1 | /*************************************************************************
|
---|
2 | Copyright 2008 by Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class bdss
|
---|
26 | {
|
---|
27 | public struct cvreport
|
---|
28 | {
|
---|
29 | public double relclserror;
|
---|
30 | public double avgce;
|
---|
31 | public double rmserror;
|
---|
32 | public double avgerror;
|
---|
33 | public double avgrelerror;
|
---|
34 | };
|
---|
35 |
|
---|
36 |
|
---|
37 |
|
---|
38 |
|
---|
39 | /*************************************************************************
|
---|
40 | This set of routines (DSErrAllocate, DSErrAccumulate, DSErrFinish)
|
---|
41 | calculates different error functions (classification error, cross-entropy,
|
---|
42 | rms, avg, avg.rel errors).
|
---|
43 |
|
---|
44 | 1. DSErrAllocate prepares buffer.
|
---|
45 | 2. DSErrAccumulate accumulates individual errors:
|
---|
46 | * Y contains predicted output (posterior probabilities for classification)
|
---|
47 | * DesiredY contains desired output (class number for classification)
|
---|
48 | 3. DSErrFinish outputs results:
|
---|
49 | * Buf[0] contains relative classification error (zero for regression tasks)
|
---|
50 | * Buf[1] contains avg. cross-entropy (zero for regression tasks)
|
---|
51 | * Buf[2] contains rms error (regression, classification)
|
---|
52 | * Buf[3] contains average error (regression, classification)
|
---|
53 | * Buf[4] contains average relative error (regression, classification)
|
---|
54 |
|
---|
55 | NOTES(1):
|
---|
56 | "NClasses>0" means that we have classification task.
|
---|
57 | "NClasses<0" means regression task with -NClasses real outputs.
|
---|
58 |
|
---|
59 | NOTES(2):
|
---|
60 | rms. avg, avg.rel errors for classification tasks are interpreted as
|
---|
61 | errors in posterior probabilities with respect to probabilities given
|
---|
62 | by training/test set.
|
---|
63 |
|
---|
64 | -- ALGLIB --
|
---|
65 | Copyright 11.01.2009 by Bochkanov Sergey
|
---|
66 | *************************************************************************/
|
---|
67 | public static void dserrallocate(int nclasses,
|
---|
68 | ref double[] buf)
|
---|
69 | {
|
---|
70 | buf = new double[7+1];
|
---|
71 | buf[0] = 0;
|
---|
72 | buf[1] = 0;
|
---|
73 | buf[2] = 0;
|
---|
74 | buf[3] = 0;
|
---|
75 | buf[4] = 0;
|
---|
76 | buf[5] = nclasses;
|
---|
77 | buf[6] = 0;
|
---|
78 | buf[7] = 0;
|
---|
79 | }
|
---|
80 |
|
---|
81 |
|
---|
82 | /*************************************************************************
|
---|
83 | See DSErrAllocate for comments on this routine.
|
---|
84 |
|
---|
85 | -- ALGLIB --
|
---|
86 | Copyright 11.01.2009 by Bochkanov Sergey
|
---|
87 | *************************************************************************/
|
---|
88 | public static void dserraccumulate(ref double[] buf,
|
---|
89 | ref double[] y,
|
---|
90 | ref double[] desiredy)
|
---|
91 | {
|
---|
92 | int nclasses = 0;
|
---|
93 | int nout = 0;
|
---|
94 | int offs = 0;
|
---|
95 | int mmax = 0;
|
---|
96 | int rmax = 0;
|
---|
97 | int j = 0;
|
---|
98 | double v = 0;
|
---|
99 | double ev = 0;
|
---|
100 |
|
---|
101 | offs = 5;
|
---|
102 | nclasses = (int)Math.Round(buf[offs]);
|
---|
103 | if( nclasses>0 )
|
---|
104 | {
|
---|
105 |
|
---|
106 | //
|
---|
107 | // Classification
|
---|
108 | //
|
---|
109 | rmax = (int)Math.Round(desiredy[0]);
|
---|
110 | mmax = 0;
|
---|
111 | for(j=1; j<=nclasses-1; j++)
|
---|
112 | {
|
---|
113 | if( (double)(y[j])>(double)(y[mmax]) )
|
---|
114 | {
|
---|
115 | mmax = j;
|
---|
116 | }
|
---|
117 | }
|
---|
118 | if( mmax!=rmax )
|
---|
119 | {
|
---|
120 | buf[0] = buf[0]+1;
|
---|
121 | }
|
---|
122 | if( (double)(y[rmax])>(double)(0) )
|
---|
123 | {
|
---|
124 | buf[1] = buf[1]-Math.Log(y[rmax]);
|
---|
125 | }
|
---|
126 | else
|
---|
127 | {
|
---|
128 | buf[1] = buf[1]+Math.Log(AP.Math.MaxRealNumber);
|
---|
129 | }
|
---|
130 | for(j=0; j<=nclasses-1; j++)
|
---|
131 | {
|
---|
132 | v = y[j];
|
---|
133 | if( j==rmax )
|
---|
134 | {
|
---|
135 | ev = 1;
|
---|
136 | }
|
---|
137 | else
|
---|
138 | {
|
---|
139 | ev = 0;
|
---|
140 | }
|
---|
141 | buf[2] = buf[2]+AP.Math.Sqr(v-ev);
|
---|
142 | buf[3] = buf[3]+Math.Abs(v-ev);
|
---|
143 | if( (double)(ev)!=(double)(0) )
|
---|
144 | {
|
---|
145 | buf[4] = buf[4]+Math.Abs((v-ev)/ev);
|
---|
146 | buf[offs+2] = buf[offs+2]+1;
|
---|
147 | }
|
---|
148 | }
|
---|
149 | buf[offs+1] = buf[offs+1]+1;
|
---|
150 | }
|
---|
151 | else
|
---|
152 | {
|
---|
153 |
|
---|
154 | //
|
---|
155 | // Regression
|
---|
156 | //
|
---|
157 | nout = -nclasses;
|
---|
158 | rmax = 0;
|
---|
159 | for(j=1; j<=nout-1; j++)
|
---|
160 | {
|
---|
161 | if( (double)(desiredy[j])>(double)(desiredy[rmax]) )
|
---|
162 | {
|
---|
163 | rmax = j;
|
---|
164 | }
|
---|
165 | }
|
---|
166 | mmax = 0;
|
---|
167 | for(j=1; j<=nout-1; j++)
|
---|
168 | {
|
---|
169 | if( (double)(y[j])>(double)(y[mmax]) )
|
---|
170 | {
|
---|
171 | mmax = j;
|
---|
172 | }
|
---|
173 | }
|
---|
174 | if( mmax!=rmax )
|
---|
175 | {
|
---|
176 | buf[0] = buf[0]+1;
|
---|
177 | }
|
---|
178 | for(j=0; j<=nout-1; j++)
|
---|
179 | {
|
---|
180 | v = y[j];
|
---|
181 | ev = desiredy[j];
|
---|
182 | buf[2] = buf[2]+AP.Math.Sqr(v-ev);
|
---|
183 | buf[3] = buf[3]+Math.Abs(v-ev);
|
---|
184 | if( (double)(ev)!=(double)(0) )
|
---|
185 | {
|
---|
186 | buf[4] = buf[4]+Math.Abs((v-ev)/ev);
|
---|
187 | buf[offs+2] = buf[offs+2]+1;
|
---|
188 | }
|
---|
189 | }
|
---|
190 | buf[offs+1] = buf[offs+1]+1;
|
---|
191 | }
|
---|
192 | }
|
---|
193 |
|
---|
194 |
|
---|
195 | /*************************************************************************
|
---|
196 | See DSErrAllocate for comments on this routine.
|
---|
197 |
|
---|
198 | -- ALGLIB --
|
---|
199 | Copyright 11.01.2009 by Bochkanov Sergey
|
---|
200 | *************************************************************************/
|
---|
201 | public static void dserrfinish(ref double[] buf)
|
---|
202 | {
|
---|
203 | int nout = 0;
|
---|
204 | int offs = 0;
|
---|
205 |
|
---|
206 | offs = 5;
|
---|
207 | nout = Math.Abs((int)Math.Round(buf[offs]));
|
---|
208 | if( (double)(buf[offs+1])!=(double)(0) )
|
---|
209 | {
|
---|
210 | buf[0] = buf[0]/buf[offs+1];
|
---|
211 | buf[1] = buf[1]/buf[offs+1];
|
---|
212 | buf[2] = Math.Sqrt(buf[2]/(nout*buf[offs+1]));
|
---|
213 | buf[3] = buf[3]/(nout*buf[offs+1]);
|
---|
214 | }
|
---|
215 | if( (double)(buf[offs+2])!=(double)(0) )
|
---|
216 | {
|
---|
217 | buf[4] = buf[4]/buf[offs+2];
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 |
|
---|
222 | /*************************************************************************
|
---|
223 |
|
---|
224 | -- ALGLIB --
|
---|
225 | Copyright 19.05.2008 by Bochkanov Sergey
|
---|
226 | *************************************************************************/
|
---|
227 | public static void dsnormalize(ref double[,] xy,
|
---|
228 | int npoints,
|
---|
229 | int nvars,
|
---|
230 | ref int info,
|
---|
231 | ref double[] means,
|
---|
232 | ref double[] sigmas)
|
---|
233 | {
|
---|
234 | int i = 0;
|
---|
235 | int j = 0;
|
---|
236 | double[] tmp = new double[0];
|
---|
237 | double mean = 0;
|
---|
238 | double variance = 0;
|
---|
239 | double skewness = 0;
|
---|
240 | double kurtosis = 0;
|
---|
241 | int i_ = 0;
|
---|
242 |
|
---|
243 |
|
---|
244 | //
|
---|
245 | // Test parameters
|
---|
246 | //
|
---|
247 | if( npoints<=0 | nvars<1 )
|
---|
248 | {
|
---|
249 | info = -1;
|
---|
250 | return;
|
---|
251 | }
|
---|
252 | info = 1;
|
---|
253 |
|
---|
254 | //
|
---|
255 | // Standartization
|
---|
256 | //
|
---|
257 | means = new double[nvars-1+1];
|
---|
258 | sigmas = new double[nvars-1+1];
|
---|
259 | tmp = new double[npoints-1+1];
|
---|
260 | for(j=0; j<=nvars-1; j++)
|
---|
261 | {
|
---|
262 | for(i_=0; i_<=npoints-1;i_++)
|
---|
263 | {
|
---|
264 | tmp[i_] = xy[i_,j];
|
---|
265 | }
|
---|
266 | descriptivestatistics.calculatemoments(ref tmp, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
267 | means[j] = mean;
|
---|
268 | sigmas[j] = Math.Sqrt(variance);
|
---|
269 | if( (double)(sigmas[j])==(double)(0) )
|
---|
270 | {
|
---|
271 | sigmas[j] = 1;
|
---|
272 | }
|
---|
273 | for(i=0; i<=npoints-1; i++)
|
---|
274 | {
|
---|
275 | xy[i,j] = (xy[i,j]-means[j])/sigmas[j];
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 |
|
---|
281 | /*************************************************************************
|
---|
282 |
|
---|
283 | -- ALGLIB --
|
---|
284 | Copyright 19.05.2008 by Bochkanov Sergey
|
---|
285 | *************************************************************************/
|
---|
286 | public static void dsnormalizec(ref double[,] xy,
|
---|
287 | int npoints,
|
---|
288 | int nvars,
|
---|
289 | ref int info,
|
---|
290 | ref double[] means,
|
---|
291 | ref double[] sigmas)
|
---|
292 | {
|
---|
293 | int j = 0;
|
---|
294 | double[] tmp = new double[0];
|
---|
295 | double mean = 0;
|
---|
296 | double variance = 0;
|
---|
297 | double skewness = 0;
|
---|
298 | double kurtosis = 0;
|
---|
299 | int i_ = 0;
|
---|
300 |
|
---|
301 |
|
---|
302 | //
|
---|
303 | // Test parameters
|
---|
304 | //
|
---|
305 | if( npoints<=0 | nvars<1 )
|
---|
306 | {
|
---|
307 | info = -1;
|
---|
308 | return;
|
---|
309 | }
|
---|
310 | info = 1;
|
---|
311 |
|
---|
312 | //
|
---|
313 | // Standartization
|
---|
314 | //
|
---|
315 | means = new double[nvars-1+1];
|
---|
316 | sigmas = new double[nvars-1+1];
|
---|
317 | tmp = new double[npoints-1+1];
|
---|
318 | for(j=0; j<=nvars-1; j++)
|
---|
319 | {
|
---|
320 | for(i_=0; i_<=npoints-1;i_++)
|
---|
321 | {
|
---|
322 | tmp[i_] = xy[i_,j];
|
---|
323 | }
|
---|
324 | descriptivestatistics.calculatemoments(ref tmp, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
325 | means[j] = mean;
|
---|
326 | sigmas[j] = Math.Sqrt(variance);
|
---|
327 | if( (double)(sigmas[j])==(double)(0) )
|
---|
328 | {
|
---|
329 | sigmas[j] = 1;
|
---|
330 | }
|
---|
331 | }
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | /*************************************************************************
|
---|
336 |
|
---|
337 | -- ALGLIB --
|
---|
338 | Copyright 19.05.2008 by Bochkanov Sergey
|
---|
339 | *************************************************************************/
|
---|
340 | public static double dsgetmeanmindistance(ref double[,] xy,
|
---|
341 | int npoints,
|
---|
342 | int nvars)
|
---|
343 | {
|
---|
344 | double result = 0;
|
---|
345 | int i = 0;
|
---|
346 | int j = 0;
|
---|
347 | double[] tmp = new double[0];
|
---|
348 | double[] tmp2 = new double[0];
|
---|
349 | double v = 0;
|
---|
350 | int i_ = 0;
|
---|
351 |
|
---|
352 |
|
---|
353 | //
|
---|
354 | // Test parameters
|
---|
355 | //
|
---|
356 | if( npoints<=0 | nvars<1 )
|
---|
357 | {
|
---|
358 | result = 0;
|
---|
359 | return result;
|
---|
360 | }
|
---|
361 |
|
---|
362 | //
|
---|
363 | // Process
|
---|
364 | //
|
---|
365 | tmp = new double[npoints-1+1];
|
---|
366 | for(i=0; i<=npoints-1; i++)
|
---|
367 | {
|
---|
368 | tmp[i] = AP.Math.MaxRealNumber;
|
---|
369 | }
|
---|
370 | tmp2 = new double[nvars-1+1];
|
---|
371 | for(i=0; i<=npoints-1; i++)
|
---|
372 | {
|
---|
373 | for(j=i+1; j<=npoints-1; j++)
|
---|
374 | {
|
---|
375 | for(i_=0; i_<=nvars-1;i_++)
|
---|
376 | {
|
---|
377 | tmp2[i_] = xy[i,i_];
|
---|
378 | }
|
---|
379 | for(i_=0; i_<=nvars-1;i_++)
|
---|
380 | {
|
---|
381 | tmp2[i_] = tmp2[i_] - xy[j,i_];
|
---|
382 | }
|
---|
383 | v = 0.0;
|
---|
384 | for(i_=0; i_<=nvars-1;i_++)
|
---|
385 | {
|
---|
386 | v += tmp2[i_]*tmp2[i_];
|
---|
387 | }
|
---|
388 | v = Math.Sqrt(v);
|
---|
389 | tmp[i] = Math.Min(tmp[i], v);
|
---|
390 | tmp[j] = Math.Min(tmp[j], v);
|
---|
391 | }
|
---|
392 | }
|
---|
393 | result = 0;
|
---|
394 | for(i=0; i<=npoints-1; i++)
|
---|
395 | {
|
---|
396 | result = result+tmp[i]/npoints;
|
---|
397 | }
|
---|
398 | return result;
|
---|
399 | }
|
---|
400 |
|
---|
401 |
|
---|
402 | /*************************************************************************
|
---|
403 |
|
---|
404 | -- ALGLIB --
|
---|
405 | Copyright 19.05.2008 by Bochkanov Sergey
|
---|
406 | *************************************************************************/
|
---|
407 | public static void dstie(ref double[] a,
|
---|
408 | int n,
|
---|
409 | ref int[] ties,
|
---|
410 | ref int tiecount,
|
---|
411 | ref int[] p1,
|
---|
412 | ref int[] p2)
|
---|
413 | {
|
---|
414 | int i = 0;
|
---|
415 | int k = 0;
|
---|
416 | int[] tmp = new int[0];
|
---|
417 |
|
---|
418 |
|
---|
419 | //
|
---|
420 | // Special case
|
---|
421 | //
|
---|
422 | if( n<=0 )
|
---|
423 | {
|
---|
424 | tiecount = 0;
|
---|
425 | return;
|
---|
426 | }
|
---|
427 |
|
---|
428 | //
|
---|
429 | // Sort A
|
---|
430 | //
|
---|
431 | tsort.tagsort(ref a, n, ref p1, ref p2);
|
---|
432 |
|
---|
433 | //
|
---|
434 | // Process ties
|
---|
435 | //
|
---|
436 | tiecount = 1;
|
---|
437 | for(i=1; i<=n-1; i++)
|
---|
438 | {
|
---|
439 | if( (double)(a[i])!=(double)(a[i-1]) )
|
---|
440 | {
|
---|
441 | tiecount = tiecount+1;
|
---|
442 | }
|
---|
443 | }
|
---|
444 | ties = new int[tiecount+1];
|
---|
445 | ties[0] = 0;
|
---|
446 | k = 1;
|
---|
447 | for(i=1; i<=n-1; i++)
|
---|
448 | {
|
---|
449 | if( (double)(a[i])!=(double)(a[i-1]) )
|
---|
450 | {
|
---|
451 | ties[k] = i;
|
---|
452 | k = k+1;
|
---|
453 | }
|
---|
454 | }
|
---|
455 | ties[tiecount] = n;
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 | /*************************************************************************
|
---|
460 |
|
---|
461 | -- ALGLIB --
|
---|
462 | Copyright 11.12.2008 by Bochkanov Sergey
|
---|
463 | *************************************************************************/
|
---|
464 | public static void dstiefasti(ref double[] a,
|
---|
465 | ref int[] b,
|
---|
466 | int n,
|
---|
467 | ref int[] ties,
|
---|
468 | ref int tiecount)
|
---|
469 | {
|
---|
470 | int i = 0;
|
---|
471 | int k = 0;
|
---|
472 | int[] tmp = new int[0];
|
---|
473 |
|
---|
474 |
|
---|
475 | //
|
---|
476 | // Special case
|
---|
477 | //
|
---|
478 | if( n<=0 )
|
---|
479 | {
|
---|
480 | tiecount = 0;
|
---|
481 | return;
|
---|
482 | }
|
---|
483 |
|
---|
484 | //
|
---|
485 | // Sort A
|
---|
486 | //
|
---|
487 | tsort.tagsortfasti(ref a, ref b, n);
|
---|
488 |
|
---|
489 | //
|
---|
490 | // Process ties
|
---|
491 | //
|
---|
492 | ties[0] = 0;
|
---|
493 | k = 1;
|
---|
494 | for(i=1; i<=n-1; i++)
|
---|
495 | {
|
---|
496 | if( (double)(a[i])!=(double)(a[i-1]) )
|
---|
497 | {
|
---|
498 | ties[k] = i;
|
---|
499 | k = k+1;
|
---|
500 | }
|
---|
501 | }
|
---|
502 | ties[k] = n;
|
---|
503 | tiecount = k;
|
---|
504 | }
|
---|
505 |
|
---|
506 |
|
---|
507 | /*************************************************************************
|
---|
508 | Optimal partition, internal subroutine.
|
---|
509 |
|
---|
510 | -- ALGLIB --
|
---|
511 | Copyright 22.05.2008 by Bochkanov Sergey
|
---|
512 | *************************************************************************/
|
---|
513 | public static void dsoptimalsplit2(double[] a,
|
---|
514 | int[] c,
|
---|
515 | int n,
|
---|
516 | ref int info,
|
---|
517 | ref double threshold,
|
---|
518 | ref double pal,
|
---|
519 | ref double pbl,
|
---|
520 | ref double par,
|
---|
521 | ref double pbr,
|
---|
522 | ref double cve)
|
---|
523 | {
|
---|
524 | int i = 0;
|
---|
525 | int t = 0;
|
---|
526 | double s = 0;
|
---|
527 | int[] ties = new int[0];
|
---|
528 | int tiecount = 0;
|
---|
529 | int[] p1 = new int[0];
|
---|
530 | int[] p2 = new int[0];
|
---|
531 | int k = 0;
|
---|
532 | int koptimal = 0;
|
---|
533 | double pak = 0;
|
---|
534 | double pbk = 0;
|
---|
535 | double cvoptimal = 0;
|
---|
536 | double cv = 0;
|
---|
537 |
|
---|
538 | a = (double[])a.Clone();
|
---|
539 | c = (int[])c.Clone();
|
---|
540 |
|
---|
541 |
|
---|
542 | //
|
---|
543 | // Test for errors in inputs
|
---|
544 | //
|
---|
545 | if( n<=0 )
|
---|
546 | {
|
---|
547 | info = -1;
|
---|
548 | return;
|
---|
549 | }
|
---|
550 | for(i=0; i<=n-1; i++)
|
---|
551 | {
|
---|
552 | if( c[i]!=0 & c[i]!=1 )
|
---|
553 | {
|
---|
554 | info = -2;
|
---|
555 | return;
|
---|
556 | }
|
---|
557 | }
|
---|
558 | info = 1;
|
---|
559 |
|
---|
560 | //
|
---|
561 | // Tie
|
---|
562 | //
|
---|
563 | dstie(ref a, n, ref ties, ref tiecount, ref p1, ref p2);
|
---|
564 | for(i=0; i<=n-1; i++)
|
---|
565 | {
|
---|
566 | if( p2[i]!=i )
|
---|
567 | {
|
---|
568 | t = c[i];
|
---|
569 | c[i] = c[p2[i]];
|
---|
570 | c[p2[i]] = t;
|
---|
571 | }
|
---|
572 | }
|
---|
573 |
|
---|
574 | //
|
---|
575 | // Special case: number of ties is 1.
|
---|
576 | //
|
---|
577 | // NOTE: we assume that P[i,j] equals to 0 or 1,
|
---|
578 | // intermediate values are not allowed.
|
---|
579 | //
|
---|
580 | if( tiecount==1 )
|
---|
581 | {
|
---|
582 | info = -3;
|
---|
583 | return;
|
---|
584 | }
|
---|
585 |
|
---|
586 | //
|
---|
587 | // General case, number of ties > 1
|
---|
588 | //
|
---|
589 | // NOTE: we assume that P[i,j] equals to 0 or 1,
|
---|
590 | // intermediate values are not allowed.
|
---|
591 | //
|
---|
592 | pal = 0;
|
---|
593 | pbl = 0;
|
---|
594 | par = 0;
|
---|
595 | pbr = 0;
|
---|
596 | for(i=0; i<=n-1; i++)
|
---|
597 | {
|
---|
598 | if( c[i]==0 )
|
---|
599 | {
|
---|
600 | par = par+1;
|
---|
601 | }
|
---|
602 | if( c[i]==1 )
|
---|
603 | {
|
---|
604 | pbr = pbr+1;
|
---|
605 | }
|
---|
606 | }
|
---|
607 | koptimal = -1;
|
---|
608 | cvoptimal = AP.Math.MaxRealNumber;
|
---|
609 | for(k=0; k<=tiecount-2; k++)
|
---|
610 | {
|
---|
611 |
|
---|
612 | //
|
---|
613 | // first, obtain information about K-th tie which is
|
---|
614 | // moved from R-part to L-part
|
---|
615 | //
|
---|
616 | pak = 0;
|
---|
617 | pbk = 0;
|
---|
618 | for(i=ties[k]; i<=ties[k+1]-1; i++)
|
---|
619 | {
|
---|
620 | if( c[i]==0 )
|
---|
621 | {
|
---|
622 | pak = pak+1;
|
---|
623 | }
|
---|
624 | if( c[i]==1 )
|
---|
625 | {
|
---|
626 | pbk = pbk+1;
|
---|
627 | }
|
---|
628 | }
|
---|
629 |
|
---|
630 | //
|
---|
631 | // Calculate cross-validation CE
|
---|
632 | //
|
---|
633 | cv = 0;
|
---|
634 | cv = cv-xlny(pal+pak, (pal+pak)/(pal+pak+pbl+pbk+1));
|
---|
635 | cv = cv-xlny(pbl+pbk, (pbl+pbk)/(pal+pak+1+pbl+pbk));
|
---|
636 | cv = cv-xlny(par-pak, (par-pak)/(par-pak+pbr-pbk+1));
|
---|
637 | cv = cv-xlny(pbr-pbk, (pbr-pbk)/(par-pak+1+pbr-pbk));
|
---|
638 |
|
---|
639 | //
|
---|
640 | // Compare with best
|
---|
641 | //
|
---|
642 | if( (double)(cv)<(double)(cvoptimal) )
|
---|
643 | {
|
---|
644 | cvoptimal = cv;
|
---|
645 | koptimal = k;
|
---|
646 | }
|
---|
647 |
|
---|
648 | //
|
---|
649 | // update
|
---|
650 | //
|
---|
651 | pal = pal+pak;
|
---|
652 | pbl = pbl+pbk;
|
---|
653 | par = par-pak;
|
---|
654 | pbr = pbr-pbk;
|
---|
655 | }
|
---|
656 | cve = cvoptimal;
|
---|
657 | threshold = 0.5*(a[ties[koptimal]]+a[ties[koptimal+1]]);
|
---|
658 | pal = 0;
|
---|
659 | pbl = 0;
|
---|
660 | par = 0;
|
---|
661 | pbr = 0;
|
---|
662 | for(i=0; i<=n-1; i++)
|
---|
663 | {
|
---|
664 | if( (double)(a[i])<(double)(threshold) )
|
---|
665 | {
|
---|
666 | if( c[i]==0 )
|
---|
667 | {
|
---|
668 | pal = pal+1;
|
---|
669 | }
|
---|
670 | else
|
---|
671 | {
|
---|
672 | pbl = pbl+1;
|
---|
673 | }
|
---|
674 | }
|
---|
675 | else
|
---|
676 | {
|
---|
677 | if( c[i]==0 )
|
---|
678 | {
|
---|
679 | par = par+1;
|
---|
680 | }
|
---|
681 | else
|
---|
682 | {
|
---|
683 | pbr = pbr+1;
|
---|
684 | }
|
---|
685 | }
|
---|
686 | }
|
---|
687 | s = pal+pbl;
|
---|
688 | pal = pal/s;
|
---|
689 | pbl = pbl/s;
|
---|
690 | s = par+pbr;
|
---|
691 | par = par/s;
|
---|
692 | pbr = pbr/s;
|
---|
693 | }
|
---|
694 |
|
---|
695 |
|
---|
696 | /*************************************************************************
|
---|
697 | Optimal partition, internal subroutine. Fast version.
|
---|
698 |
|
---|
699 | Accepts:
|
---|
700 | A array[0..N-1] array of attributes array[0..N-1]
|
---|
701 | C array[0..N-1] array of class labels
|
---|
702 | TiesBuf array[0..N] temporaries (ties)
|
---|
703 | CntBuf array[0..2*NC-1] temporaries (counts)
|
---|
704 | Alpha centering factor (0<=alpha<=1, recommended value - 0.05)
|
---|
705 |
|
---|
706 | Output:
|
---|
707 | Info error code (">0"=OK, "<0"=bad)
|
---|
708 | RMS training set RMS error
|
---|
709 | CVRMS leave-one-out RMS error
|
---|
710 |
|
---|
711 | Note:
|
---|
712 | content of all arrays is changed by subroutine
|
---|
713 |
|
---|
714 | -- ALGLIB --
|
---|
715 | Copyright 11.12.2008 by Bochkanov Sergey
|
---|
716 | *************************************************************************/
|
---|
717 | public static void dsoptimalsplit2fast(ref double[] a,
|
---|
718 | ref int[] c,
|
---|
719 | ref int[] tiesbuf,
|
---|
720 | ref int[] cntbuf,
|
---|
721 | int n,
|
---|
722 | int nc,
|
---|
723 | double alpha,
|
---|
724 | ref int info,
|
---|
725 | ref double threshold,
|
---|
726 | ref double rms,
|
---|
727 | ref double cvrms)
|
---|
728 | {
|
---|
729 | int i = 0;
|
---|
730 | int k = 0;
|
---|
731 | int cl = 0;
|
---|
732 | int tiecount = 0;
|
---|
733 | double cbest = 0;
|
---|
734 | double cc = 0;
|
---|
735 | int koptimal = 0;
|
---|
736 | int sl = 0;
|
---|
737 | int sr = 0;
|
---|
738 | double v = 0;
|
---|
739 | double w = 0;
|
---|
740 | double x = 0;
|
---|
741 |
|
---|
742 |
|
---|
743 | //
|
---|
744 | // Test for errors in inputs
|
---|
745 | //
|
---|
746 | if( n<=0 | nc<2 )
|
---|
747 | {
|
---|
748 | info = -1;
|
---|
749 | return;
|
---|
750 | }
|
---|
751 | for(i=0; i<=n-1; i++)
|
---|
752 | {
|
---|
753 | if( c[i]<0 | c[i]>=nc )
|
---|
754 | {
|
---|
755 | info = -2;
|
---|
756 | return;
|
---|
757 | }
|
---|
758 | }
|
---|
759 | info = 1;
|
---|
760 |
|
---|
761 | //
|
---|
762 | // Tie
|
---|
763 | //
|
---|
764 | dstiefasti(ref a, ref c, n, ref tiesbuf, ref tiecount);
|
---|
765 |
|
---|
766 | //
|
---|
767 | // Special case: number of ties is 1.
|
---|
768 | //
|
---|
769 | if( tiecount==1 )
|
---|
770 | {
|
---|
771 | info = -3;
|
---|
772 | return;
|
---|
773 | }
|
---|
774 |
|
---|
775 | //
|
---|
776 | // General case, number of ties > 1
|
---|
777 | //
|
---|
778 | for(i=0; i<=2*nc-1; i++)
|
---|
779 | {
|
---|
780 | cntbuf[i] = 0;
|
---|
781 | }
|
---|
782 | for(i=0; i<=n-1; i++)
|
---|
783 | {
|
---|
784 | cntbuf[nc+c[i]] = cntbuf[nc+c[i]]+1;
|
---|
785 | }
|
---|
786 | koptimal = -1;
|
---|
787 | threshold = a[n-1];
|
---|
788 | cbest = AP.Math.MaxRealNumber;
|
---|
789 | sl = 0;
|
---|
790 | sr = n;
|
---|
791 | for(k=0; k<=tiecount-2; k++)
|
---|
792 | {
|
---|
793 |
|
---|
794 | //
|
---|
795 | // first, move Kth tie from right to left
|
---|
796 | //
|
---|
797 | for(i=tiesbuf[k]; i<=tiesbuf[k+1]-1; i++)
|
---|
798 | {
|
---|
799 | cl = c[i];
|
---|
800 | cntbuf[cl] = cntbuf[cl]+1;
|
---|
801 | cntbuf[nc+cl] = cntbuf[nc+cl]-1;
|
---|
802 | }
|
---|
803 | sl = sl+(tiesbuf[k+1]-tiesbuf[k]);
|
---|
804 | sr = sr-(tiesbuf[k+1]-tiesbuf[k]);
|
---|
805 |
|
---|
806 | //
|
---|
807 | // Calculate RMS error
|
---|
808 | //
|
---|
809 | v = 0;
|
---|
810 | for(i=0; i<=nc-1; i++)
|
---|
811 | {
|
---|
812 | w = cntbuf[i];
|
---|
813 | v = v+w*AP.Math.Sqr(w/sl-1);
|
---|
814 | v = v+(sl-w)*AP.Math.Sqr(w/sl);
|
---|
815 | w = cntbuf[nc+i];
|
---|
816 | v = v+w*AP.Math.Sqr(w/sr-1);
|
---|
817 | v = v+(sr-w)*AP.Math.Sqr(w/sr);
|
---|
818 | }
|
---|
819 | v = Math.Sqrt(v/(nc*n));
|
---|
820 |
|
---|
821 | //
|
---|
822 | // Compare with best
|
---|
823 | //
|
---|
824 | x = (double)(2*sl)/((double)(sl+sr))-1;
|
---|
825 | cc = v*(1-alpha+alpha*AP.Math.Sqr(x));
|
---|
826 | if( (double)(cc)<(double)(cbest) )
|
---|
827 | {
|
---|
828 |
|
---|
829 | //
|
---|
830 | // store split
|
---|
831 | //
|
---|
832 | rms = v;
|
---|
833 | koptimal = k;
|
---|
834 | cbest = cc;
|
---|
835 |
|
---|
836 | //
|
---|
837 | // calculate CVRMS error
|
---|
838 | //
|
---|
839 | cvrms = 0;
|
---|
840 | for(i=0; i<=nc-1; i++)
|
---|
841 | {
|
---|
842 | if( sl>1 )
|
---|
843 | {
|
---|
844 | w = cntbuf[i];
|
---|
845 | cvrms = cvrms+w*AP.Math.Sqr((w-1)/(sl-1)-1);
|
---|
846 | cvrms = cvrms+(sl-w)*AP.Math.Sqr(w/(sl-1));
|
---|
847 | }
|
---|
848 | else
|
---|
849 | {
|
---|
850 | w = cntbuf[i];
|
---|
851 | cvrms = cvrms+w*AP.Math.Sqr((double)(1)/(double)(nc)-1);
|
---|
852 | cvrms = cvrms+(sl-w)*AP.Math.Sqr((double)(1)/(double)(nc));
|
---|
853 | }
|
---|
854 | if( sr>1 )
|
---|
855 | {
|
---|
856 | w = cntbuf[nc+i];
|
---|
857 | cvrms = cvrms+w*AP.Math.Sqr((w-1)/(sr-1)-1);
|
---|
858 | cvrms = cvrms+(sr-w)*AP.Math.Sqr(w/(sr-1));
|
---|
859 | }
|
---|
860 | else
|
---|
861 | {
|
---|
862 | w = cntbuf[nc+i];
|
---|
863 | cvrms = cvrms+w*AP.Math.Sqr((double)(1)/(double)(nc)-1);
|
---|
864 | cvrms = cvrms+(sr-w)*AP.Math.Sqr((double)(1)/(double)(nc));
|
---|
865 | }
|
---|
866 | }
|
---|
867 | cvrms = Math.Sqrt(cvrms/(nc*n));
|
---|
868 | }
|
---|
869 | }
|
---|
870 |
|
---|
871 | //
|
---|
872 | // Calculate threshold.
|
---|
873 | // Code is a bit complicated because there can be such
|
---|
874 | // numbers that 0.5(A+B) equals to A or B (if A-B=epsilon)
|
---|
875 | //
|
---|
876 | threshold = 0.5*(a[tiesbuf[koptimal]]+a[tiesbuf[koptimal+1]]);
|
---|
877 | if( (double)(threshold)<=(double)(a[tiesbuf[koptimal]]) )
|
---|
878 | {
|
---|
879 | threshold = a[tiesbuf[koptimal+1]];
|
---|
880 | }
|
---|
881 | }
|
---|
882 |
|
---|
883 |
|
---|
884 | /*************************************************************************
|
---|
885 | Automatic non-optimal discretization, internal subroutine.
|
---|
886 |
|
---|
887 | -- ALGLIB --
|
---|
888 | Copyright 22.05.2008 by Bochkanov Sergey
|
---|
889 | *************************************************************************/
|
---|
890 | public static void dssplitk(double[] a,
|
---|
891 | int[] c,
|
---|
892 | int n,
|
---|
893 | int nc,
|
---|
894 | int kmax,
|
---|
895 | ref int info,
|
---|
896 | ref double[] thresholds,
|
---|
897 | ref int ni,
|
---|
898 | ref double cve)
|
---|
899 | {
|
---|
900 | int i = 0;
|
---|
901 | int j = 0;
|
---|
902 | int j1 = 0;
|
---|
903 | int k = 0;
|
---|
904 | int[] ties = new int[0];
|
---|
905 | int tiecount = 0;
|
---|
906 | int[] p1 = new int[0];
|
---|
907 | int[] p2 = new int[0];
|
---|
908 | int[] cnt = new int[0];
|
---|
909 | double v2 = 0;
|
---|
910 | int bestk = 0;
|
---|
911 | double bestcve = 0;
|
---|
912 | int[] bestsizes = new int[0];
|
---|
913 | double curcve = 0;
|
---|
914 | int[] cursizes = new int[0];
|
---|
915 |
|
---|
916 | a = (double[])a.Clone();
|
---|
917 | c = (int[])c.Clone();
|
---|
918 |
|
---|
919 |
|
---|
920 | //
|
---|
921 | // Test for errors in inputs
|
---|
922 | //
|
---|
923 | if( n<=0 | nc<2 | kmax<2 )
|
---|
924 | {
|
---|
925 | info = -1;
|
---|
926 | return;
|
---|
927 | }
|
---|
928 | for(i=0; i<=n-1; i++)
|
---|
929 | {
|
---|
930 | if( c[i]<0 | c[i]>=nc )
|
---|
931 | {
|
---|
932 | info = -2;
|
---|
933 | return;
|
---|
934 | }
|
---|
935 | }
|
---|
936 | info = 1;
|
---|
937 |
|
---|
938 | //
|
---|
939 | // Tie
|
---|
940 | //
|
---|
941 | dstie(ref a, n, ref ties, ref tiecount, ref p1, ref p2);
|
---|
942 | for(i=0; i<=n-1; i++)
|
---|
943 | {
|
---|
944 | if( p2[i]!=i )
|
---|
945 | {
|
---|
946 | k = c[i];
|
---|
947 | c[i] = c[p2[i]];
|
---|
948 | c[p2[i]] = k;
|
---|
949 | }
|
---|
950 | }
|
---|
951 |
|
---|
952 | //
|
---|
953 | // Special cases
|
---|
954 | //
|
---|
955 | if( tiecount==1 )
|
---|
956 | {
|
---|
957 | info = -3;
|
---|
958 | return;
|
---|
959 | }
|
---|
960 |
|
---|
961 | //
|
---|
962 | // General case:
|
---|
963 | // 0. allocate arrays
|
---|
964 | //
|
---|
965 | kmax = Math.Min(kmax, tiecount);
|
---|
966 | bestsizes = new int[kmax-1+1];
|
---|
967 | cursizes = new int[kmax-1+1];
|
---|
968 | cnt = new int[nc-1+1];
|
---|
969 |
|
---|
970 | //
|
---|
971 | // General case:
|
---|
972 | // 1. prepare "weak" solution (two subintervals, divided at median)
|
---|
973 | //
|
---|
974 | v2 = AP.Math.MaxRealNumber;
|
---|
975 | j = -1;
|
---|
976 | for(i=1; i<=tiecount-1; i++)
|
---|
977 | {
|
---|
978 | if( (double)(Math.Abs(ties[i]-0.5*(n-1)))<(double)(v2) )
|
---|
979 | {
|
---|
980 | v2 = Math.Abs(ties[i]-0.5*n);
|
---|
981 | j = i;
|
---|
982 | }
|
---|
983 | }
|
---|
984 | System.Diagnostics.Debug.Assert(j>0, "DSSplitK: internal error #1!");
|
---|
985 | bestk = 2;
|
---|
986 | bestsizes[0] = ties[j];
|
---|
987 | bestsizes[1] = n-j;
|
---|
988 | bestcve = 0;
|
---|
989 | for(i=0; i<=nc-1; i++)
|
---|
990 | {
|
---|
991 | cnt[i] = 0;
|
---|
992 | }
|
---|
993 | for(i=0; i<=j-1; i++)
|
---|
994 | {
|
---|
995 | tieaddc(ref c, ref ties, i, nc, ref cnt);
|
---|
996 | }
|
---|
997 | bestcve = bestcve+getcv(ref cnt, nc);
|
---|
998 | for(i=0; i<=nc-1; i++)
|
---|
999 | {
|
---|
1000 | cnt[i] = 0;
|
---|
1001 | }
|
---|
1002 | for(i=j; i<=tiecount-1; i++)
|
---|
1003 | {
|
---|
1004 | tieaddc(ref c, ref ties, i, nc, ref cnt);
|
---|
1005 | }
|
---|
1006 | bestcve = bestcve+getcv(ref cnt, nc);
|
---|
1007 |
|
---|
1008 | //
|
---|
1009 | // General case:
|
---|
1010 | // 2. Use greedy algorithm to find sub-optimal split in O(KMax*N) time
|
---|
1011 | //
|
---|
1012 | for(k=2; k<=kmax; k++)
|
---|
1013 | {
|
---|
1014 |
|
---|
1015 | //
|
---|
1016 | // Prepare greedy K-interval split
|
---|
1017 | //
|
---|
1018 | for(i=0; i<=k-1; i++)
|
---|
1019 | {
|
---|
1020 | cursizes[i] = 0;
|
---|
1021 | }
|
---|
1022 | i = 0;
|
---|
1023 | j = 0;
|
---|
1024 | while( j<=tiecount-1 & i<=k-1 )
|
---|
1025 | {
|
---|
1026 |
|
---|
1027 | //
|
---|
1028 | // Rule: I-th bin is empty, fill it
|
---|
1029 | //
|
---|
1030 | if( cursizes[i]==0 )
|
---|
1031 | {
|
---|
1032 | cursizes[i] = ties[j+1]-ties[j];
|
---|
1033 | j = j+1;
|
---|
1034 | continue;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | //
|
---|
1038 | // Rule: (K-1-I) bins left, (K-1-I) ties left (1 tie per bin); next bin
|
---|
1039 | //
|
---|
1040 | if( tiecount-j==k-1-i )
|
---|
1041 | {
|
---|
1042 | i = i+1;
|
---|
1043 | continue;
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | //
|
---|
1047 | // Rule: last bin, always place in current
|
---|
1048 | //
|
---|
1049 | if( i==k-1 )
|
---|
1050 | {
|
---|
1051 | cursizes[i] = cursizes[i]+ties[j+1]-ties[j];
|
---|
1052 | j = j+1;
|
---|
1053 | continue;
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | //
|
---|
1057 | // Place J-th tie in I-th bin, or leave for I+1-th bin.
|
---|
1058 | //
|
---|
1059 | if( (double)(Math.Abs(cursizes[i]+ties[j+1]-ties[j]-(double)(n)/(double)(k)))<(double)(Math.Abs(cursizes[i]-(double)(n)/(double)(k))) )
|
---|
1060 | {
|
---|
1061 | cursizes[i] = cursizes[i]+ties[j+1]-ties[j];
|
---|
1062 | j = j+1;
|
---|
1063 | }
|
---|
1064 | else
|
---|
1065 | {
|
---|
1066 | i = i+1;
|
---|
1067 | }
|
---|
1068 | }
|
---|
1069 | System.Diagnostics.Debug.Assert(cursizes[k-1]!=0 & j==tiecount, "DSSplitK: internal error #1");
|
---|
1070 |
|
---|
1071 | //
|
---|
1072 | // Calculate CVE
|
---|
1073 | //
|
---|
1074 | curcve = 0;
|
---|
1075 | j = 0;
|
---|
1076 | for(i=0; i<=k-1; i++)
|
---|
1077 | {
|
---|
1078 | for(j1=0; j1<=nc-1; j1++)
|
---|
1079 | {
|
---|
1080 | cnt[j1] = 0;
|
---|
1081 | }
|
---|
1082 | for(j1=j; j1<=j+cursizes[i]-1; j1++)
|
---|
1083 | {
|
---|
1084 | cnt[c[j1]] = cnt[c[j1]]+1;
|
---|
1085 | }
|
---|
1086 | curcve = curcve+getcv(ref cnt, nc);
|
---|
1087 | j = j+cursizes[i];
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | //
|
---|
1091 | // Choose best variant
|
---|
1092 | //
|
---|
1093 | if( (double)(curcve)<(double)(bestcve) )
|
---|
1094 | {
|
---|
1095 | for(i=0; i<=k-1; i++)
|
---|
1096 | {
|
---|
1097 | bestsizes[i] = cursizes[i];
|
---|
1098 | }
|
---|
1099 | bestcve = curcve;
|
---|
1100 | bestk = k;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | //
|
---|
1105 | // Transform from sizes to thresholds
|
---|
1106 | //
|
---|
1107 | cve = bestcve;
|
---|
1108 | ni = bestk;
|
---|
1109 | thresholds = new double[ni-2+1];
|
---|
1110 | j = bestsizes[0];
|
---|
1111 | for(i=1; i<=bestk-1; i++)
|
---|
1112 | {
|
---|
1113 | thresholds[i-1] = 0.5*(a[j-1]+a[j]);
|
---|
1114 | j = j+bestsizes[i];
|
---|
1115 | }
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 |
|
---|
1119 | /*************************************************************************
|
---|
1120 | Automatic optimal discretization, internal subroutine.
|
---|
1121 |
|
---|
1122 | -- ALGLIB --
|
---|
1123 | Copyright 22.05.2008 by Bochkanov Sergey
|
---|
1124 | *************************************************************************/
|
---|
1125 | public static void dsoptimalsplitk(double[] a,
|
---|
1126 | int[] c,
|
---|
1127 | int n,
|
---|
1128 | int nc,
|
---|
1129 | int kmax,
|
---|
1130 | ref int info,
|
---|
1131 | ref double[] thresholds,
|
---|
1132 | ref int ni,
|
---|
1133 | ref double cve)
|
---|
1134 | {
|
---|
1135 | int i = 0;
|
---|
1136 | int j = 0;
|
---|
1137 | int s = 0;
|
---|
1138 | int jl = 0;
|
---|
1139 | int jr = 0;
|
---|
1140 | double v2 = 0;
|
---|
1141 | int[] ties = new int[0];
|
---|
1142 | int tiecount = 0;
|
---|
1143 | int[] p1 = new int[0];
|
---|
1144 | int[] p2 = new int[0];
|
---|
1145 | double cvtemp = 0;
|
---|
1146 | int[] cnt = new int[0];
|
---|
1147 | int[] cnt2 = new int[0];
|
---|
1148 | double[,] cv = new double[0,0];
|
---|
1149 | int[,] splits = new int[0,0];
|
---|
1150 | int k = 0;
|
---|
1151 | int koptimal = 0;
|
---|
1152 | double cvoptimal = 0;
|
---|
1153 |
|
---|
1154 | a = (double[])a.Clone();
|
---|
1155 | c = (int[])c.Clone();
|
---|
1156 |
|
---|
1157 |
|
---|
1158 | //
|
---|
1159 | // Test for errors in inputs
|
---|
1160 | //
|
---|
1161 | if( n<=0 | nc<2 | kmax<2 )
|
---|
1162 | {
|
---|
1163 | info = -1;
|
---|
1164 | return;
|
---|
1165 | }
|
---|
1166 | for(i=0; i<=n-1; i++)
|
---|
1167 | {
|
---|
1168 | if( c[i]<0 | c[i]>=nc )
|
---|
1169 | {
|
---|
1170 | info = -2;
|
---|
1171 | return;
|
---|
1172 | }
|
---|
1173 | }
|
---|
1174 | info = 1;
|
---|
1175 |
|
---|
1176 | //
|
---|
1177 | // Tie
|
---|
1178 | //
|
---|
1179 | dstie(ref a, n, ref ties, ref tiecount, ref p1, ref p2);
|
---|
1180 | for(i=0; i<=n-1; i++)
|
---|
1181 | {
|
---|
1182 | if( p2[i]!=i )
|
---|
1183 | {
|
---|
1184 | k = c[i];
|
---|
1185 | c[i] = c[p2[i]];
|
---|
1186 | c[p2[i]] = k;
|
---|
1187 | }
|
---|
1188 | }
|
---|
1189 |
|
---|
1190 | //
|
---|
1191 | // Special cases
|
---|
1192 | //
|
---|
1193 | if( tiecount==1 )
|
---|
1194 | {
|
---|
1195 | info = -3;
|
---|
1196 | return;
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | //
|
---|
1200 | // General case
|
---|
1201 | // Use dynamic programming to find best split in O(KMax*NC*TieCount^2) time
|
---|
1202 | //
|
---|
1203 | kmax = Math.Min(kmax, tiecount);
|
---|
1204 | cv = new double[kmax-1+1, tiecount-1+1];
|
---|
1205 | splits = new int[kmax-1+1, tiecount-1+1];
|
---|
1206 | cnt = new int[nc-1+1];
|
---|
1207 | cnt2 = new int[nc-1+1];
|
---|
1208 | for(j=0; j<=nc-1; j++)
|
---|
1209 | {
|
---|
1210 | cnt[j] = 0;
|
---|
1211 | }
|
---|
1212 | for(j=0; j<=tiecount-1; j++)
|
---|
1213 | {
|
---|
1214 | tieaddc(ref c, ref ties, j, nc, ref cnt);
|
---|
1215 | splits[0,j] = 0;
|
---|
1216 | cv[0,j] = getcv(ref cnt, nc);
|
---|
1217 | }
|
---|
1218 | for(k=1; k<=kmax-1; k++)
|
---|
1219 | {
|
---|
1220 | for(j=0; j<=nc-1; j++)
|
---|
1221 | {
|
---|
1222 | cnt[j] = 0;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | //
|
---|
1226 | // Subtask size J in [K..TieCount-1]:
|
---|
1227 | // optimal K-splitting on ties from 0-th to J-th.
|
---|
1228 | //
|
---|
1229 | for(j=k; j<=tiecount-1; j++)
|
---|
1230 | {
|
---|
1231 |
|
---|
1232 | //
|
---|
1233 | // Update Cnt - let it contain classes of ties from K-th to J-th
|
---|
1234 | //
|
---|
1235 | tieaddc(ref c, ref ties, j, nc, ref cnt);
|
---|
1236 |
|
---|
1237 | //
|
---|
1238 | // Search for optimal split point S in [K..J]
|
---|
1239 | //
|
---|
1240 | for(i=0; i<=nc-1; i++)
|
---|
1241 | {
|
---|
1242 | cnt2[i] = cnt[i];
|
---|
1243 | }
|
---|
1244 | cv[k,j] = cv[k-1,j-1]+getcv(ref cnt2, nc);
|
---|
1245 | splits[k,j] = j;
|
---|
1246 | for(s=k+1; s<=j; s++)
|
---|
1247 | {
|
---|
1248 |
|
---|
1249 | //
|
---|
1250 | // Update Cnt2 - let it contain classes of ties from S-th to J-th
|
---|
1251 | //
|
---|
1252 | tiesubc(ref c, ref ties, s-1, nc, ref cnt2);
|
---|
1253 |
|
---|
1254 | //
|
---|
1255 | // Calculate CVE
|
---|
1256 | //
|
---|
1257 | cvtemp = cv[k-1,s-1]+getcv(ref cnt2, nc);
|
---|
1258 | if( (double)(cvtemp)<(double)(cv[k,j]) )
|
---|
1259 | {
|
---|
1260 | cv[k,j] = cvtemp;
|
---|
1261 | splits[k,j] = s;
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 | }
|
---|
1265 | }
|
---|
1266 |
|
---|
1267 | //
|
---|
1268 | // Choose best partition, output result
|
---|
1269 | //
|
---|
1270 | koptimal = -1;
|
---|
1271 | cvoptimal = AP.Math.MaxRealNumber;
|
---|
1272 | for(k=0; k<=kmax-1; k++)
|
---|
1273 | {
|
---|
1274 | if( (double)(cv[k,tiecount-1])<(double)(cvoptimal) )
|
---|
1275 | {
|
---|
1276 | cvoptimal = cv[k,tiecount-1];
|
---|
1277 | koptimal = k;
|
---|
1278 | }
|
---|
1279 | }
|
---|
1280 | System.Diagnostics.Debug.Assert(koptimal>=0, "DSOptimalSplitK: internal error #1!");
|
---|
1281 | if( koptimal==0 )
|
---|
1282 | {
|
---|
1283 |
|
---|
1284 | //
|
---|
1285 | // Special case: best partition is one big interval.
|
---|
1286 | // Even 2-partition is not better.
|
---|
1287 | // This is possible when dealing with "weak" predictor variables.
|
---|
1288 | //
|
---|
1289 | // Make binary split as close to the median as possible.
|
---|
1290 | //
|
---|
1291 | v2 = AP.Math.MaxRealNumber;
|
---|
1292 | j = -1;
|
---|
1293 | for(i=1; i<=tiecount-1; i++)
|
---|
1294 | {
|
---|
1295 | if( (double)(Math.Abs(ties[i]-0.5*(n-1)))<(double)(v2) )
|
---|
1296 | {
|
---|
1297 | v2 = Math.Abs(ties[i]-0.5*(n-1));
|
---|
1298 | j = i;
|
---|
1299 | }
|
---|
1300 | }
|
---|
1301 | System.Diagnostics.Debug.Assert(j>0, "DSOptimalSplitK: internal error #2!");
|
---|
1302 | thresholds = new double[0+1];
|
---|
1303 | thresholds[0] = 0.5*(a[ties[j-1]]+a[ties[j]]);
|
---|
1304 | ni = 2;
|
---|
1305 | cve = 0;
|
---|
1306 | for(i=0; i<=nc-1; i++)
|
---|
1307 | {
|
---|
1308 | cnt[i] = 0;
|
---|
1309 | }
|
---|
1310 | for(i=0; i<=j-1; i++)
|
---|
1311 | {
|
---|
1312 | tieaddc(ref c, ref ties, i, nc, ref cnt);
|
---|
1313 | }
|
---|
1314 | cve = cve+getcv(ref cnt, nc);
|
---|
1315 | for(i=0; i<=nc-1; i++)
|
---|
1316 | {
|
---|
1317 | cnt[i] = 0;
|
---|
1318 | }
|
---|
1319 | for(i=j; i<=tiecount-1; i++)
|
---|
1320 | {
|
---|
1321 | tieaddc(ref c, ref ties, i, nc, ref cnt);
|
---|
1322 | }
|
---|
1323 | cve = cve+getcv(ref cnt, nc);
|
---|
1324 | }
|
---|
1325 | else
|
---|
1326 | {
|
---|
1327 |
|
---|
1328 | //
|
---|
1329 | // General case: 2 or more intervals
|
---|
1330 | //
|
---|
1331 | thresholds = new double[koptimal-1+1];
|
---|
1332 | ni = koptimal+1;
|
---|
1333 | cve = cv[koptimal,tiecount-1];
|
---|
1334 | jl = splits[koptimal,tiecount-1];
|
---|
1335 | jr = tiecount-1;
|
---|
1336 | for(k=koptimal; k>=1; k--)
|
---|
1337 | {
|
---|
1338 | thresholds[k-1] = 0.5*(a[ties[jl-1]]+a[ties[jl]]);
|
---|
1339 | jr = jl-1;
|
---|
1340 | jl = splits[k-1,jl-1];
|
---|
1341 | }
|
---|
1342 | }
|
---|
1343 | }
|
---|
1344 |
|
---|
1345 |
|
---|
1346 | /*************************************************************************
|
---|
1347 | Subroutine prepares K-fold split of the training set.
|
---|
1348 |
|
---|
1349 | NOTES:
|
---|
1350 | "NClasses>0" means that we have classification task.
|
---|
1351 | "NClasses<0" means regression task with -NClasses real outputs.
|
---|
1352 |
|
---|
1353 | -- ALGLIB --
|
---|
1354 | Copyright 11.01.2009 by Bochkanov Sergey
|
---|
1355 | *************************************************************************/
|
---|
1356 | private static void dskfoldsplit(ref double[,] xy,
|
---|
1357 | int npoints,
|
---|
1358 | int nclasses,
|
---|
1359 | int foldscount,
|
---|
1360 | bool stratifiedsplits,
|
---|
1361 | ref int[] folds)
|
---|
1362 | {
|
---|
1363 | int i = 0;
|
---|
1364 | int j = 0;
|
---|
1365 | int k = 0;
|
---|
1366 |
|
---|
1367 |
|
---|
1368 | //
|
---|
1369 | // test parameters
|
---|
1370 | //
|
---|
1371 | System.Diagnostics.Debug.Assert(npoints>0, "DSKFoldSplit: wrong NPoints!");
|
---|
1372 | System.Diagnostics.Debug.Assert(nclasses>1 | nclasses<0, "DSKFoldSplit: wrong NClasses!");
|
---|
1373 | System.Diagnostics.Debug.Assert(foldscount>=2 & foldscount<=npoints, "DSKFoldSplit: wrong FoldsCount!");
|
---|
1374 | System.Diagnostics.Debug.Assert(!stratifiedsplits, "DSKFoldSplit: stratified splits are not supported!");
|
---|
1375 |
|
---|
1376 | //
|
---|
1377 | // Folds
|
---|
1378 | //
|
---|
1379 | folds = new int[npoints-1+1];
|
---|
1380 | for(i=0; i<=npoints-1; i++)
|
---|
1381 | {
|
---|
1382 | folds[i] = i*foldscount/npoints;
|
---|
1383 | }
|
---|
1384 | for(i=0; i<=npoints-2; i++)
|
---|
1385 | {
|
---|
1386 | j = i+AP.Math.RandomInteger(npoints-i);
|
---|
1387 | if( j!=i )
|
---|
1388 | {
|
---|
1389 | k = folds[i];
|
---|
1390 | folds[i] = folds[j];
|
---|
1391 | folds[j] = k;
|
---|
1392 | }
|
---|
1393 | }
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 |
|
---|
1397 | /*************************************************************************
|
---|
1398 | Internal function
|
---|
1399 | *************************************************************************/
|
---|
1400 | private static double xlny(double x,
|
---|
1401 | double y)
|
---|
1402 | {
|
---|
1403 | double result = 0;
|
---|
1404 |
|
---|
1405 | if( (double)(x)==(double)(0) )
|
---|
1406 | {
|
---|
1407 | result = 0;
|
---|
1408 | }
|
---|
1409 | else
|
---|
1410 | {
|
---|
1411 | result = x*Math.Log(y);
|
---|
1412 | }
|
---|
1413 | return result;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 |
|
---|
1417 | /*************************************************************************
|
---|
1418 | Internal function,
|
---|
1419 | returns number of samples of class I in Cnt[I]
|
---|
1420 | *************************************************************************/
|
---|
1421 | private static double getcv(ref int[] cnt,
|
---|
1422 | int nc)
|
---|
1423 | {
|
---|
1424 | double result = 0;
|
---|
1425 | int i = 0;
|
---|
1426 | double s = 0;
|
---|
1427 |
|
---|
1428 | s = 0;
|
---|
1429 | for(i=0; i<=nc-1; i++)
|
---|
1430 | {
|
---|
1431 | s = s+cnt[i];
|
---|
1432 | }
|
---|
1433 | result = 0;
|
---|
1434 | for(i=0; i<=nc-1; i++)
|
---|
1435 | {
|
---|
1436 | result = result-xlny(cnt[i], cnt[i]/(s+nc-1));
|
---|
1437 | }
|
---|
1438 | return result;
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 |
|
---|
1442 | /*************************************************************************
|
---|
1443 | Internal function, adds number of samples of class I in tie NTie to Cnt[I]
|
---|
1444 | *************************************************************************/
|
---|
1445 | private static void tieaddc(ref int[] c,
|
---|
1446 | ref int[] ties,
|
---|
1447 | int ntie,
|
---|
1448 | int nc,
|
---|
1449 | ref int[] cnt)
|
---|
1450 | {
|
---|
1451 | int i = 0;
|
---|
1452 |
|
---|
1453 | for(i=ties[ntie]; i<=ties[ntie+1]-1; i++)
|
---|
1454 | {
|
---|
1455 | cnt[c[i]] = cnt[c[i]]+1;
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | /*************************************************************************
|
---|
1461 | Internal function, subtracts number of samples of class I in tie NTie to Cnt[I]
|
---|
1462 | *************************************************************************/
|
---|
1463 | private static void tiesubc(ref int[] c,
|
---|
1464 | ref int[] ties,
|
---|
1465 | int ntie,
|
---|
1466 | int nc,
|
---|
1467 | ref int[] cnt)
|
---|
1468 | {
|
---|
1469 | int i = 0;
|
---|
1470 |
|
---|
1471 | for(i=ties[ntie]; i<=ties[ntie+1]-1; i++)
|
---|
1472 | {
|
---|
1473 | cnt[c[i]] = cnt[c[i]]-1;
|
---|
1474 | }
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | /*************************************************************************
|
---|
1479 | Internal function,
|
---|
1480 | returns number of samples of class I in Cnt[I]
|
---|
1481 | *************************************************************************/
|
---|
1482 | private static void tiegetc(ref int[] c,
|
---|
1483 | ref int[] ties,
|
---|
1484 | int ntie,
|
---|
1485 | int nc,
|
---|
1486 | ref int[] cnt)
|
---|
1487 | {
|
---|
1488 | int i = 0;
|
---|
1489 |
|
---|
1490 | for(i=0; i<=nc-1; i++)
|
---|
1491 | {
|
---|
1492 | cnt[i] = 0;
|
---|
1493 | }
|
---|
1494 | for(i=ties[ntie]; i<=ties[ntie+1]-1; i++)
|
---|
1495 | {
|
---|
1496 | cnt[c[i]] = cnt[c[i]]+1;
|
---|
1497 | }
|
---|
1498 | }
|
---|
1499 | }
|
---|
1500 | }
|
---|