (double)(x[i])>=(double)(x[i+1]) )
|
---|
480 | {
|
---|
481 | info = -4;
|
---|
482 | }
|
---|
483 | }
|
---|
484 | }
|
---|
485 | }
|
---|
486 |
|
---|
487 |
|
---|
488 | /*************************************************************************
|
---|
489 | Returns nodes/weights for Gauss-Jacobi quadrature on [-1,1] with weight
|
---|
490 | function W(x)=Power(1-x,Alpha)*Power(1+x,Beta).
|
---|
491 |
|
---|
492 | INPUT PARAMETERS:
|
---|
493 | N - number of nodes, >=1
|
---|
494 | Alpha - power-law coefficient, Alpha>-1
|
---|
495 | Beta - power-law coefficient, Beta>-1
|
---|
496 |
|
---|
497 | OUTPUT PARAMETERS:
|
---|
498 | Info - error code:
|
---|
499 | * -4 an error was detected when calculating
|
---|
500 | weights/nodes. Alpha or Beta are too close
|
---|
501 | to -1 to obtain weights/nodes with high enough
|
---|
502 | accuracy, or, may be, N is too large. Try to
|
---|
503 | use multiple precision version.
|
---|
504 | * -3 internal eigenproblem solver hasn't converged
|
---|
505 | * -1 incorrect N/Alpha/Beta was passed
|
---|
506 | * +1 OK
|
---|
507 | X - array[0..N-1] - array of quadrature nodes,
|
---|
508 | in ascending order.
|
---|
509 | W - array[0..N-1] - array of quadrature weights.
|
---|
510 |
|
---|
511 |
|
---|
512 | -- ALGLIB --
|
---|
513 | Copyright 12.05.2009 by Bochkanov Sergey
|
---|
514 | *************************************************************************/
|
---|
515 | public static void gqgenerategaussjacobi(int n,
|
---|
516 | double alpha,
|
---|
517 | double beta,
|
---|
518 | ref int info,
|
---|
519 | ref double[] x,
|
---|
520 | ref double[] w)
|
---|
521 | {
|
---|
522 | double[] a = new double[0];
|
---|
523 | double[] b = new double[0];
|
---|
524 | double alpha2 = 0;
|
---|
525 | double beta2 = 0;
|
---|
526 | double apb = 0;
|
---|
527 | double t = 0;
|
---|
528 | int i = 0;
|
---|
529 | double s = 0;
|
---|
530 |
|
---|
531 | if( n<1 | (double)(alpha)<=(double)(-1) | (double)(beta)<=(double)(-1) )
|
---|
532 | {
|
---|
533 | info = -1;
|
---|
534 | return;
|
---|
535 | }
|
---|
536 | a = new double[n];
|
---|
537 | b = new double[n];
|
---|
538 | apb = alpha+beta;
|
---|
539 | a[0] = (beta-alpha)/(apb+2);
|
---|
540 | t = (apb+1)*Math.Log(2)+gammafunc.lngamma(alpha+1, ref s)+gammafunc.lngamma(beta+1, ref s)-gammafunc.lngamma(apb+2, ref s);
|
---|
541 | if( (double)(t)>(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
542 | {
|
---|
543 | info = -4;
|
---|
544 | return;
|
---|
545 | }
|
---|
546 | b[0] = Math.Exp(t);
|
---|
547 | if( n>1 )
|
---|
548 | {
|
---|
549 | alpha2 = AP.Math.Sqr(alpha);
|
---|
550 | beta2 = AP.Math.Sqr(beta);
|
---|
551 | a[1] = (beta2-alpha2)/((apb+2)*(apb+4));
|
---|
552 | b[1] = 4*(alpha+1)*(beta+1)/((apb+3)*AP.Math.Sqr(apb+2));
|
---|
553 | for(i=2; i<=n-1; i++)
|
---|
554 | {
|
---|
555 | a[i] = 0.25*(beta2-alpha2)/(i*i*(1+0.5*apb/i)*(1+0.5*(apb+2)/i));
|
---|
556 | b[i] = 0.25*(1+alpha/i)*(1+beta/i)*(1+apb/i)/((1+0.5*(apb+1)/i)*(1+0.5*(apb-1)/i)*AP.Math.Sqr(1+0.5*apb/i));
|
---|
557 | }
|
---|
558 | }
|
---|
559 | gqgeneraterec(ref a, ref b, b[0], n, ref info, ref x, ref w);
|
---|
560 |
|
---|
561 | //
|
---|
562 | // test basic properties to detect errors
|
---|
563 | //
|
---|
564 | if( info>0 )
|
---|
565 | {
|
---|
566 | if( (double)(x[0])<(double)(-1) | (double)(x[n-1])>(double)(+1) )
|
---|
567 | {
|
---|
568 | info = -4;
|
---|
569 | }
|
---|
570 | for(i=0; i<=n-2; i++)
|
---|
571 | {
|
---|
572 | if( (double)(x[i])>=(double)(x[i+1]) )
|
---|
573 | {
|
---|
574 | info = -4;
|
---|
575 | }
|
---|
576 | }
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 |
|
---|
581 | /*************************************************************************
|
---|
582 | Returns nodes/weights for Gauss-Laguerre quadrature on [0,+inf) with
|
---|
583 | weight function W(x)=Power(x,Alpha)*Exp(-x)
|
---|
584 |
|
---|
585 | INPUT PARAMETERS:
|
---|
586 | N - number of nodes, >=1
|
---|
587 | Alpha - power-law coefficient, Alpha>-1
|
---|
588 |
|
---|
589 | OUTPUT PARAMETERS:
|
---|
590 | Info - error code:
|
---|
591 | * -4 an error was detected when calculating
|
---|
592 | weights/nodes. Alpha is too close to -1 to
|
---|
593 | obtain weights/nodes with high enough accuracy
|
---|
594 | or, may be, N is too large. Try to use
|
---|
595 | multiple precision version.
|
---|
596 | * -3 internal eigenproblem solver hasn't converged
|
---|
597 | * -1 incorrect N/Alpha was passed
|
---|
598 | * +1 OK
|
---|
599 | X - array[0..N-1] - array of quadrature nodes,
|
---|
600 | in ascending order.
|
---|
601 | W - array[0..N-1] - array of quadrature weights.
|
---|
602 |
|
---|
603 |
|
---|
604 | -- ALGLIB --
|
---|
605 | Copyright 12.05.2009 by Bochkanov Sergey
|
---|
606 | *************************************************************************/
|
---|
607 | public static void gqgenerategausslaguerre(int n,
|
---|
608 | double alpha,
|
---|
609 | ref int info,
|
---|
610 | ref double[] x,
|
---|
611 | ref double[] w)
|
---|
612 | {
|
---|
613 | double[] a = new double[0];
|
---|
614 | double[] b = new double[0];
|
---|
615 | double t = 0;
|
---|
616 | int i = 0;
|
---|
617 | double s = 0;
|
---|
618 |
|
---|
619 | if( n<1 | (double)(alpha)<=(double)(-1) )
|
---|
620 | {
|
---|
621 | info = -1;
|
---|
622 | return;
|
---|
623 | }
|
---|
624 | a = new double[n];
|
---|
625 | b = new double[n];
|
---|
626 | a[0] = alpha+1;
|
---|
627 | t = gammafunc.lngamma(alpha+1, ref s);
|
---|
628 | if( (double)(t)>=(double)(Math.Log(AP.Math.MaxRealNumber)) )
|
---|
629 | {
|
---|
630 | info = -4;
|
---|
631 | return;
|
---|
632 | }
|
---|
633 | b[0] = Math.Exp(t);
|
---|
634 | if( n>1 )
|
---|
635 | {
|
---|
636 | for(i=1; i<=n-1; i++)
|
---|
637 | {
|
---|
638 | a[i] = 2*i+alpha+1;
|
---|
639 | b[i] = i*(i+alpha);
|
---|
640 | }
|
---|
641 | }
|
---|
642 | gqgeneraterec(ref a, ref b, b[0], n, ref info, ref x, ref w);
|
---|
643 |
|
---|
644 | //
|
---|
645 | // test basic properties to detect errors
|
---|
646 | //
|
---|
647 | if( info>0 )
|
---|
648 | {
|
---|
649 | if( (double)(x[0])<(double)(0) )
|
---|
650 | {
|
---|
651 | info = -4;
|
---|
652 | }
|
---|
653 | for(i=0; i<=n-2; i++)
|
---|
654 | {
|
---|
655 | if( (double)(x[i])>=(double)(x[i+1]) )
|
---|
656 | {
|
---|
657 | info = -4;
|
---|
658 | }
|
---|
659 | }
|
---|
660 | }
|
---|
661 | }
|
---|
662 |
|
---|
663 |
|
---|
664 | /*************************************************************************
|
---|
665 | Returns nodes/weights for Gauss-Hermite quadrature on (-inf,+inf) with
|
---|
666 | weight function W(x)=Exp(-x*x)
|
---|
667 |
|
---|
668 | INPUT PARAMETERS:
|
---|
669 | N - number of nodes, >=1
|
---|
670 |
|
---|
671 | OUTPUT PARAMETERS:
|
---|
672 | Info - error code:
|
---|
673 | * -4 an error was detected when calculating
|
---|
674 | weights/nodes. May be, N is too large. Try to
|
---|
675 | use multiple precision version.
|
---|
676 | * -3 internal eigenproblem solver hasn't converged
|
---|
677 | * -1 incorrect N/Alpha was passed
|
---|
678 | * +1 OK
|
---|
679 | X - array[0..N-1] - array of quadrature nodes,
|
---|
680 | in ascending order.
|
---|
681 | W - array[0..N-1] - array of quadrature weights.
|
---|
682 |
|
---|
683 |
|
---|
684 | -- ALGLIB --
|
---|
685 | Copyright 12.05.2009 by Bochkanov Sergey
|
---|
686 | *************************************************************************/
|
---|
687 | public static void gqgenerategausshermite(int n,
|
---|
688 | ref int info,
|
---|
689 | ref double[] x,
|
---|
690 | ref double[] w)
|
---|
691 | {
|
---|
692 | double[] a = new double[0];
|
---|
693 | double[] b = new double[0];
|
---|
694 | int i = 0;
|
---|
695 |
|
---|
696 | if( n<1 )
|
---|
697 | {
|
---|
698 | info = -1;
|
---|
699 | return;
|
---|
700 | }
|
---|
701 | a = new double[n];
|
---|
702 | b = new double[n];
|
---|
703 | for(i=0; i<=n-1; i++)
|
---|
704 | {
|
---|
705 | a[i] = 0;
|
---|
706 | }
|
---|
707 | b[0] = Math.Sqrt(4*Math.Atan(1));
|
---|
708 | if( n>1 )
|
---|
709 | {
|
---|
710 | for(i=1; i<=n-1; i++)
|
---|
711 | {
|
---|
712 | b[i] = 0.5*i;
|
---|
713 | }
|
---|
714 | }
|
---|
715 | gqgeneraterec(ref a, ref b, b[0], n, ref info, ref x, ref w);
|
---|
716 |
|
---|
717 | //
|
---|
718 | // test basic properties to detect errors
|
---|
719 | //
|
---|
720 | if( info>0 )
|
---|
721 | {
|
---|
722 | for(i=0; i<=n-2; i++)
|
---|
723 | {
|
---|
724 | if( (double)(x[i])>=(double)(x[i+1]) )
|
---|
725 | {
|
---|
726 | info = -4;
|
---|
727 | }
|
---|
728 | }
|
---|
729 | }
|
---|
730 | }
|
---|
731 | }
|
---|
732 | }
|
---|