1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class conv
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | 1-dimensional complex convolution.
|
---|
29 |
|
---|
30 | For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
|
---|
31 | choose between three implementations: straightforward O(M*N) formula for
|
---|
32 | very small N (or M), overlap-add algorithm for cases where max(M,N) is
|
---|
33 | significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
|
---|
34 | general FFT-based formula for cases where two previois algorithms are too
|
---|
35 | slow.
|
---|
36 |
|
---|
37 | Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
|
---|
38 |
|
---|
39 | INPUT PARAMETERS
|
---|
40 | A - array[0..M-1] - complex function to be transformed
|
---|
41 | M - problem size
|
---|
42 | B - array[0..N-1] - complex function to be transformed
|
---|
43 | N - problem size
|
---|
44 |
|
---|
45 | OUTPUT PARAMETERS
|
---|
46 | R - convolution: A*B. array[0..N+M-2].
|
---|
47 |
|
---|
48 | NOTE:
|
---|
49 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
50 | functions have non-zero values at negative T's, you can still use this
|
---|
51 | subroutine - just shift its result correspondingly.
|
---|
52 |
|
---|
53 | -- ALGLIB --
|
---|
54 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
55 | *************************************************************************/
|
---|
56 | public static void convc1d(ref AP.Complex[] a,
|
---|
57 | int m,
|
---|
58 | ref AP.Complex[] b,
|
---|
59 | int n,
|
---|
60 | ref AP.Complex[] r)
|
---|
61 | {
|
---|
62 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1D: incorrect N or M!");
|
---|
63 |
|
---|
64 | //
|
---|
65 | // normalize task: make M>=N,
|
---|
66 | // so A will be longer that B.
|
---|
67 | //
|
---|
68 | if( m<n )
|
---|
69 | {
|
---|
70 | convc1d(ref b, n, ref a, m, ref r);
|
---|
71 | return;
|
---|
72 | }
|
---|
73 | convc1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /*************************************************************************
|
---|
78 | 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
|
---|
79 |
|
---|
80 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
81 |
|
---|
82 | INPUT PARAMETERS
|
---|
83 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
84 | M - convolved signal length
|
---|
85 | B - array[0..N-1] - response
|
---|
86 | N - response length, N<=M
|
---|
87 |
|
---|
88 | OUTPUT PARAMETERS
|
---|
89 | R - deconvolved signal. array[0..M-N].
|
---|
90 |
|
---|
91 | NOTE:
|
---|
92 | deconvolution is unstable process and may result in division by zero
|
---|
93 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
94 |
|
---|
95 | NOTE:
|
---|
96 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
97 | functions have non-zero values at negative T's, you can still use this
|
---|
98 | subroutine - just shift its result correspondingly.
|
---|
99 |
|
---|
100 | -- ALGLIB --
|
---|
101 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
102 | *************************************************************************/
|
---|
103 | public static void convc1dinv(ref AP.Complex[] a,
|
---|
104 | int m,
|
---|
105 | ref AP.Complex[] b,
|
---|
106 | int n,
|
---|
107 | ref AP.Complex[] r)
|
---|
108 | {
|
---|
109 | int i = 0;
|
---|
110 | int p = 0;
|
---|
111 | double[] buf = new double[0];
|
---|
112 | double[] buf2 = new double[0];
|
---|
113 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
114 | AP.Complex c1 = 0;
|
---|
115 | AP.Complex c2 = 0;
|
---|
116 | AP.Complex c3 = 0;
|
---|
117 | double t = 0;
|
---|
118 |
|
---|
119 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvC1DInv: incorrect N or M!");
|
---|
120 | p = ftbase.ftbasefindsmooth(m);
|
---|
121 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
122 | buf = new double[2*p];
|
---|
123 | for(i=0; i<=m-1; i++)
|
---|
124 | {
|
---|
125 | buf[2*i+0] = a[i].x;
|
---|
126 | buf[2*i+1] = a[i].y;
|
---|
127 | }
|
---|
128 | for(i=m; i<=p-1; i++)
|
---|
129 | {
|
---|
130 | buf[2*i+0] = 0;
|
---|
131 | buf[2*i+1] = 0;
|
---|
132 | }
|
---|
133 | buf2 = new double[2*p];
|
---|
134 | for(i=0; i<=n-1; i++)
|
---|
135 | {
|
---|
136 | buf2[2*i+0] = b[i].x;
|
---|
137 | buf2[2*i+1] = b[i].y;
|
---|
138 | }
|
---|
139 | for(i=n; i<=p-1; i++)
|
---|
140 | {
|
---|
141 | buf2[2*i+0] = 0;
|
---|
142 | buf2[2*i+1] = 0;
|
---|
143 | }
|
---|
144 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
145 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
146 | for(i=0; i<=p-1; i++)
|
---|
147 | {
|
---|
148 | c1.x = buf[2*i+0];
|
---|
149 | c1.y = buf[2*i+1];
|
---|
150 | c2.x = buf2[2*i+0];
|
---|
151 | c2.y = buf2[2*i+1];
|
---|
152 | c3 = c1/c2;
|
---|
153 | buf[2*i+0] = c3.x;
|
---|
154 | buf[2*i+1] = -c3.y;
|
---|
155 | }
|
---|
156 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
157 | t = (double)(1)/(double)(p);
|
---|
158 | r = new AP.Complex[m-n+1];
|
---|
159 | for(i=0; i<=m-n; i++)
|
---|
160 | {
|
---|
161 | r[i].x = +(t*buf[2*i+0]);
|
---|
162 | r[i].y = -(t*buf[2*i+1]);
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | /*************************************************************************
|
---|
168 | 1-dimensional circular complex convolution.
|
---|
169 |
|
---|
170 | For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
|
---|
171 | complexity for any M/N.
|
---|
172 |
|
---|
173 | IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
|
---|
174 | conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
|
---|
175 | signal, periodic function, and another - R - is a response, non-periodic
|
---|
176 | function with limited length.
|
---|
177 |
|
---|
178 | INPUT PARAMETERS
|
---|
179 | S - array[0..M-1] - complex periodic signal
|
---|
180 | M - problem size
|
---|
181 | B - array[0..N-1] - complex non-periodic response
|
---|
182 | N - problem size
|
---|
183 |
|
---|
184 | OUTPUT PARAMETERS
|
---|
185 | R - convolution: A*B. array[0..M-1].
|
---|
186 |
|
---|
187 | NOTE:
|
---|
188 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
189 | functions have non-zero values at negative T's, you can still use this
|
---|
190 | subroutine - just shift its result correspondingly.
|
---|
191 |
|
---|
192 | -- ALGLIB --
|
---|
193 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
194 | *************************************************************************/
|
---|
195 | public static void convc1dcircular(ref AP.Complex[] s,
|
---|
196 | int m,
|
---|
197 | ref AP.Complex[] r,
|
---|
198 | int n,
|
---|
199 | ref AP.Complex[] c)
|
---|
200 | {
|
---|
201 | AP.Complex[] buf = new AP.Complex[0];
|
---|
202 | int i1 = 0;
|
---|
203 | int i2 = 0;
|
---|
204 | int j2 = 0;
|
---|
205 | int i_ = 0;
|
---|
206 | int i1_ = 0;
|
---|
207 |
|
---|
208 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
209 |
|
---|
210 | //
|
---|
211 | // normalize task: make M>=N,
|
---|
212 | // so A will be longer (at least - not shorter) that B.
|
---|
213 | //
|
---|
214 | if( m<n )
|
---|
215 | {
|
---|
216 | buf = new AP.Complex[m];
|
---|
217 | for(i1=0; i1<=m-1; i1++)
|
---|
218 | {
|
---|
219 | buf[i1] = 0;
|
---|
220 | }
|
---|
221 | i1 = 0;
|
---|
222 | while( i1<n )
|
---|
223 | {
|
---|
224 | i2 = Math.Min(i1+m-1, n-1);
|
---|
225 | j2 = i2-i1;
|
---|
226 | i1_ = (i1) - (0);
|
---|
227 | for(i_=0; i_<=j2;i_++)
|
---|
228 | {
|
---|
229 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
230 | }
|
---|
231 | i1 = i1+m;
|
---|
232 | }
|
---|
233 | convc1dcircular(ref s, m, ref buf, m, ref c);
|
---|
234 | return;
|
---|
235 | }
|
---|
236 | convc1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | /*************************************************************************
|
---|
241 | 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
|
---|
242 |
|
---|
243 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
244 |
|
---|
245 | INPUT PARAMETERS
|
---|
246 | A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
|
---|
247 | M - convolved signal length
|
---|
248 | B - array[0..N-1] - non-periodic response
|
---|
249 | N - response length
|
---|
250 |
|
---|
251 | OUTPUT PARAMETERS
|
---|
252 | R - deconvolved signal. array[0..M-1].
|
---|
253 |
|
---|
254 | NOTE:
|
---|
255 | deconvolution is unstable process and may result in division by zero
|
---|
256 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
257 |
|
---|
258 | NOTE:
|
---|
259 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
260 | functions have non-zero values at negative T's, you can still use this
|
---|
261 | subroutine - just shift its result correspondingly.
|
---|
262 |
|
---|
263 | -- ALGLIB --
|
---|
264 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
265 | *************************************************************************/
|
---|
266 | public static void convc1dcircularinv(ref AP.Complex[] a,
|
---|
267 | int m,
|
---|
268 | ref AP.Complex[] b,
|
---|
269 | int n,
|
---|
270 | ref AP.Complex[] r)
|
---|
271 | {
|
---|
272 | int i = 0;
|
---|
273 | int i1 = 0;
|
---|
274 | int i2 = 0;
|
---|
275 | int j2 = 0;
|
---|
276 | double[] buf = new double[0];
|
---|
277 | double[] buf2 = new double[0];
|
---|
278 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
279 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
280 | AP.Complex c1 = 0;
|
---|
281 | AP.Complex c2 = 0;
|
---|
282 | AP.Complex c3 = 0;
|
---|
283 | double t = 0;
|
---|
284 | int i_ = 0;
|
---|
285 | int i1_ = 0;
|
---|
286 |
|
---|
287 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircularInv: incorrect N or M!");
|
---|
288 |
|
---|
289 | //
|
---|
290 | // normalize task: make M>=N,
|
---|
291 | // so A will be longer (at least - not shorter) that B.
|
---|
292 | //
|
---|
293 | if( m<n )
|
---|
294 | {
|
---|
295 | cbuf = new AP.Complex[m];
|
---|
296 | for(i=0; i<=m-1; i++)
|
---|
297 | {
|
---|
298 | cbuf[i] = 0;
|
---|
299 | }
|
---|
300 | i1 = 0;
|
---|
301 | while( i1<n )
|
---|
302 | {
|
---|
303 | i2 = Math.Min(i1+m-1, n-1);
|
---|
304 | j2 = i2-i1;
|
---|
305 | i1_ = (i1) - (0);
|
---|
306 | for(i_=0; i_<=j2;i_++)
|
---|
307 | {
|
---|
308 | cbuf[i_] = cbuf[i_] + b[i_+i1_];
|
---|
309 | }
|
---|
310 | i1 = i1+m;
|
---|
311 | }
|
---|
312 | convc1dcircularinv(ref a, m, ref cbuf, m, ref r);
|
---|
313 | return;
|
---|
314 | }
|
---|
315 |
|
---|
316 | //
|
---|
317 | // Task is normalized
|
---|
318 | //
|
---|
319 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
320 | buf = new double[2*m];
|
---|
321 | for(i=0; i<=m-1; i++)
|
---|
322 | {
|
---|
323 | buf[2*i+0] = a[i].x;
|
---|
324 | buf[2*i+1] = a[i].y;
|
---|
325 | }
|
---|
326 | buf2 = new double[2*m];
|
---|
327 | for(i=0; i<=n-1; i++)
|
---|
328 | {
|
---|
329 | buf2[2*i+0] = b[i].x;
|
---|
330 | buf2[2*i+1] = b[i].y;
|
---|
331 | }
|
---|
332 | for(i=n; i<=m-1; i++)
|
---|
333 | {
|
---|
334 | buf2[2*i+0] = 0;
|
---|
335 | buf2[2*i+1] = 0;
|
---|
336 | }
|
---|
337 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
338 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
339 | for(i=0; i<=m-1; i++)
|
---|
340 | {
|
---|
341 | c1.x = buf[2*i+0];
|
---|
342 | c1.y = buf[2*i+1];
|
---|
343 | c2.x = buf2[2*i+0];
|
---|
344 | c2.y = buf2[2*i+1];
|
---|
345 | c3 = c1/c2;
|
---|
346 | buf[2*i+0] = c3.x;
|
---|
347 | buf[2*i+1] = -c3.y;
|
---|
348 | }
|
---|
349 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
350 | t = (double)(1)/(double)(m);
|
---|
351 | r = new AP.Complex[m];
|
---|
352 | for(i=0; i<=m-1; i++)
|
---|
353 | {
|
---|
354 | r[i].x = +(t*buf[2*i+0]);
|
---|
355 | r[i].y = -(t*buf[2*i+1]);
|
---|
356 | }
|
---|
357 | }
|
---|
358 |
|
---|
359 |
|
---|
360 | /*************************************************************************
|
---|
361 | 1-dimensional real convolution.
|
---|
362 |
|
---|
363 | Analogous to ConvC1D(), see ConvC1D() comments for more details.
|
---|
364 |
|
---|
365 | INPUT PARAMETERS
|
---|
366 | A - array[0..M-1] - real function to be transformed
|
---|
367 | M - problem size
|
---|
368 | B - array[0..N-1] - real function to be transformed
|
---|
369 | N - problem size
|
---|
370 |
|
---|
371 | OUTPUT PARAMETERS
|
---|
372 | R - convolution: A*B. array[0..N+M-2].
|
---|
373 |
|
---|
374 | NOTE:
|
---|
375 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
376 | functions have non-zero values at negative T's, you can still use this
|
---|
377 | subroutine - just shift its result correspondingly.
|
---|
378 |
|
---|
379 | -- ALGLIB --
|
---|
380 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
381 | *************************************************************************/
|
---|
382 | public static void convr1d(ref double[] a,
|
---|
383 | int m,
|
---|
384 | ref double[] b,
|
---|
385 | int n,
|
---|
386 | ref double[] r)
|
---|
387 | {
|
---|
388 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1D: incorrect N or M!");
|
---|
389 |
|
---|
390 | //
|
---|
391 | // normalize task: make M>=N,
|
---|
392 | // so A will be longer that B.
|
---|
393 | //
|
---|
394 | if( m<n )
|
---|
395 | {
|
---|
396 | convr1d(ref b, n, ref a, m, ref r);
|
---|
397 | return;
|
---|
398 | }
|
---|
399 | convr1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | /*************************************************************************
|
---|
404 | 1-dimensional real deconvolution (inverse of ConvC1D()).
|
---|
405 |
|
---|
406 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
407 |
|
---|
408 | INPUT PARAMETERS
|
---|
409 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
410 | M - convolved signal length
|
---|
411 | B - array[0..N-1] - response
|
---|
412 | N - response length, N<=M
|
---|
413 |
|
---|
414 | OUTPUT PARAMETERS
|
---|
415 | R - deconvolved signal. array[0..M-N].
|
---|
416 |
|
---|
417 | NOTE:
|
---|
418 | deconvolution is unstable process and may result in division by zero
|
---|
419 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
420 |
|
---|
421 | NOTE:
|
---|
422 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
423 | functions have non-zero values at negative T's, you can still use this
|
---|
424 | subroutine - just shift its result correspondingly.
|
---|
425 |
|
---|
426 | -- ALGLIB --
|
---|
427 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
428 | *************************************************************************/
|
---|
429 | public static void convr1dinv(ref double[] a,
|
---|
430 | int m,
|
---|
431 | ref double[] b,
|
---|
432 | int n,
|
---|
433 | ref double[] r)
|
---|
434 | {
|
---|
435 | int i = 0;
|
---|
436 | int p = 0;
|
---|
437 | double[] buf = new double[0];
|
---|
438 | double[] buf2 = new double[0];
|
---|
439 | double[] buf3 = new double[0];
|
---|
440 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
441 | AP.Complex c1 = 0;
|
---|
442 | AP.Complex c2 = 0;
|
---|
443 | AP.Complex c3 = 0;
|
---|
444 | int i_ = 0;
|
---|
445 |
|
---|
446 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvR1DInv: incorrect N or M!");
|
---|
447 | p = ftbase.ftbasefindsmootheven(m);
|
---|
448 | buf = new double[p];
|
---|
449 | for(i_=0; i_<=m-1;i_++)
|
---|
450 | {
|
---|
451 | buf[i_] = a[i_];
|
---|
452 | }
|
---|
453 | for(i=m; i<=p-1; i++)
|
---|
454 | {
|
---|
455 | buf[i] = 0;
|
---|
456 | }
|
---|
457 | buf2 = new double[p];
|
---|
458 | for(i_=0; i_<=n-1;i_++)
|
---|
459 | {
|
---|
460 | buf2[i_] = b[i_];
|
---|
461 | }
|
---|
462 | for(i=n; i<=p-1; i++)
|
---|
463 | {
|
---|
464 | buf2[i] = 0;
|
---|
465 | }
|
---|
466 | buf3 = new double[p];
|
---|
467 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
468 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
469 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
470 | buf[0] = buf[0]/buf2[0];
|
---|
471 | buf[1] = buf[1]/buf2[1];
|
---|
472 | for(i=1; i<=p/2-1; i++)
|
---|
473 | {
|
---|
474 | c1.x = buf[2*i+0];
|
---|
475 | c1.y = buf[2*i+1];
|
---|
476 | c2.x = buf2[2*i+0];
|
---|
477 | c2.y = buf2[2*i+1];
|
---|
478 | c3 = c1/c2;
|
---|
479 | buf[2*i+0] = c3.x;
|
---|
480 | buf[2*i+1] = c3.y;
|
---|
481 | }
|
---|
482 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
483 | r = new double[m-n+1];
|
---|
484 | for(i_=0; i_<=m-n;i_++)
|
---|
485 | {
|
---|
486 | r[i_] = buf[i_];
|
---|
487 | }
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | /*************************************************************************
|
---|
492 | 1-dimensional circular real convolution.
|
---|
493 |
|
---|
494 | Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
|
---|
495 |
|
---|
496 | INPUT PARAMETERS
|
---|
497 | S - array[0..M-1] - real signal
|
---|
498 | M - problem size
|
---|
499 | B - array[0..N-1] - real response
|
---|
500 | N - problem size
|
---|
501 |
|
---|
502 | OUTPUT PARAMETERS
|
---|
503 | R - convolution: A*B. array[0..M-1].
|
---|
504 |
|
---|
505 | NOTE:
|
---|
506 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
507 | functions have non-zero values at negative T's, you can still use this
|
---|
508 | subroutine - just shift its result correspondingly.
|
---|
509 |
|
---|
510 | -- ALGLIB --
|
---|
511 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
512 | *************************************************************************/
|
---|
513 | public static void convr1dcircular(ref double[] s,
|
---|
514 | int m,
|
---|
515 | ref double[] r,
|
---|
516 | int n,
|
---|
517 | ref double[] c)
|
---|
518 | {
|
---|
519 | double[] buf = new double[0];
|
---|
520 | int i1 = 0;
|
---|
521 | int i2 = 0;
|
---|
522 | int j2 = 0;
|
---|
523 | int i_ = 0;
|
---|
524 | int i1_ = 0;
|
---|
525 |
|
---|
526 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
527 |
|
---|
528 | //
|
---|
529 | // normalize task: make M>=N,
|
---|
530 | // so A will be longer (at least - not shorter) that B.
|
---|
531 | //
|
---|
532 | if( m<n )
|
---|
533 | {
|
---|
534 | buf = new double[m];
|
---|
535 | for(i1=0; i1<=m-1; i1++)
|
---|
536 | {
|
---|
537 | buf[i1] = 0;
|
---|
538 | }
|
---|
539 | i1 = 0;
|
---|
540 | while( i1<n )
|
---|
541 | {
|
---|
542 | i2 = Math.Min(i1+m-1, n-1);
|
---|
543 | j2 = i2-i1;
|
---|
544 | i1_ = (i1) - (0);
|
---|
545 | for(i_=0; i_<=j2;i_++)
|
---|
546 | {
|
---|
547 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
548 | }
|
---|
549 | i1 = i1+m;
|
---|
550 | }
|
---|
551 | convr1dcircular(ref s, m, ref buf, m, ref c);
|
---|
552 | return;
|
---|
553 | }
|
---|
554 |
|
---|
555 | //
|
---|
556 | // reduce to usual convolution
|
---|
557 | //
|
---|
558 | convr1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
559 | }
|
---|
560 |
|
---|
561 |
|
---|
562 | /*************************************************************************
|
---|
563 | 1-dimensional complex deconvolution (inverse of ConvC1D()).
|
---|
564 |
|
---|
565 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
566 |
|
---|
567 | INPUT PARAMETERS
|
---|
568 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
569 | M - convolved signal length
|
---|
570 | B - array[0..N-1] - response
|
---|
571 | N - response length
|
---|
572 |
|
---|
573 | OUTPUT PARAMETERS
|
---|
574 | R - deconvolved signal. array[0..M-N].
|
---|
575 |
|
---|
576 | NOTE:
|
---|
577 | deconvolution is unstable process and may result in division by zero
|
---|
578 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
579 |
|
---|
580 | NOTE:
|
---|
581 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
582 | functions have non-zero values at negative T's, you can still use this
|
---|
583 | subroutine - just shift its result correspondingly.
|
---|
584 |
|
---|
585 | -- ALGLIB --
|
---|
586 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
587 | *************************************************************************/
|
---|
588 | public static void convr1dcircularinv(ref double[] a,
|
---|
589 | int m,
|
---|
590 | ref double[] b,
|
---|
591 | int n,
|
---|
592 | ref double[] r)
|
---|
593 | {
|
---|
594 | int i = 0;
|
---|
595 | int i1 = 0;
|
---|
596 | int i2 = 0;
|
---|
597 | int j2 = 0;
|
---|
598 | double[] buf = new double[0];
|
---|
599 | double[] buf2 = new double[0];
|
---|
600 | double[] buf3 = new double[0];
|
---|
601 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
602 | AP.Complex[] cbuf2 = new AP.Complex[0];
|
---|
603 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
604 | AP.Complex c1 = 0;
|
---|
605 | AP.Complex c2 = 0;
|
---|
606 | AP.Complex c3 = 0;
|
---|
607 | int i_ = 0;
|
---|
608 | int i1_ = 0;
|
---|
609 |
|
---|
610 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1DCircularInv: incorrect N or M!");
|
---|
611 |
|
---|
612 | //
|
---|
613 | // normalize task: make M>=N,
|
---|
614 | // so A will be longer (at least - not shorter) that B.
|
---|
615 | //
|
---|
616 | if( m<n )
|
---|
617 | {
|
---|
618 | buf = new double[m];
|
---|
619 | for(i=0; i<=m-1; i++)
|
---|
620 | {
|
---|
621 | buf[i] = 0;
|
---|
622 | }
|
---|
623 | i1 = 0;
|
---|
624 | while( i1<n )
|
---|
625 | {
|
---|
626 | i2 = Math.Min(i1+m-1, n-1);
|
---|
627 | j2 = i2-i1;
|
---|
628 | i1_ = (i1) - (0);
|
---|
629 | for(i_=0; i_<=j2;i_++)
|
---|
630 | {
|
---|
631 | buf[i_] = buf[i_] + b[i_+i1_];
|
---|
632 | }
|
---|
633 | i1 = i1+m;
|
---|
634 | }
|
---|
635 | convr1dcircularinv(ref a, m, ref buf, m, ref r);
|
---|
636 | return;
|
---|
637 | }
|
---|
638 |
|
---|
639 | //
|
---|
640 | // Task is normalized
|
---|
641 | //
|
---|
642 | if( m%2==0 )
|
---|
643 | {
|
---|
644 |
|
---|
645 | //
|
---|
646 | // size is even, use fast even-size FFT
|
---|
647 | //
|
---|
648 | buf = new double[m];
|
---|
649 | for(i_=0; i_<=m-1;i_++)
|
---|
650 | {
|
---|
651 | buf[i_] = a[i_];
|
---|
652 | }
|
---|
653 | buf2 = new double[m];
|
---|
654 | for(i_=0; i_<=n-1;i_++)
|
---|
655 | {
|
---|
656 | buf2[i_] = b[i_];
|
---|
657 | }
|
---|
658 | for(i=n; i<=m-1; i++)
|
---|
659 | {
|
---|
660 | buf2[i] = 0;
|
---|
661 | }
|
---|
662 | buf3 = new double[m];
|
---|
663 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
664 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
665 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
666 | buf[0] = buf[0]/buf2[0];
|
---|
667 | buf[1] = buf[1]/buf2[1];
|
---|
668 | for(i=1; i<=m/2-1; i++)
|
---|
669 | {
|
---|
670 | c1.x = buf[2*i+0];
|
---|
671 | c1.y = buf[2*i+1];
|
---|
672 | c2.x = buf2[2*i+0];
|
---|
673 | c2.y = buf2[2*i+1];
|
---|
674 | c3 = c1/c2;
|
---|
675 | buf[2*i+0] = c3.x;
|
---|
676 | buf[2*i+1] = c3.y;
|
---|
677 | }
|
---|
678 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
679 | r = new double[m];
|
---|
680 | for(i_=0; i_<=m-1;i_++)
|
---|
681 | {
|
---|
682 | r[i_] = buf[i_];
|
---|
683 | }
|
---|
684 | }
|
---|
685 | else
|
---|
686 | {
|
---|
687 |
|
---|
688 | //
|
---|
689 | // odd-size, use general real FFT
|
---|
690 | //
|
---|
691 | fft.fftr1d(ref a, m, ref cbuf);
|
---|
692 | buf2 = new double[m];
|
---|
693 | for(i_=0; i_<=n-1;i_++)
|
---|
694 | {
|
---|
695 | buf2[i_] = b[i_];
|
---|
696 | }
|
---|
697 | for(i=n; i<=m-1; i++)
|
---|
698 | {
|
---|
699 | buf2[i] = 0;
|
---|
700 | }
|
---|
701 | fft.fftr1d(ref buf2, m, ref cbuf2);
|
---|
702 | for(i=0; i<=(int)Math.Floor((double)(m)/(double)(2)); i++)
|
---|
703 | {
|
---|
704 | cbuf[i] = cbuf[i]/cbuf2[i];
|
---|
705 | }
|
---|
706 | fft.fftr1dinv(ref cbuf, m, ref r);
|
---|
707 | }
|
---|
708 | }
|
---|
709 |
|
---|
710 |
|
---|
711 | /*************************************************************************
|
---|
712 | 1-dimensional complex convolution.
|
---|
713 |
|
---|
714 | Extended subroutine which allows to choose convolution algorithm.
|
---|
715 | Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().
|
---|
716 |
|
---|
717 | INPUT PARAMETERS
|
---|
718 | A - array[0..M-1] - complex function to be transformed
|
---|
719 | M - problem size
|
---|
720 | B - array[0..N-1] - complex function to be transformed
|
---|
721 | N - problem size, N<=M
|
---|
722 | Alg - algorithm type:
|
---|
723 | *-2 auto-select Q for overlap-add
|
---|
724 | *-1 auto-select algorithm and parameters
|
---|
725 | * 0 straightforward formula for small N's
|
---|
726 | * 1 general FFT-based code
|
---|
727 | * 2 overlap-add with length Q
|
---|
728 | Q - length for overlap-add
|
---|
729 |
|
---|
730 | OUTPUT PARAMETERS
|
---|
731 | R - convolution: A*B. array[0..N+M-1].
|
---|
732 |
|
---|
733 | -- ALGLIB --
|
---|
734 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
735 | *************************************************************************/
|
---|
736 | public static void convc1dx(ref AP.Complex[] a,
|
---|
737 | int m,
|
---|
738 | ref AP.Complex[] b,
|
---|
739 | int n,
|
---|
740 | bool circular,
|
---|
741 | int alg,
|
---|
742 | int q,
|
---|
743 | ref AP.Complex[] r)
|
---|
744 | {
|
---|
745 | int i = 0;
|
---|
746 | int j = 0;
|
---|
747 | int p = 0;
|
---|
748 | int ptotal = 0;
|
---|
749 | int i1 = 0;
|
---|
750 | int i2 = 0;
|
---|
751 | int j1 = 0;
|
---|
752 | int j2 = 0;
|
---|
753 | AP.Complex[] bbuf = new AP.Complex[0];
|
---|
754 | AP.Complex v = 0;
|
---|
755 | double ax = 0;
|
---|
756 | double ay = 0;
|
---|
757 | double bx = 0;
|
---|
758 | double by = 0;
|
---|
759 | double t = 0;
|
---|
760 | double tx = 0;
|
---|
761 | double ty = 0;
|
---|
762 | double flopcand = 0;
|
---|
763 | double flopbest = 0;
|
---|
764 | int algbest = 0;
|
---|
765 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
766 | double[] buf = new double[0];
|
---|
767 | double[] buf2 = new double[0];
|
---|
768 | int i_ = 0;
|
---|
769 | int i1_ = 0;
|
---|
770 |
|
---|
771 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
772 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
773 |
|
---|
774 | //
|
---|
775 | // Auto-select
|
---|
776 | //
|
---|
777 | if( alg==-1 | alg==-2 )
|
---|
778 | {
|
---|
779 |
|
---|
780 | //
|
---|
781 | // Initial candidate: straightforward implementation.
|
---|
782 | //
|
---|
783 | // If we want to use auto-fitted overlap-add,
|
---|
784 | // flop count is initialized by large real number - to force
|
---|
785 | // another algorithm selection
|
---|
786 | //
|
---|
787 | algbest = 0;
|
---|
788 | if( alg==-1 )
|
---|
789 | {
|
---|
790 | flopbest = 2*m*n;
|
---|
791 | }
|
---|
792 | else
|
---|
793 | {
|
---|
794 | flopbest = AP.Math.MaxRealNumber;
|
---|
795 | }
|
---|
796 |
|
---|
797 | //
|
---|
798 | // Another candidate - generic FFT code
|
---|
799 | //
|
---|
800 | if( alg==-1 )
|
---|
801 | {
|
---|
802 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
803 | {
|
---|
804 |
|
---|
805 | //
|
---|
806 | // special code for circular convolution of a sequence with a smooth length
|
---|
807 | //
|
---|
808 | flopcand = 3*ftbase.ftbasegetflopestimate(m)+6*m;
|
---|
809 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
810 | {
|
---|
811 | algbest = 1;
|
---|
812 | flopbest = flopcand;
|
---|
813 | }
|
---|
814 | }
|
---|
815 | else
|
---|
816 | {
|
---|
817 |
|
---|
818 | //
|
---|
819 | // general cyclic/non-cyclic convolution
|
---|
820 | //
|
---|
821 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
822 | flopcand = 3*ftbase.ftbasegetflopestimate(p)+6*p;
|
---|
823 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
824 | {
|
---|
825 | algbest = 1;
|
---|
826 | flopbest = flopcand;
|
---|
827 | }
|
---|
828 | }
|
---|
829 | }
|
---|
830 |
|
---|
831 | //
|
---|
832 | // Another candidate - overlap-add
|
---|
833 | //
|
---|
834 | q = 1;
|
---|
835 | ptotal = 1;
|
---|
836 | while( ptotal<n )
|
---|
837 | {
|
---|
838 | ptotal = ptotal*2;
|
---|
839 | }
|
---|
840 | while( ptotal<=m+n-1 )
|
---|
841 | {
|
---|
842 | p = ptotal-n+1;
|
---|
843 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal)+8*ptotal);
|
---|
844 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
845 | {
|
---|
846 | flopbest = flopcand;
|
---|
847 | algbest = 2;
|
---|
848 | q = p;
|
---|
849 | }
|
---|
850 | ptotal = ptotal*2;
|
---|
851 | }
|
---|
852 | alg = algbest;
|
---|
853 | convc1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
854 | return;
|
---|
855 | }
|
---|
856 |
|
---|
857 | //
|
---|
858 | // straightforward formula for
|
---|
859 | // circular and non-circular convolutions.
|
---|
860 | //
|
---|
861 | // Very simple code, no further comments needed.
|
---|
862 | //
|
---|
863 | if( alg==0 )
|
---|
864 | {
|
---|
865 |
|
---|
866 | //
|
---|
867 | // Special case: N=1
|
---|
868 | //
|
---|
869 | if( n==1 )
|
---|
870 | {
|
---|
871 | r = new AP.Complex[m];
|
---|
872 | v = b[0];
|
---|
873 | for(i_=0; i_<=m-1;i_++)
|
---|
874 | {
|
---|
875 | r[i_] = v*a[i_];
|
---|
876 | }
|
---|
877 | return;
|
---|
878 | }
|
---|
879 |
|
---|
880 | //
|
---|
881 | // use straightforward formula
|
---|
882 | //
|
---|
883 | if( circular )
|
---|
884 | {
|
---|
885 |
|
---|
886 | //
|
---|
887 | // circular convolution
|
---|
888 | //
|
---|
889 | r = new AP.Complex[m];
|
---|
890 | v = b[0];
|
---|
891 | for(i_=0; i_<=m-1;i_++)
|
---|
892 | {
|
---|
893 | r[i_] = v*a[i_];
|
---|
894 | }
|
---|
895 | for(i=1; i<=n-1; i++)
|
---|
896 | {
|
---|
897 | v = b[i];
|
---|
898 | i1 = 0;
|
---|
899 | i2 = i-1;
|
---|
900 | j1 = m-i;
|
---|
901 | j2 = m-1;
|
---|
902 | i1_ = (j1) - (i1);
|
---|
903 | for(i_=i1; i_<=i2;i_++)
|
---|
904 | {
|
---|
905 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
906 | }
|
---|
907 | i1 = i;
|
---|
908 | i2 = m-1;
|
---|
909 | j1 = 0;
|
---|
910 | j2 = m-i-1;
|
---|
911 | i1_ = (j1) - (i1);
|
---|
912 | for(i_=i1; i_<=i2;i_++)
|
---|
913 | {
|
---|
914 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
915 | }
|
---|
916 | }
|
---|
917 | }
|
---|
918 | else
|
---|
919 | {
|
---|
920 |
|
---|
921 | //
|
---|
922 | // non-circular convolution
|
---|
923 | //
|
---|
924 | r = new AP.Complex[m+n-1];
|
---|
925 | for(i=0; i<=m+n-2; i++)
|
---|
926 | {
|
---|
927 | r[i] = 0;
|
---|
928 | }
|
---|
929 | for(i=0; i<=n-1; i++)
|
---|
930 | {
|
---|
931 | v = b[i];
|
---|
932 | i1_ = (0) - (i);
|
---|
933 | for(i_=i; i_<=i+m-1;i_++)
|
---|
934 | {
|
---|
935 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
936 | }
|
---|
937 | }
|
---|
938 | }
|
---|
939 | return;
|
---|
940 | }
|
---|
941 |
|
---|
942 | //
|
---|
943 | // general FFT-based code for
|
---|
944 | // circular and non-circular convolutions.
|
---|
945 | //
|
---|
946 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
947 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
948 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
949 | //
|
---|
950 | // IF convolution is non-circular, we use zero-padding + FFT.
|
---|
951 | //
|
---|
952 | if( alg==1 )
|
---|
953 | {
|
---|
954 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
955 | {
|
---|
956 |
|
---|
957 | //
|
---|
958 | // special code for circular convolution with smooth M
|
---|
959 | //
|
---|
960 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
961 | buf = new double[2*m];
|
---|
962 | for(i=0; i<=m-1; i++)
|
---|
963 | {
|
---|
964 | buf[2*i+0] = a[i].x;
|
---|
965 | buf[2*i+1] = a[i].y;
|
---|
966 | }
|
---|
967 | buf2 = new double[2*m];
|
---|
968 | for(i=0; i<=n-1; i++)
|
---|
969 | {
|
---|
970 | buf2[2*i+0] = b[i].x;
|
---|
971 | buf2[2*i+1] = b[i].y;
|
---|
972 | }
|
---|
973 | for(i=n; i<=m-1; i++)
|
---|
974 | {
|
---|
975 | buf2[2*i+0] = 0;
|
---|
976 | buf2[2*i+1] = 0;
|
---|
977 | }
|
---|
978 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
979 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
980 | for(i=0; i<=m-1; i++)
|
---|
981 | {
|
---|
982 | ax = buf[2*i+0];
|
---|
983 | ay = buf[2*i+1];
|
---|
984 | bx = buf2[2*i+0];
|
---|
985 | by = buf2[2*i+1];
|
---|
986 | tx = ax*bx-ay*by;
|
---|
987 | ty = ax*by+ay*bx;
|
---|
988 | buf[2*i+0] = tx;
|
---|
989 | buf[2*i+1] = -ty;
|
---|
990 | }
|
---|
991 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
992 | t = (double)(1)/(double)(m);
|
---|
993 | r = new AP.Complex[m];
|
---|
994 | for(i=0; i<=m-1; i++)
|
---|
995 | {
|
---|
996 | r[i].x = +(t*buf[2*i+0]);
|
---|
997 | r[i].y = -(t*buf[2*i+1]);
|
---|
998 | }
|
---|
999 | }
|
---|
1000 | else
|
---|
1001 | {
|
---|
1002 |
|
---|
1003 | //
|
---|
1004 | // M is non-smooth, general code (circular/non-circular):
|
---|
1005 | // * first part is the same for circular and non-circular
|
---|
1006 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
1007 | // * second part differs:
|
---|
1008 | // * for non-circular convolution we just copy array
|
---|
1009 | // * for circular convolution we add array tail to its head
|
---|
1010 | //
|
---|
1011 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
1012 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
1013 | buf = new double[2*p];
|
---|
1014 | for(i=0; i<=m-1; i++)
|
---|
1015 | {
|
---|
1016 | buf[2*i+0] = a[i].x;
|
---|
1017 | buf[2*i+1] = a[i].y;
|
---|
1018 | }
|
---|
1019 | for(i=m; i<=p-1; i++)
|
---|
1020 | {
|
---|
1021 | buf[2*i+0] = 0;
|
---|
1022 | buf[2*i+1] = 0;
|
---|
1023 | }
|
---|
1024 | buf2 = new double[2*p];
|
---|
1025 | for(i=0; i<=n-1; i++)
|
---|
1026 | {
|
---|
1027 | buf2[2*i+0] = b[i].x;
|
---|
1028 | buf2[2*i+1] = b[i].y;
|
---|
1029 | }
|
---|
1030 | for(i=n; i<=p-1; i++)
|
---|
1031 | {
|
---|
1032 | buf2[2*i+0] = 0;
|
---|
1033 | buf2[2*i+1] = 0;
|
---|
1034 | }
|
---|
1035 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
1036 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
1037 | for(i=0; i<=p-1; i++)
|
---|
1038 | {
|
---|
1039 | ax = buf[2*i+0];
|
---|
1040 | ay = buf[2*i+1];
|
---|
1041 | bx = buf2[2*i+0];
|
---|
1042 | by = buf2[2*i+1];
|
---|
1043 | tx = ax*bx-ay*by;
|
---|
1044 | ty = ax*by+ay*bx;
|
---|
1045 | buf[2*i+0] = tx;
|
---|
1046 | buf[2*i+1] = -ty;
|
---|
1047 | }
|
---|
1048 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
1049 | t = (double)(1)/(double)(p);
|
---|
1050 | if( circular )
|
---|
1051 | {
|
---|
1052 |
|
---|
1053 | //
|
---|
1054 | // circular, add tail to head
|
---|
1055 | //
|
---|
1056 | r = new AP.Complex[m];
|
---|
1057 | for(i=0; i<=m-1; i++)
|
---|
1058 | {
|
---|
1059 | r[i].x = +(t*buf[2*i+0]);
|
---|
1060 | r[i].y = -(t*buf[2*i+1]);
|
---|
1061 | }
|
---|
1062 | for(i=m; i<=m+n-2; i++)
|
---|
1063 | {
|
---|
1064 | r[i-m].x = r[i-m].x+t*buf[2*i+0];
|
---|
1065 | r[i-m].y = r[i-m].y-t*buf[2*i+1];
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 | else
|
---|
1069 | {
|
---|
1070 |
|
---|
1071 | //
|
---|
1072 | // non-circular, just copy
|
---|
1073 | //
|
---|
1074 | r = new AP.Complex[m+n-1];
|
---|
1075 | for(i=0; i<=m+n-2; i++)
|
---|
1076 | {
|
---|
1077 | r[i].x = +(t*buf[2*i+0]);
|
---|
1078 | r[i].y = -(t*buf[2*i+1]);
|
---|
1079 | }
|
---|
1080 | }
|
---|
1081 | }
|
---|
1082 | return;
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | //
|
---|
1086 | // overlap-add method for
|
---|
1087 | // circular and non-circular convolutions.
|
---|
1088 | //
|
---|
1089 | // First part of code (separate FFTs of input blocks) is the same
|
---|
1090 | // for all types of convolution. Second part (overlapping outputs)
|
---|
1091 | // differs for different types of convolution. We just copy output
|
---|
1092 | // when convolution is non-circular. We wrap it around, if it is
|
---|
1093 | // circular.
|
---|
1094 | //
|
---|
1095 | if( alg==2 )
|
---|
1096 | {
|
---|
1097 | buf = new double[2*(q+n-1)];
|
---|
1098 |
|
---|
1099 | //
|
---|
1100 | // prepare R
|
---|
1101 | //
|
---|
1102 | if( circular )
|
---|
1103 | {
|
---|
1104 | r = new AP.Complex[m];
|
---|
1105 | for(i=0; i<=m-1; i++)
|
---|
1106 | {
|
---|
1107 | r[i] = 0;
|
---|
1108 | }
|
---|
1109 | }
|
---|
1110 | else
|
---|
1111 | {
|
---|
1112 | r = new AP.Complex[m+n-1];
|
---|
1113 | for(i=0; i<=m+n-2; i++)
|
---|
1114 | {
|
---|
1115 | r[i] = 0;
|
---|
1116 | }
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 | //
|
---|
1120 | // pre-calculated FFT(B)
|
---|
1121 | //
|
---|
1122 | bbuf = new AP.Complex[q+n-1];
|
---|
1123 | for(i_=0; i_<=n-1;i_++)
|
---|
1124 | {
|
---|
1125 | bbuf[i_] = b[i_];
|
---|
1126 | }
|
---|
1127 | for(j=n; j<=q+n-2; j++)
|
---|
1128 | {
|
---|
1129 | bbuf[j] = 0;
|
---|
1130 | }
|
---|
1131 | fft.fftc1d(ref bbuf, q+n-1);
|
---|
1132 |
|
---|
1133 | //
|
---|
1134 | // prepare FFT plan for chunks of A
|
---|
1135 | //
|
---|
1136 | ftbase.ftbasegeneratecomplexfftplan(q+n-1, ref plan);
|
---|
1137 |
|
---|
1138 | //
|
---|
1139 | // main overlap-add cycle
|
---|
1140 | //
|
---|
1141 | i = 0;
|
---|
1142 | while( i<=m-1 )
|
---|
1143 | {
|
---|
1144 | p = Math.Min(q, m-i);
|
---|
1145 | for(j=0; j<=p-1; j++)
|
---|
1146 | {
|
---|
1147 | buf[2*j+0] = a[i+j].x;
|
---|
1148 | buf[2*j+1] = a[i+j].y;
|
---|
1149 | }
|
---|
1150 | for(j=p; j<=q+n-2; j++)
|
---|
1151 | {
|
---|
1152 | buf[2*j+0] = 0;
|
---|
1153 | buf[2*j+1] = 0;
|
---|
1154 | }
|
---|
1155 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
1156 | for(j=0; j<=q+n-2; j++)
|
---|
1157 | {
|
---|
1158 | ax = buf[2*j+0];
|
---|
1159 | ay = buf[2*j+1];
|
---|
1160 | bx = bbuf[j].x;
|
---|
1161 | by = bbuf[j].y;
|
---|
1162 | tx = ax*bx-ay*by;
|
---|
1163 | ty = ax*by+ay*bx;
|
---|
1164 | buf[2*j+0] = tx;
|
---|
1165 | buf[2*j+1] = -ty;
|
---|
1166 | }
|
---|
1167 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
1168 | t = (double)(1)/((double)(q+n-1));
|
---|
1169 | if( circular )
|
---|
1170 | {
|
---|
1171 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
1172 | j2 = j1+1;
|
---|
1173 | }
|
---|
1174 | else
|
---|
1175 | {
|
---|
1176 | j1 = p+n-2;
|
---|
1177 | j2 = j1+1;
|
---|
1178 | }
|
---|
1179 | for(j=0; j<=j1; j++)
|
---|
1180 | {
|
---|
1181 | r[i+j].x = r[i+j].x+buf[2*j+0]*t;
|
---|
1182 | r[i+j].y = r[i+j].y-buf[2*j+1]*t;
|
---|
1183 | }
|
---|
1184 | for(j=j2; j<=p+n-2; j++)
|
---|
1185 | {
|
---|
1186 | r[j-j2].x = r[j-j2].x+buf[2*j+0]*t;
|
---|
1187 | r[j-j2].y = r[j-j2].y-buf[2*j+1]*t;
|
---|
1188 | }
|
---|
1189 | i = i+p;
|
---|
1190 | }
|
---|
1191 | return;
|
---|
1192 | }
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 |
|
---|
1196 | /*************************************************************************
|
---|
1197 | 1-dimensional real convolution.
|
---|
1198 |
|
---|
1199 | Extended subroutine which allows to choose convolution algorithm.
|
---|
1200 | Intended for internal use, ALGLIB users should call ConvR1D().
|
---|
1201 |
|
---|
1202 | INPUT PARAMETERS
|
---|
1203 | A - array[0..M-1] - complex function to be transformed
|
---|
1204 | M - problem size
|
---|
1205 | B - array[0..N-1] - complex function to be transformed
|
---|
1206 | N - problem size, N<=M
|
---|
1207 | Alg - algorithm type:
|
---|
1208 | *-2 auto-select Q for overlap-add
|
---|
1209 | *-1 auto-select algorithm and parameters
|
---|
1210 | * 0 straightforward formula for small N's
|
---|
1211 | * 1 general FFT-based code
|
---|
1212 | * 2 overlap-add with length Q
|
---|
1213 | Q - length for overlap-add
|
---|
1214 |
|
---|
1215 | OUTPUT PARAMETERS
|
---|
1216 | R - convolution: A*B. array[0..N+M-1].
|
---|
1217 |
|
---|
1218 | -- ALGLIB --
|
---|
1219 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1220 | *************************************************************************/
|
---|
1221 | public static void convr1dx(ref double[] a,
|
---|
1222 | int m,
|
---|
1223 | ref double[] b,
|
---|
1224 | int n,
|
---|
1225 | bool circular,
|
---|
1226 | int alg,
|
---|
1227 | int q,
|
---|
1228 | ref double[] r)
|
---|
1229 | {
|
---|
1230 | double v = 0;
|
---|
1231 | int i = 0;
|
---|
1232 | int j = 0;
|
---|
1233 | int p = 0;
|
---|
1234 | int ptotal = 0;
|
---|
1235 | int i1 = 0;
|
---|
1236 | int i2 = 0;
|
---|
1237 | int j1 = 0;
|
---|
1238 | int j2 = 0;
|
---|
1239 | double ax = 0;
|
---|
1240 | double ay = 0;
|
---|
1241 | double bx = 0;
|
---|
1242 | double by = 0;
|
---|
1243 | double tx = 0;
|
---|
1244 | double ty = 0;
|
---|
1245 | double flopcand = 0;
|
---|
1246 | double flopbest = 0;
|
---|
1247 | int algbest = 0;
|
---|
1248 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1249 | double[] buf = new double[0];
|
---|
1250 | double[] buf2 = new double[0];
|
---|
1251 | double[] buf3 = new double[0];
|
---|
1252 | int i_ = 0;
|
---|
1253 | int i1_ = 0;
|
---|
1254 |
|
---|
1255 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
1256 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
1257 |
|
---|
1258 | //
|
---|
1259 | // handle special cases
|
---|
1260 | //
|
---|
1261 | if( Math.Min(m, n)<=2 )
|
---|
1262 | {
|
---|
1263 | alg = 0;
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | //
|
---|
1267 | // Auto-select
|
---|
1268 | //
|
---|
1269 | if( alg<0 )
|
---|
1270 | {
|
---|
1271 |
|
---|
1272 | //
|
---|
1273 | // Initial candidate: straightforward implementation.
|
---|
1274 | //
|
---|
1275 | // If we want to use auto-fitted overlap-add,
|
---|
1276 | // flop count is initialized by large real number - to force
|
---|
1277 | // another algorithm selection
|
---|
1278 | //
|
---|
1279 | algbest = 0;
|
---|
1280 | if( alg==-1 )
|
---|
1281 | {
|
---|
1282 | flopbest = 0.15*m*n;
|
---|
1283 | }
|
---|
1284 | else
|
---|
1285 | {
|
---|
1286 | flopbest = AP.Math.MaxRealNumber;
|
---|
1287 | }
|
---|
1288 |
|
---|
1289 | //
|
---|
1290 | // Another candidate - generic FFT code
|
---|
1291 | //
|
---|
1292 | if( alg==-1 )
|
---|
1293 | {
|
---|
1294 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
1295 | {
|
---|
1296 |
|
---|
1297 | //
|
---|
1298 | // special code for circular convolution of a sequence with a smooth length
|
---|
1299 | //
|
---|
1300 | flopcand = 3*ftbase.ftbasegetflopestimate(m/2)+(double)(6*m)/(double)(2);
|
---|
1301 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1302 | {
|
---|
1303 | algbest = 1;
|
---|
1304 | flopbest = flopcand;
|
---|
1305 | }
|
---|
1306 | }
|
---|
1307 | else
|
---|
1308 | {
|
---|
1309 |
|
---|
1310 | //
|
---|
1311 | // general cyclic/non-cyclic convolution
|
---|
1312 | //
|
---|
1313 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
1314 | flopcand = 3*ftbase.ftbasegetflopestimate(p/2)+(double)(6*p)/(double)(2);
|
---|
1315 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1316 | {
|
---|
1317 | algbest = 1;
|
---|
1318 | flopbest = flopcand;
|
---|
1319 | }
|
---|
1320 | }
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 | //
|
---|
1324 | // Another candidate - overlap-add
|
---|
1325 | //
|
---|
1326 | q = 1;
|
---|
1327 | ptotal = 1;
|
---|
1328 | while( ptotal<n )
|
---|
1329 | {
|
---|
1330 | ptotal = ptotal*2;
|
---|
1331 | }
|
---|
1332 | while( ptotal<=m+n-1 )
|
---|
1333 | {
|
---|
1334 | p = ptotal-n+1;
|
---|
1335 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal/2)+1*(ptotal/2));
|
---|
1336 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1337 | {
|
---|
1338 | flopbest = flopcand;
|
---|
1339 | algbest = 2;
|
---|
1340 | q = p;
|
---|
1341 | }
|
---|
1342 | ptotal = ptotal*2;
|
---|
1343 | }
|
---|
1344 | alg = algbest;
|
---|
1345 | convr1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
1346 | return;
|
---|
1347 | }
|
---|
1348 |
|
---|
1349 | //
|
---|
1350 | // straightforward formula for
|
---|
1351 | // circular and non-circular convolutions.
|
---|
1352 | //
|
---|
1353 | // Very simple code, no further comments needed.
|
---|
1354 | //
|
---|
1355 | if( alg==0 )
|
---|
1356 | {
|
---|
1357 |
|
---|
1358 | //
|
---|
1359 | // Special case: N=1
|
---|
1360 | //
|
---|
1361 | if( n==1 )
|
---|
1362 | {
|
---|
1363 | r = new double[m];
|
---|
1364 | v = b[0];
|
---|
1365 | for(i_=0; i_<=m-1;i_++)
|
---|
1366 | {
|
---|
1367 | r[i_] = v*a[i_];
|
---|
1368 | }
|
---|
1369 | return;
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | //
|
---|
1373 | // use straightforward formula
|
---|
1374 | //
|
---|
1375 | if( circular )
|
---|
1376 | {
|
---|
1377 |
|
---|
1378 | //
|
---|
1379 | // circular convolution
|
---|
1380 | //
|
---|
1381 | r = new double[m];
|
---|
1382 | v = b[0];
|
---|
1383 | for(i_=0; i_<=m-1;i_++)
|
---|
1384 | {
|
---|
1385 | r[i_] = v*a[i_];
|
---|
1386 | }
|
---|
1387 | for(i=1; i<=n-1; i++)
|
---|
1388 | {
|
---|
1389 | v = b[i];
|
---|
1390 | i1 = 0;
|
---|
1391 | i2 = i-1;
|
---|
1392 | j1 = m-i;
|
---|
1393 | j2 = m-1;
|
---|
1394 | i1_ = (j1) - (i1);
|
---|
1395 | for(i_=i1; i_<=i2;i_++)
|
---|
1396 | {
|
---|
1397 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1398 | }
|
---|
1399 | i1 = i;
|
---|
1400 | i2 = m-1;
|
---|
1401 | j1 = 0;
|
---|
1402 | j2 = m-i-1;
|
---|
1403 | i1_ = (j1) - (i1);
|
---|
1404 | for(i_=i1; i_<=i2;i_++)
|
---|
1405 | {
|
---|
1406 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1407 | }
|
---|
1408 | }
|
---|
1409 | }
|
---|
1410 | else
|
---|
1411 | {
|
---|
1412 |
|
---|
1413 | //
|
---|
1414 | // non-circular convolution
|
---|
1415 | //
|
---|
1416 | r = new double[m+n-1];
|
---|
1417 | for(i=0; i<=m+n-2; i++)
|
---|
1418 | {
|
---|
1419 | r[i] = 0;
|
---|
1420 | }
|
---|
1421 | for(i=0; i<=n-1; i++)
|
---|
1422 | {
|
---|
1423 | v = b[i];
|
---|
1424 | i1_ = (0) - (i);
|
---|
1425 | for(i_=i; i_<=i+m-1;i_++)
|
---|
1426 | {
|
---|
1427 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1428 | }
|
---|
1429 | }
|
---|
1430 | }
|
---|
1431 | return;
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | //
|
---|
1435 | // general FFT-based code for
|
---|
1436 | // circular and non-circular convolutions.
|
---|
1437 | //
|
---|
1438 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
1439 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
1440 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
1441 | //
|
---|
1442 | // If convolution is non-circular, we use zero-padding + FFT.
|
---|
1443 | //
|
---|
1444 | // We assume that M+N-1>2 - we should call small case code otherwise
|
---|
1445 | //
|
---|
1446 | if( alg==1 )
|
---|
1447 | {
|
---|
1448 | System.Diagnostics.Debug.Assert(m+n-1>2, "ConvR1DX: internal error!");
|
---|
1449 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
1450 | {
|
---|
1451 |
|
---|
1452 | //
|
---|
1453 | // special code for circular convolution with smooth even M
|
---|
1454 | //
|
---|
1455 | buf = new double[m];
|
---|
1456 | for(i_=0; i_<=m-1;i_++)
|
---|
1457 | {
|
---|
1458 | buf[i_] = a[i_];
|
---|
1459 | }
|
---|
1460 | buf2 = new double[m];
|
---|
1461 | for(i_=0; i_<=n-1;i_++)
|
---|
1462 | {
|
---|
1463 | buf2[i_] = b[i_];
|
---|
1464 | }
|
---|
1465 | for(i=n; i<=m-1; i++)
|
---|
1466 | {
|
---|
1467 | buf2[i] = 0;
|
---|
1468 | }
|
---|
1469 | buf3 = new double[m];
|
---|
1470 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
1471 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
1472 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
1473 | buf[0] = buf[0]*buf2[0];
|
---|
1474 | buf[1] = buf[1]*buf2[1];
|
---|
1475 | for(i=1; i<=m/2-1; i++)
|
---|
1476 | {
|
---|
1477 | ax = buf[2*i+0];
|
---|
1478 | ay = buf[2*i+1];
|
---|
1479 | bx = buf2[2*i+0];
|
---|
1480 | by = buf2[2*i+1];
|
---|
1481 | tx = ax*bx-ay*by;
|
---|
1482 | ty = ax*by+ay*bx;
|
---|
1483 | buf[2*i+0] = tx;
|
---|
1484 | buf[2*i+1] = ty;
|
---|
1485 | }
|
---|
1486 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
1487 | r = new double[m];
|
---|
1488 | for(i_=0; i_<=m-1;i_++)
|
---|
1489 | {
|
---|
1490 | r[i_] = buf[i_];
|
---|
1491 | }
|
---|
1492 | }
|
---|
1493 | else
|
---|
1494 | {
|
---|
1495 |
|
---|
1496 | //
|
---|
1497 | // M is non-smooth or non-even, general code (circular/non-circular):
|
---|
1498 | // * first part is the same for circular and non-circular
|
---|
1499 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
1500 | // * second part differs:
|
---|
1501 | // * for non-circular convolution we just copy array
|
---|
1502 | // * for circular convolution we add array tail to its head
|
---|
1503 | //
|
---|
1504 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
1505 | buf = new double[p];
|
---|
1506 | for(i_=0; i_<=m-1;i_++)
|
---|
1507 | {
|
---|
1508 | buf[i_] = a[i_];
|
---|
1509 | }
|
---|
1510 | for(i=m; i<=p-1; i++)
|
---|
1511 | {
|
---|
1512 | buf[i] = 0;
|
---|
1513 | }
|
---|
1514 | buf2 = new double[p];
|
---|
1515 | for(i_=0; i_<=n-1;i_++)
|
---|
1516 | {
|
---|
1517 | buf2[i_] = b[i_];
|
---|
1518 | }
|
---|
1519 | for(i=n; i<=p-1; i++)
|
---|
1520 | {
|
---|
1521 | buf2[i] = 0;
|
---|
1522 | }
|
---|
1523 | buf3 = new double[p];
|
---|
1524 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
1525 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
1526 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
1527 | buf[0] = buf[0]*buf2[0];
|
---|
1528 | buf[1] = buf[1]*buf2[1];
|
---|
1529 | for(i=1; i<=p/2-1; i++)
|
---|
1530 | {
|
---|
1531 | ax = buf[2*i+0];
|
---|
1532 | ay = buf[2*i+1];
|
---|
1533 | bx = buf2[2*i+0];
|
---|
1534 | by = buf2[2*i+1];
|
---|
1535 | tx = ax*bx-ay*by;
|
---|
1536 | ty = ax*by+ay*bx;
|
---|
1537 | buf[2*i+0] = tx;
|
---|
1538 | buf[2*i+1] = ty;
|
---|
1539 | }
|
---|
1540 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
1541 | if( circular )
|
---|
1542 | {
|
---|
1543 |
|
---|
1544 | //
|
---|
1545 | // circular, add tail to head
|
---|
1546 | //
|
---|
1547 | r = new double[m];
|
---|
1548 | for(i_=0; i_<=m-1;i_++)
|
---|
1549 | {
|
---|
1550 | r[i_] = buf[i_];
|
---|
1551 | }
|
---|
1552 | if( n>=2 )
|
---|
1553 | {
|
---|
1554 | i1_ = (m) - (0);
|
---|
1555 | for(i_=0; i_<=n-2;i_++)
|
---|
1556 | {
|
---|
1557 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 | }
|
---|
1561 | else
|
---|
1562 | {
|
---|
1563 |
|
---|
1564 | //
|
---|
1565 | // non-circular, just copy
|
---|
1566 | //
|
---|
1567 | r = new double[m+n-1];
|
---|
1568 | for(i_=0; i_<=m+n-2;i_++)
|
---|
1569 | {
|
---|
1570 | r[i_] = buf[i_];
|
---|
1571 | }
|
---|
1572 | }
|
---|
1573 | }
|
---|
1574 | return;
|
---|
1575 | }
|
---|
1576 |
|
---|
1577 | //
|
---|
1578 | // overlap-add method
|
---|
1579 | //
|
---|
1580 | if( alg==2 )
|
---|
1581 | {
|
---|
1582 | System.Diagnostics.Debug.Assert((q+n-1)%2==0, "ConvR1DX: internal error!");
|
---|
1583 | buf = new double[q+n-1];
|
---|
1584 | buf2 = new double[q+n-1];
|
---|
1585 | buf3 = new double[q+n-1];
|
---|
1586 | ftbase.ftbasegeneratecomplexfftplan((q+n-1)/2, ref plan);
|
---|
1587 |
|
---|
1588 | //
|
---|
1589 | // prepare R
|
---|
1590 | //
|
---|
1591 | if( circular )
|
---|
1592 | {
|
---|
1593 | r = new double[m];
|
---|
1594 | for(i=0; i<=m-1; i++)
|
---|
1595 | {
|
---|
1596 | r[i] = 0;
|
---|
1597 | }
|
---|
1598 | }
|
---|
1599 | else
|
---|
1600 | {
|
---|
1601 | r = new double[m+n-1];
|
---|
1602 | for(i=0; i<=m+n-2; i++)
|
---|
1603 | {
|
---|
1604 | r[i] = 0;
|
---|
1605 | }
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | //
|
---|
1609 | // pre-calculated FFT(B)
|
---|
1610 | //
|
---|
1611 | for(i_=0; i_<=n-1;i_++)
|
---|
1612 | {
|
---|
1613 | buf2[i_] = b[i_];
|
---|
1614 | }
|
---|
1615 | for(j=n; j<=q+n-2; j++)
|
---|
1616 | {
|
---|
1617 | buf2[j] = 0;
|
---|
1618 | }
|
---|
1619 | fft.fftr1dinternaleven(ref buf2, q+n-1, ref buf3, ref plan);
|
---|
1620 |
|
---|
1621 | //
|
---|
1622 | // main overlap-add cycle
|
---|
1623 | //
|
---|
1624 | i = 0;
|
---|
1625 | while( i<=m-1 )
|
---|
1626 | {
|
---|
1627 | p = Math.Min(q, m-i);
|
---|
1628 | i1_ = (i) - (0);
|
---|
1629 | for(i_=0; i_<=p-1;i_++)
|
---|
1630 | {
|
---|
1631 | buf[i_] = a[i_+i1_];
|
---|
1632 | }
|
---|
1633 | for(j=p; j<=q+n-2; j++)
|
---|
1634 | {
|
---|
1635 | buf[j] = 0;
|
---|
1636 | }
|
---|
1637 | fft.fftr1dinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
1638 | buf[0] = buf[0]*buf2[0];
|
---|
1639 | buf[1] = buf[1]*buf2[1];
|
---|
1640 | for(j=1; j<=(q+n-1)/2-1; j++)
|
---|
1641 | {
|
---|
1642 | ax = buf[2*j+0];
|
---|
1643 | ay = buf[2*j+1];
|
---|
1644 | bx = buf2[2*j+0];
|
---|
1645 | by = buf2[2*j+1];
|
---|
1646 | tx = ax*bx-ay*by;
|
---|
1647 | ty = ax*by+ay*bx;
|
---|
1648 | buf[2*j+0] = tx;
|
---|
1649 | buf[2*j+1] = ty;
|
---|
1650 | }
|
---|
1651 | fft.fftr1dinvinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
1652 | if( circular )
|
---|
1653 | {
|
---|
1654 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
1655 | j2 = j1+1;
|
---|
1656 | }
|
---|
1657 | else
|
---|
1658 | {
|
---|
1659 | j1 = p+n-2;
|
---|
1660 | j2 = j1+1;
|
---|
1661 | }
|
---|
1662 | i1_ = (0) - (i);
|
---|
1663 | for(i_=i; i_<=i+j1;i_++)
|
---|
1664 | {
|
---|
1665 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1666 | }
|
---|
1667 | if( p+n-2>=j2 )
|
---|
1668 | {
|
---|
1669 | i1_ = (j2) - (0);
|
---|
1670 | for(i_=0; i_<=p+n-2-j2;i_++)
|
---|
1671 | {
|
---|
1672 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1673 | }
|
---|
1674 | }
|
---|
1675 | i = i+p;
|
---|
1676 | }
|
---|
1677 | return;
|
---|
1678 | }
|
---|
1679 | }
|
---|
1680 | }
|
---|
1681 | }
|
---|