[2645] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2006-2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class lsfit
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Least squares fitting report:
|
---|
| 29 | TaskRCond reciprocal of task's condition number
|
---|
| 30 | RMSError RMS error
|
---|
| 31 | AvgError average error
|
---|
| 32 | AvgRelError average relative error (for non-zero Y[I])
|
---|
| 33 | MaxError maximum error
|
---|
| 34 | *************************************************************************/
|
---|
| 35 | public struct lsfitreport
|
---|
| 36 | {
|
---|
| 37 | public double taskrcond;
|
---|
| 38 | public double rmserror;
|
---|
| 39 | public double avgerror;
|
---|
| 40 | public double avgrelerror;
|
---|
| 41 | public double maxerror;
|
---|
| 42 | };
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 | public struct lsfitstate
|
---|
| 46 | {
|
---|
| 47 | public int n;
|
---|
| 48 | public int m;
|
---|
| 49 | public int k;
|
---|
| 50 | public double epsf;
|
---|
| 51 | public double epsx;
|
---|
| 52 | public int maxits;
|
---|
| 53 | public double[,] taskx;
|
---|
| 54 | public double[] tasky;
|
---|
| 55 | public double[] w;
|
---|
| 56 | public bool cheapfg;
|
---|
| 57 | public bool havehess;
|
---|
| 58 | public bool needf;
|
---|
| 59 | public bool needfg;
|
---|
| 60 | public bool needfgh;
|
---|
| 61 | public int pointindex;
|
---|
| 62 | public double[] x;
|
---|
| 63 | public double[] c;
|
---|
| 64 | public double f;
|
---|
| 65 | public double[] g;
|
---|
| 66 | public double[,] h;
|
---|
| 67 | public int repterminationtype;
|
---|
| 68 | public double reprmserror;
|
---|
| 69 | public double repavgerror;
|
---|
| 70 | public double repavgrelerror;
|
---|
| 71 | public double repmaxerror;
|
---|
| 72 | public minlm.lmstate optstate;
|
---|
| 73 | public minlm.lmreport optrep;
|
---|
| 74 | public AP.rcommstate rstate;
|
---|
| 75 | };
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 |
|
---|
| 79 |
|
---|
| 80 | /*************************************************************************
|
---|
| 81 | Weighted linear least squares fitting.
|
---|
| 82 |
|
---|
| 83 | QR decomposition is used to reduce task to MxM, then triangular solver or
|
---|
| 84 | SVD-based solver is used depending on condition number of the system. It
|
---|
| 85 | allows to maximize speed and retain decent accuracy.
|
---|
| 86 |
|
---|
| 87 | INPUT PARAMETERS:
|
---|
| 88 | Y - array[0..N-1] Function values in N points.
|
---|
| 89 | W - array[0..N-1] Weights corresponding to function values.
|
---|
| 90 | Each summand in square sum of approximation deviations
|
---|
| 91 | from given values is multiplied by the square of
|
---|
| 92 | corresponding weight.
|
---|
| 93 | FMatrix - a table of basis functions values, array[0..N-1, 0..M-1].
|
---|
| 94 | FMatrix[I, J] - value of J-th basis function in I-th point.
|
---|
| 95 | N - number of points used. N>=1.
|
---|
| 96 | M - number of basis functions, M>=1.
|
---|
| 97 |
|
---|
| 98 | OUTPUT PARAMETERS:
|
---|
| 99 | Info - error code:
|
---|
| 100 | * -4 internal SVD decomposition subroutine failed (very
|
---|
| 101 | rare and for degenerate systems only)
|
---|
| 102 | * -1 incorrect N/M were specified
|
---|
| 103 | * 1 task is solved
|
---|
| 104 | C - decomposition coefficients, array[0..M-1]
|
---|
| 105 | Rep - fitting report. Following fields are set:
|
---|
| 106 | * Rep.TaskRCond reciprocal of condition number
|
---|
| 107 | * RMSError rms error on the (X,Y).
|
---|
| 108 | * AvgError average error on the (X,Y).
|
---|
| 109 | * AvgRelError average relative error on the non-zero Y
|
---|
| 110 | * MaxError maximum error
|
---|
| 111 | NON-WEIGHTED ERRORS ARE CALCULATED
|
---|
| 112 |
|
---|
| 113 | SEE ALSO
|
---|
| 114 | LSFitLinear
|
---|
| 115 | LSFitLinearC
|
---|
| 116 | LSFitLinearWC
|
---|
| 117 |
|
---|
| 118 | -- ALGLIB --
|
---|
| 119 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 120 | *************************************************************************/
|
---|
| 121 | public static void lsfitlinearw(ref double[] y,
|
---|
| 122 | ref double[] w,
|
---|
| 123 | ref double[,] fmatrix,
|
---|
| 124 | int n,
|
---|
| 125 | int m,
|
---|
| 126 | ref int info,
|
---|
| 127 | ref double[] c,
|
---|
| 128 | ref lsfitreport rep)
|
---|
| 129 | {
|
---|
| 130 | lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 | /*************************************************************************
|
---|
| 135 | Weighted constained linear least squares fitting.
|
---|
| 136 |
|
---|
| 137 | This is variation of LSFitLinearW(), which searchs for min|A*x=b| given
|
---|
| 138 | that K additional constaints C*x=bc are satisfied. It reduces original
|
---|
| 139 | task to modified one: min|B*y-d| WITHOUT constraints, then LSFitLinearW()
|
---|
| 140 | is called.
|
---|
| 141 |
|
---|
| 142 | INPUT PARAMETERS:
|
---|
| 143 | Y - array[0..N-1] Function values in N points.
|
---|
| 144 | W - array[0..N-1] Weights corresponding to function values.
|
---|
| 145 | Each summand in square sum of approximation deviations
|
---|
| 146 | from given values is multiplied by the square of
|
---|
| 147 | corresponding weight.
|
---|
| 148 | FMatrix - a table of basis functions values, array[0..N-1, 0..M-1].
|
---|
| 149 | FMatrix[I,J] - value of J-th basis function in I-th point.
|
---|
| 150 | CMatrix - a table of constaints, array[0..K-1,0..M].
|
---|
| 151 | I-th row of CMatrix corresponds to I-th linear constraint:
|
---|
| 152 | CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M]
|
---|
| 153 | N - number of points used. N>=1.
|
---|
| 154 | M - number of basis functions, M>=1.
|
---|
| 155 | K - number of constraints, 0 <= K < M
|
---|
| 156 | K=0 corresponds to absence of constraints.
|
---|
| 157 |
|
---|
| 158 | OUTPUT PARAMETERS:
|
---|
| 159 | Info - error code:
|
---|
| 160 | * -4 internal SVD decomposition subroutine failed (very
|
---|
| 161 | rare and for degenerate systems only)
|
---|
| 162 | * -3 either too many constraints (M or more),
|
---|
| 163 | degenerate constraints (some constraints are
|
---|
| 164 | repetead twice) or inconsistent constraints were
|
---|
| 165 | specified.
|
---|
| 166 | * -1 incorrect N/M/K were specified
|
---|
| 167 | * 1 task is solved
|
---|
| 168 | C - decomposition coefficients, array[0..M-1]
|
---|
| 169 | Rep - fitting report. Following fields are set:
|
---|
| 170 | * RMSError rms error on the (X,Y).
|
---|
| 171 | * AvgError average error on the (X,Y).
|
---|
| 172 | * AvgRelError average relative error on the non-zero Y
|
---|
| 173 | * MaxError maximum error
|
---|
| 174 | NON-WEIGHTED ERRORS ARE CALCULATED
|
---|
| 175 |
|
---|
| 176 | IMPORTANT:
|
---|
| 177 | this subroitine doesn't calculate task's condition number for K<>0.
|
---|
| 178 |
|
---|
| 179 | SEE ALSO
|
---|
| 180 | LSFitLinear
|
---|
| 181 | LSFitLinearC
|
---|
| 182 | LSFitLinearWC
|
---|
| 183 |
|
---|
| 184 | -- ALGLIB --
|
---|
| 185 | Copyright 07.09.2009 by Bochkanov Sergey
|
---|
| 186 | *************************************************************************/
|
---|
| 187 | public static void lsfitlinearwc(double[] y,
|
---|
| 188 | ref double[] w,
|
---|
| 189 | ref double[,] fmatrix,
|
---|
| 190 | double[,] cmatrix,
|
---|
| 191 | int n,
|
---|
| 192 | int m,
|
---|
| 193 | int k,
|
---|
| 194 | ref int info,
|
---|
| 195 | ref double[] c,
|
---|
| 196 | ref lsfitreport rep)
|
---|
| 197 | {
|
---|
| 198 | int i = 0;
|
---|
| 199 | int j = 0;
|
---|
| 200 | double[] tau = new double[0];
|
---|
| 201 | double[,] q = new double[0,0];
|
---|
| 202 | double[,] f2 = new double[0,0];
|
---|
| 203 | double[] tmp = new double[0];
|
---|
| 204 | double[] c0 = new double[0];
|
---|
| 205 | double v = 0;
|
---|
| 206 | int i_ = 0;
|
---|
| 207 |
|
---|
| 208 | y = (double[])y.Clone();
|
---|
| 209 | cmatrix = (double[,])cmatrix.Clone();
|
---|
| 210 |
|
---|
| 211 | if( n<1 | m<1 | k<0 )
|
---|
| 212 | {
|
---|
| 213 | info = -1;
|
---|
| 214 | return;
|
---|
| 215 | }
|
---|
| 216 | if( k>=m )
|
---|
| 217 | {
|
---|
| 218 | info = -3;
|
---|
| 219 | return;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | //
|
---|
| 223 | // Solve
|
---|
| 224 | //
|
---|
| 225 | if( k==0 )
|
---|
| 226 | {
|
---|
| 227 |
|
---|
| 228 | //
|
---|
| 229 | // no constraints
|
---|
| 230 | //
|
---|
| 231 | lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
|
---|
| 232 | }
|
---|
| 233 | else
|
---|
| 234 | {
|
---|
| 235 |
|
---|
| 236 | //
|
---|
| 237 | // First, find general form solution of constraints system:
|
---|
| 238 | // * factorize C = L*Q
|
---|
| 239 | // * unpack Q
|
---|
| 240 | // * fill upper part of C with zeros (for RCond)
|
---|
| 241 | //
|
---|
| 242 | // We got C=C0+Q2'*y where Q2 is lower M-K rows of Q.
|
---|
| 243 | //
|
---|
| 244 | lq.rmatrixlq(ref cmatrix, k, m, ref tau);
|
---|
| 245 | lq.rmatrixlqunpackq(ref cmatrix, k, m, ref tau, m, ref q);
|
---|
| 246 | for(i=0; i<=k-1; i++)
|
---|
| 247 | {
|
---|
| 248 | for(j=i+1; j<=m-1; j++)
|
---|
| 249 | {
|
---|
| 250 | cmatrix[i,j] = 0.0;
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | if( (double)(rcond.rmatrixlurcondinf(ref cmatrix, k))<(double)(1000*AP.Math.MachineEpsilon) )
|
---|
| 254 | {
|
---|
| 255 | info = -3;
|
---|
| 256 | return;
|
---|
| 257 | }
|
---|
| 258 | tmp = new double[k];
|
---|
| 259 | for(i=0; i<=k-1; i++)
|
---|
| 260 | {
|
---|
| 261 | if( i>0 )
|
---|
| 262 | {
|
---|
| 263 | v = 0.0;
|
---|
| 264 | for(i_=0; i_<=i-1;i_++)
|
---|
| 265 | {
|
---|
| 266 | v += cmatrix[i,i_]*tmp[i_];
|
---|
| 267 | }
|
---|
| 268 | }
|
---|
| 269 | else
|
---|
| 270 | {
|
---|
| 271 | v = 0;
|
---|
| 272 | }
|
---|
| 273 | tmp[i] = (cmatrix[i,m]-v)/cmatrix[i,i];
|
---|
| 274 | }
|
---|
| 275 | c0 = new double[m];
|
---|
| 276 | for(i=0; i<=m-1; i++)
|
---|
| 277 | {
|
---|
| 278 | c0[i] = 0;
|
---|
| 279 | }
|
---|
| 280 | for(i=0; i<=k-1; i++)
|
---|
| 281 | {
|
---|
| 282 | v = tmp[i];
|
---|
| 283 | for(i_=0; i_<=m-1;i_++)
|
---|
| 284 | {
|
---|
| 285 | c0[i_] = c0[i_] + v*q[i,i_];
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | //
|
---|
| 290 | // Second, prepare modified matrix F2 = F*Q2' and solve modified task
|
---|
| 291 | //
|
---|
| 292 | tmp = new double[Math.Max(n, m)+1];
|
---|
| 293 | f2 = new double[n, m-k];
|
---|
| 294 | blas.matrixvectormultiply(ref fmatrix, 0, n-1, 0, m-1, false, ref c0, 0, m-1, -1.0, ref y, 0, n-1, 1.0);
|
---|
| 295 | blas.matrixmatrixmultiply(ref fmatrix, 0, n-1, 0, m-1, false, ref q, k, m-1, 0, m-1, true, 1.0, ref f2, 0, n-1, 0, m-k-1, 0.0, ref tmp);
|
---|
| 296 | lsfitlinearinternal(ref y, ref w, ref f2, n, m-k, ref info, ref tmp, ref rep);
|
---|
| 297 | rep.taskrcond = -1;
|
---|
| 298 | if( info<=0 )
|
---|
| 299 | {
|
---|
| 300 | return;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | //
|
---|
| 304 | // then, convert back to original answer: C = C0 + Q2'*Y0
|
---|
| 305 | //
|
---|
| 306 | c = new double[m];
|
---|
| 307 | for(i_=0; i_<=m-1;i_++)
|
---|
| 308 | {
|
---|
| 309 | c[i_] = c0[i_];
|
---|
| 310 | }
|
---|
| 311 | blas.matrixvectormultiply(ref q, k, m-1, 0, m-1, true, ref tmp, 0, m-k-1, 1.0, ref c, 0, m-1, 1.0);
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 |
|
---|
| 316 | /*************************************************************************
|
---|
| 317 | Linear least squares fitting, without weights.
|
---|
| 318 |
|
---|
| 319 | See LSFitLinearW for more information.
|
---|
| 320 |
|
---|
| 321 | -- ALGLIB --
|
---|
| 322 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 323 | *************************************************************************/
|
---|
| 324 | public static void lsfitlinear(ref double[] y,
|
---|
| 325 | ref double[,] fmatrix,
|
---|
| 326 | int n,
|
---|
| 327 | int m,
|
---|
| 328 | ref int info,
|
---|
| 329 | ref double[] c,
|
---|
| 330 | ref lsfitreport rep)
|
---|
| 331 | {
|
---|
| 332 | double[] w = new double[0];
|
---|
| 333 | int i = 0;
|
---|
| 334 |
|
---|
| 335 | if( n<1 )
|
---|
| 336 | {
|
---|
| 337 | info = -1;
|
---|
| 338 | return;
|
---|
| 339 | }
|
---|
| 340 | w = new double[n];
|
---|
| 341 | for(i=0; i<=n-1; i++)
|
---|
| 342 | {
|
---|
| 343 | w[i] = 1;
|
---|
| 344 | }
|
---|
| 345 | lsfitlinearinternal(ref y, ref w, ref fmatrix, n, m, ref info, ref c, ref rep);
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 |
|
---|
| 349 | /*************************************************************************
|
---|
| 350 | Constained linear least squares fitting, without weights.
|
---|
| 351 |
|
---|
| 352 | See LSFitLinearWC() for more information.
|
---|
| 353 |
|
---|
| 354 | -- ALGLIB --
|
---|
| 355 | Copyright 07.09.2009 by Bochkanov Sergey
|
---|
| 356 | *************************************************************************/
|
---|
| 357 | public static void lsfitlinearc(double[] y,
|
---|
| 358 | ref double[,] fmatrix,
|
---|
| 359 | ref double[,] cmatrix,
|
---|
| 360 | int n,
|
---|
| 361 | int m,
|
---|
| 362 | int k,
|
---|
| 363 | ref int info,
|
---|
| 364 | ref double[] c,
|
---|
| 365 | ref lsfitreport rep)
|
---|
| 366 | {
|
---|
| 367 | double[] w = new double[0];
|
---|
| 368 | int i = 0;
|
---|
| 369 |
|
---|
| 370 | y = (double[])y.Clone();
|
---|
| 371 |
|
---|
| 372 | if( n<1 )
|
---|
| 373 | {
|
---|
| 374 | info = -1;
|
---|
| 375 | return;
|
---|
| 376 | }
|
---|
| 377 | w = new double[n];
|
---|
| 378 | for(i=0; i<=n-1; i++)
|
---|
| 379 | {
|
---|
| 380 | w[i] = 1;
|
---|
| 381 | }
|
---|
| 382 | lsfitlinearwc(y, ref w, ref fmatrix, cmatrix, n, m, k, ref info, ref c, ref rep);
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 |
|
---|
| 386 | /*************************************************************************
|
---|
| 387 | Weighted nonlinear least squares fitting using gradient and Hessian.
|
---|
| 388 |
|
---|
| 389 | Nonlinear task min(F(c)) is solved, where
|
---|
| 390 |
|
---|
| 391 | F(c) = (w[0]*(f(x[0],c)-y[0]))^2 + ... + (w[n-1]*(f(x[n-1],c)-y[n-1]))^2,
|
---|
| 392 |
|
---|
| 393 | * N is a number of points,
|
---|
| 394 | * M is a dimension of a space points belong to,
|
---|
| 395 | * K is a dimension of a space of parameters being fitted,
|
---|
| 396 | * w is an N-dimensional vector of weight coefficients,
|
---|
| 397 | * x is a set of N points, each of them is an M-dimensional vector,
|
---|
| 398 | * c is a K-dimensional vector of parameters being fitted
|
---|
| 399 |
|
---|
| 400 | This subroutine uses only f(x[i],c) and its gradient.
|
---|
| 401 |
|
---|
| 402 | INPUT PARAMETERS:
|
---|
| 403 | X - array[0..N-1,0..M-1], points (one row = one point)
|
---|
| 404 | Y - array[0..N-1], function values.
|
---|
| 405 | W - weights, array[0..N-1]
|
---|
| 406 | C - array[0..K-1], initial approximation to the solution,
|
---|
| 407 | N - number of points, N>1
|
---|
| 408 | M - dimension of space
|
---|
| 409 | K - number of parameters being fitted
|
---|
| 410 | EpsF - stopping criterion. Algorithm stops if
|
---|
| 411 | |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
|
---|
| 412 | EpsX - stopping criterion. Algorithm stops if
|
---|
| 413 | |X(k+1)-X(k)| <= EpsX*(1+|X(k)|)
|
---|
| 414 | MaxIts - stopping criterion. Algorithm stops after MaxIts iterations.
|
---|
| 415 | MaxIts=0 means no stopping criterion.
|
---|
| 416 | CheapFG - boolean flag, which is:
|
---|
| 417 | * True if both function and gradient calculation complexity
|
---|
| 418 | are less than O(M^2). An improved algorithm can
|
---|
| 419 | be used which allows to save O(N*M^2) operations
|
---|
| 420 | per iteration with additional cost of N function/
|
---|
| 421 | /gradient calculations.
|
---|
| 422 | * False otherwise.
|
---|
| 423 | Standard Jacibian-bases Levenberg-Marquardt algo
|
---|
| 424 | will be used.
|
---|
| 425 |
|
---|
| 426 | OUTPUT PARAMETERS:
|
---|
| 427 | State - structure which stores algorithm state between subsequent
|
---|
| 428 | calls of LSFitNonlinearIteration. Used for reverse
|
---|
| 429 | communication. This structure should be passed to
|
---|
| 430 | LSFitNonlinearIteration subroutine.
|
---|
| 431 |
|
---|
| 432 | See also:
|
---|
| 433 | LSFitNonlinearIteration
|
---|
| 434 | LSFitNonlinearResults
|
---|
| 435 | LSFitNonlinearFG (fitting without weights)
|
---|
| 436 | LSFitNonlinearWFGH (fitting using Hessian)
|
---|
| 437 | LSFitNonlinearFGH (fitting using Hessian, without weights)
|
---|
| 438 |
|
---|
| 439 | NOTE
|
---|
| 440 |
|
---|
| 441 | Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
|
---|
| 442 | stopping criterion selection (small EpsX).
|
---|
| 443 |
|
---|
| 444 |
|
---|
| 445 | -- ALGLIB --
|
---|
| 446 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 447 | *************************************************************************/
|
---|
| 448 | public static void lsfitnonlinearwfg(ref double[,] x,
|
---|
| 449 | ref double[] y,
|
---|
| 450 | ref double[] w,
|
---|
| 451 | ref double[] c,
|
---|
| 452 | int n,
|
---|
| 453 | int m,
|
---|
| 454 | int k,
|
---|
| 455 | double epsf,
|
---|
| 456 | double epsx,
|
---|
| 457 | int maxits,
|
---|
| 458 | bool cheapfg,
|
---|
| 459 | ref lsfitstate state)
|
---|
| 460 | {
|
---|
| 461 | int i = 0;
|
---|
| 462 | int i_ = 0;
|
---|
| 463 |
|
---|
| 464 | state.n = n;
|
---|
| 465 | state.m = m;
|
---|
| 466 | state.k = k;
|
---|
| 467 | state.epsf = epsf;
|
---|
| 468 | state.epsx = epsx;
|
---|
| 469 | state.maxits = maxits;
|
---|
| 470 | state.cheapfg = cheapfg;
|
---|
| 471 | state.havehess = false;
|
---|
| 472 | if( n>=1 & m>=1 & k>=1 )
|
---|
| 473 | {
|
---|
| 474 | state.taskx = new double[n, m];
|
---|
| 475 | state.tasky = new double[n];
|
---|
| 476 | state.w = new double[n];
|
---|
| 477 | state.c = new double[k];
|
---|
| 478 | for(i_=0; i_<=k-1;i_++)
|
---|
| 479 | {
|
---|
| 480 | state.c[i_] = c[i_];
|
---|
| 481 | }
|
---|
| 482 | for(i_=0; i_<=n-1;i_++)
|
---|
| 483 | {
|
---|
| 484 | state.w[i_] = w[i_];
|
---|
| 485 | }
|
---|
| 486 | for(i=0; i<=n-1; i++)
|
---|
| 487 | {
|
---|
| 488 | for(i_=0; i_<=m-1;i_++)
|
---|
| 489 | {
|
---|
| 490 | state.taskx[i,i_] = x[i,i_];
|
---|
| 491 | }
|
---|
| 492 | state.tasky[i] = y[i];
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | state.rstate.ia = new int[4+1];
|
---|
| 496 | state.rstate.ra = new double[1+1];
|
---|
| 497 | state.rstate.stage = -1;
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 |
|
---|
| 501 | /*************************************************************************
|
---|
| 502 | Nonlinear least squares fitting, no individual weights.
|
---|
| 503 | See LSFitNonlinearWFG for more information.
|
---|
| 504 |
|
---|
| 505 | -- ALGLIB --
|
---|
| 506 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 507 | *************************************************************************/
|
---|
| 508 | public static void lsfitnonlinearfg(ref double[,] x,
|
---|
| 509 | ref double[] y,
|
---|
| 510 | ref double[] c,
|
---|
| 511 | int n,
|
---|
| 512 | int m,
|
---|
| 513 | int k,
|
---|
| 514 | double epsf,
|
---|
| 515 | double epsx,
|
---|
| 516 | int maxits,
|
---|
| 517 | bool cheapfg,
|
---|
| 518 | ref lsfitstate state)
|
---|
| 519 | {
|
---|
| 520 | int i = 0;
|
---|
| 521 | int i_ = 0;
|
---|
| 522 |
|
---|
| 523 | state.n = n;
|
---|
| 524 | state.m = m;
|
---|
| 525 | state.k = k;
|
---|
| 526 | state.epsf = epsf;
|
---|
| 527 | state.epsx = epsx;
|
---|
| 528 | state.maxits = maxits;
|
---|
| 529 | state.cheapfg = cheapfg;
|
---|
| 530 | state.havehess = false;
|
---|
| 531 | if( n>=1 & m>=1 & k>=1 )
|
---|
| 532 | {
|
---|
| 533 | state.taskx = new double[n, m];
|
---|
| 534 | state.tasky = new double[n];
|
---|
| 535 | state.w = new double[n];
|
---|
| 536 | state.c = new double[k];
|
---|
| 537 | for(i_=0; i_<=k-1;i_++)
|
---|
| 538 | {
|
---|
| 539 | state.c[i_] = c[i_];
|
---|
| 540 | }
|
---|
| 541 | for(i=0; i<=n-1; i++)
|
---|
| 542 | {
|
---|
| 543 | for(i_=0; i_<=m-1;i_++)
|
---|
| 544 | {
|
---|
| 545 | state.taskx[i,i_] = x[i,i_];
|
---|
| 546 | }
|
---|
| 547 | state.tasky[i] = y[i];
|
---|
| 548 | state.w[i] = 1;
|
---|
| 549 | }
|
---|
| 550 | }
|
---|
| 551 | state.rstate.ia = new int[4+1];
|
---|
| 552 | state.rstate.ra = new double[1+1];
|
---|
| 553 | state.rstate.stage = -1;
|
---|
| 554 | }
|
---|
| 555 |
|
---|
| 556 |
|
---|
| 557 | /*************************************************************************
|
---|
| 558 | Weighted nonlinear least squares fitting using gradient/Hessian.
|
---|
| 559 |
|
---|
| 560 | Nonlinear task min(F(c)) is solved, where
|
---|
| 561 |
|
---|
| 562 | F(c) = (w[0]*(f(x[0],c)-y[0]))^2 + ... + (w[n-1]*(f(x[n-1],c)-y[n-1]))^2,
|
---|
| 563 |
|
---|
| 564 | * N is a number of points,
|
---|
| 565 | * M is a dimension of a space points belong to,
|
---|
| 566 | * K is a dimension of a space of parameters being fitted,
|
---|
| 567 | * w is an N-dimensional vector of weight coefficients,
|
---|
| 568 | * x is a set of N points, each of them is an M-dimensional vector,
|
---|
| 569 | * c is a K-dimensional vector of parameters being fitted
|
---|
| 570 |
|
---|
| 571 | This subroutine uses f(x[i],c), its gradient and its Hessian.
|
---|
| 572 |
|
---|
| 573 | See LSFitNonlinearWFG() subroutine for information about function
|
---|
| 574 | parameters.
|
---|
| 575 |
|
---|
| 576 | -- ALGLIB --
|
---|
| 577 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 578 | *************************************************************************/
|
---|
| 579 | public static void lsfitnonlinearwfgh(ref double[,] x,
|
---|
| 580 | ref double[] y,
|
---|
| 581 | ref double[] w,
|
---|
| 582 | ref double[] c,
|
---|
| 583 | int n,
|
---|
| 584 | int m,
|
---|
| 585 | int k,
|
---|
| 586 | double epsf,
|
---|
| 587 | double epsx,
|
---|
| 588 | int maxits,
|
---|
| 589 | ref lsfitstate state)
|
---|
| 590 | {
|
---|
| 591 | int i = 0;
|
---|
| 592 | int i_ = 0;
|
---|
| 593 |
|
---|
| 594 | state.n = n;
|
---|
| 595 | state.m = m;
|
---|
| 596 | state.k = k;
|
---|
| 597 | state.epsf = epsf;
|
---|
| 598 | state.epsx = epsx;
|
---|
| 599 | state.maxits = maxits;
|
---|
| 600 | state.cheapfg = true;
|
---|
| 601 | state.havehess = true;
|
---|
| 602 | if( n>=1 & m>=1 & k>=1 )
|
---|
| 603 | {
|
---|
| 604 | state.taskx = new double[n, m];
|
---|
| 605 | state.tasky = new double[n];
|
---|
| 606 | state.w = new double[n];
|
---|
| 607 | state.c = new double[k];
|
---|
| 608 | for(i_=0; i_<=k-1;i_++)
|
---|
| 609 | {
|
---|
| 610 | state.c[i_] = c[i_];
|
---|
| 611 | }
|
---|
| 612 | for(i_=0; i_<=n-1;i_++)
|
---|
| 613 | {
|
---|
| 614 | state.w[i_] = w[i_];
|
---|
| 615 | }
|
---|
| 616 | for(i=0; i<=n-1; i++)
|
---|
| 617 | {
|
---|
| 618 | for(i_=0; i_<=m-1;i_++)
|
---|
| 619 | {
|
---|
| 620 | state.taskx[i,i_] = x[i,i_];
|
---|
| 621 | }
|
---|
| 622 | state.tasky[i] = y[i];
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 | state.rstate.ia = new int[4+1];
|
---|
| 626 | state.rstate.ra = new double[1+1];
|
---|
| 627 | state.rstate.stage = -1;
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 |
|
---|
| 631 | /*************************************************************************
|
---|
| 632 | Nonlinear least squares fitting using gradient/Hessian without individual
|
---|
| 633 | weights. See LSFitNonlinearWFGH() for more information.
|
---|
| 634 |
|
---|
| 635 |
|
---|
| 636 | -- ALGLIB --
|
---|
| 637 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 638 | *************************************************************************/
|
---|
| 639 | public static void lsfitnonlinearfgh(ref double[,] x,
|
---|
| 640 | ref double[] y,
|
---|
| 641 | ref double[] c,
|
---|
| 642 | int n,
|
---|
| 643 | int m,
|
---|
| 644 | int k,
|
---|
| 645 | double epsf,
|
---|
| 646 | double epsx,
|
---|
| 647 | int maxits,
|
---|
| 648 | ref lsfitstate state)
|
---|
| 649 | {
|
---|
| 650 | int i = 0;
|
---|
| 651 | int i_ = 0;
|
---|
| 652 |
|
---|
| 653 | state.n = n;
|
---|
| 654 | state.m = m;
|
---|
| 655 | state.k = k;
|
---|
| 656 | state.epsf = epsf;
|
---|
| 657 | state.epsx = epsx;
|
---|
| 658 | state.maxits = maxits;
|
---|
| 659 | state.cheapfg = true;
|
---|
| 660 | state.havehess = true;
|
---|
| 661 | if( n>=1 & m>=1 & k>=1 )
|
---|
| 662 | {
|
---|
| 663 | state.taskx = new double[n, m];
|
---|
| 664 | state.tasky = new double[n];
|
---|
| 665 | state.w = new double[n];
|
---|
| 666 | state.c = new double[k];
|
---|
| 667 | for(i_=0; i_<=k-1;i_++)
|
---|
| 668 | {
|
---|
| 669 | state.c[i_] = c[i_];
|
---|
| 670 | }
|
---|
| 671 | for(i=0; i<=n-1; i++)
|
---|
| 672 | {
|
---|
| 673 | for(i_=0; i_<=m-1;i_++)
|
---|
| 674 | {
|
---|
| 675 | state.taskx[i,i_] = x[i,i_];
|
---|
| 676 | }
|
---|
| 677 | state.tasky[i] = y[i];
|
---|
| 678 | state.w[i] = 1;
|
---|
| 679 | }
|
---|
| 680 | }
|
---|
| 681 | state.rstate.ia = new int[4+1];
|
---|
| 682 | state.rstate.ra = new double[1+1];
|
---|
| 683 | state.rstate.stage = -1;
|
---|
| 684 | }
|
---|
| 685 |
|
---|
| 686 |
|
---|
| 687 | /*************************************************************************
|
---|
| 688 | Nonlinear least squares fitting. Algorithm iteration.
|
---|
| 689 |
|
---|
| 690 | Called after inialization of the State structure with LSFitNonlinearXXX()
|
---|
| 691 | subroutine. See HTML docs for examples.
|
---|
| 692 |
|
---|
| 693 | INPUT PARAMETERS:
|
---|
| 694 | State - structure which stores algorithm state between subsequent
|
---|
| 695 | calls and which is used for reverse communication. Must be
|
---|
| 696 | initialized with LSFitNonlinearXXX() call first.
|
---|
| 697 |
|
---|
| 698 | RESULT
|
---|
| 699 | 1. If subroutine returned False, iterative algorithm has converged.
|
---|
| 700 | 2. If subroutine returned True, then if:
|
---|
| 701 | * if State.NeedF=True, function value F(X,C) is required
|
---|
| 702 | * if State.NeedFG=True, function value F(X,C) and gradient dF/dC(X,C)
|
---|
| 703 | are required
|
---|
| 704 | * if State.NeedFGH=True function value F(X,C), gradient dF/dC(X,C) and
|
---|
| 705 | Hessian are required
|
---|
| 706 |
|
---|
| 707 | One and only one of this fields can be set at time.
|
---|
| 708 |
|
---|
| 709 | Function, its gradient and Hessian are calculated at (X,C), where X is
|
---|
| 710 | stored in State.X[0..M-1] and C is stored in State.C[0..K-1].
|
---|
| 711 |
|
---|
| 712 | Results are stored:
|
---|
| 713 | * function value - in State.F
|
---|
| 714 | * gradient - in State.G[0..K-1]
|
---|
| 715 | * Hessian - in State.H[0..K-1,0..K-1]
|
---|
| 716 |
|
---|
| 717 | -- ALGLIB --
|
---|
| 718 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 719 | *************************************************************************/
|
---|
| 720 | public static bool lsfitnonlineariteration(ref lsfitstate state)
|
---|
| 721 | {
|
---|
| 722 | bool result = new bool();
|
---|
| 723 | int n = 0;
|
---|
| 724 | int m = 0;
|
---|
| 725 | int k = 0;
|
---|
| 726 | int i = 0;
|
---|
| 727 | int j = 0;
|
---|
| 728 | double v = 0;
|
---|
| 729 | double relcnt = 0;
|
---|
| 730 | int i_ = 0;
|
---|
| 731 |
|
---|
| 732 |
|
---|
| 733 | //
|
---|
| 734 | // Reverse communication preparations
|
---|
| 735 | // I know it looks ugly, but it works the same way
|
---|
| 736 | // anywhere from C++ to Python.
|
---|
| 737 | //
|
---|
| 738 | // This code initializes locals by:
|
---|
| 739 | // * random values determined during code
|
---|
| 740 | // generation - on first subroutine call
|
---|
| 741 | // * values from previous call - on subsequent calls
|
---|
| 742 | //
|
---|
| 743 | if( state.rstate.stage>=0 )
|
---|
| 744 | {
|
---|
| 745 | n = state.rstate.ia[0];
|
---|
| 746 | m = state.rstate.ia[1];
|
---|
| 747 | k = state.rstate.ia[2];
|
---|
| 748 | i = state.rstate.ia[3];
|
---|
| 749 | j = state.rstate.ia[4];
|
---|
| 750 | v = state.rstate.ra[0];
|
---|
| 751 | relcnt = state.rstate.ra[1];
|
---|
| 752 | }
|
---|
| 753 | else
|
---|
| 754 | {
|
---|
| 755 | n = -983;
|
---|
| 756 | m = -989;
|
---|
| 757 | k = -834;
|
---|
| 758 | i = 900;
|
---|
| 759 | j = -287;
|
---|
| 760 | v = 364;
|
---|
| 761 | relcnt = 214;
|
---|
| 762 | }
|
---|
| 763 | if( state.rstate.stage==0 )
|
---|
| 764 | {
|
---|
| 765 | goto lbl_0;
|
---|
| 766 | }
|
---|
| 767 | if( state.rstate.stage==1 )
|
---|
| 768 | {
|
---|
| 769 | goto lbl_1;
|
---|
| 770 | }
|
---|
| 771 | if( state.rstate.stage==2 )
|
---|
| 772 | {
|
---|
| 773 | goto lbl_2;
|
---|
| 774 | }
|
---|
| 775 | if( state.rstate.stage==3 )
|
---|
| 776 | {
|
---|
| 777 | goto lbl_3;
|
---|
| 778 | }
|
---|
| 779 | if( state.rstate.stage==4 )
|
---|
| 780 | {
|
---|
| 781 | goto lbl_4;
|
---|
| 782 | }
|
---|
| 783 |
|
---|
| 784 | //
|
---|
| 785 | // Routine body
|
---|
| 786 | //
|
---|
| 787 |
|
---|
| 788 | //
|
---|
| 789 | // check params
|
---|
| 790 | //
|
---|
| 791 | if( state.n<1 | state.m<1 | state.k<1 | (double)(state.epsf)<(double)(0) | (double)(state.epsx)<(double)(0) | state.maxits<0 )
|
---|
| 792 | {
|
---|
| 793 | state.repterminationtype = -1;
|
---|
| 794 | result = false;
|
---|
| 795 | return result;
|
---|
| 796 | }
|
---|
| 797 |
|
---|
| 798 | //
|
---|
| 799 | // init
|
---|
| 800 | //
|
---|
| 801 | n = state.n;
|
---|
| 802 | m = state.m;
|
---|
| 803 | k = state.k;
|
---|
| 804 | state.x = new double[m];
|
---|
| 805 | state.g = new double[k];
|
---|
| 806 | if( state.havehess )
|
---|
| 807 | {
|
---|
| 808 | state.h = new double[k, k];
|
---|
| 809 | }
|
---|
| 810 |
|
---|
| 811 | //
|
---|
| 812 | // initialize LM optimizer
|
---|
| 813 | //
|
---|
| 814 | if( state.havehess )
|
---|
| 815 | {
|
---|
| 816 |
|
---|
| 817 | //
|
---|
| 818 | // use Hessian.
|
---|
| 819 | // transform stopping conditions.
|
---|
| 820 | //
|
---|
| 821 | minlm.minlmfgh(k, ref state.c, AP.Math.Sqr(state.epsf)*n, state.epsx, state.maxits, ref state.optstate);
|
---|
| 822 | }
|
---|
| 823 | else
|
---|
| 824 | {
|
---|
| 825 |
|
---|
| 826 | //
|
---|
| 827 | // use one of gradient-based schemes (depending on gradient cost).
|
---|
| 828 | // transform stopping conditions.
|
---|
| 829 | //
|
---|
| 830 | if( state.cheapfg )
|
---|
| 831 | {
|
---|
| 832 | minlm.minlmfgj(k, n, ref state.c, AP.Math.Sqr(state.epsf)*n, state.epsx, state.maxits, ref state.optstate);
|
---|
| 833 | }
|
---|
| 834 | else
|
---|
| 835 | {
|
---|
| 836 | minlm.minlmfj(k, n, ref state.c, AP.Math.Sqr(state.epsf)*n, state.epsx, state.maxits, ref state.optstate);
|
---|
| 837 | }
|
---|
| 838 | }
|
---|
| 839 |
|
---|
| 840 | //
|
---|
| 841 | // Optimize
|
---|
| 842 | //
|
---|
| 843 | lbl_5:
|
---|
| 844 | if( ! minlm.minlmiteration(ref state.optstate) )
|
---|
| 845 | {
|
---|
| 846 | goto lbl_6;
|
---|
| 847 | }
|
---|
| 848 | if( ! state.optstate.needf )
|
---|
| 849 | {
|
---|
| 850 | goto lbl_7;
|
---|
| 851 | }
|
---|
| 852 |
|
---|
| 853 | //
|
---|
| 854 | // calculate F = sum (wi*(f(xi,c)-yi))^2
|
---|
| 855 | //
|
---|
| 856 | state.optstate.f = 0;
|
---|
| 857 | i = 0;
|
---|
| 858 | lbl_9:
|
---|
| 859 | if( i>n-1 )
|
---|
| 860 | {
|
---|
| 861 | goto lbl_11;
|
---|
| 862 | }
|
---|
| 863 | for(i_=0; i_<=k-1;i_++)
|
---|
| 864 | {
|
---|
| 865 | state.c[i_] = state.optstate.x[i_];
|
---|
| 866 | }
|
---|
| 867 | for(i_=0; i_<=m-1;i_++)
|
---|
| 868 | {
|
---|
| 869 | state.x[i_] = state.taskx[i,i_];
|
---|
| 870 | }
|
---|
| 871 | state.pointindex = i;
|
---|
| 872 | lsfitclearrequestfields(ref state);
|
---|
| 873 | state.needf = true;
|
---|
| 874 | state.rstate.stage = 0;
|
---|
| 875 | goto lbl_rcomm;
|
---|
| 876 | lbl_0:
|
---|
| 877 | state.optstate.f = state.optstate.f+AP.Math.Sqr(state.w[i]*(state.f-state.tasky[i]));
|
---|
| 878 | i = i+1;
|
---|
| 879 | goto lbl_9;
|
---|
| 880 | lbl_11:
|
---|
| 881 | goto lbl_5;
|
---|
| 882 | lbl_7:
|
---|
| 883 | if( ! state.optstate.needfg )
|
---|
| 884 | {
|
---|
| 885 | goto lbl_12;
|
---|
| 886 | }
|
---|
| 887 |
|
---|
| 888 | //
|
---|
| 889 | // calculate F/gradF
|
---|
| 890 | //
|
---|
| 891 | state.optstate.f = 0;
|
---|
| 892 | for(i=0; i<=k-1; i++)
|
---|
| 893 | {
|
---|
| 894 | state.optstate.g[i] = 0;
|
---|
| 895 | }
|
---|
| 896 | i = 0;
|
---|
| 897 | lbl_14:
|
---|
| 898 | if( i>n-1 )
|
---|
| 899 | {
|
---|
| 900 | goto lbl_16;
|
---|
| 901 | }
|
---|
| 902 | for(i_=0; i_<=k-1;i_++)
|
---|
| 903 | {
|
---|
| 904 | state.c[i_] = state.optstate.x[i_];
|
---|
| 905 | }
|
---|
| 906 | for(i_=0; i_<=m-1;i_++)
|
---|
| 907 | {
|
---|
| 908 | state.x[i_] = state.taskx[i,i_];
|
---|
| 909 | }
|
---|
| 910 | state.pointindex = i;
|
---|
| 911 | lsfitclearrequestfields(ref state);
|
---|
| 912 | state.needfg = true;
|
---|
| 913 | state.rstate.stage = 1;
|
---|
| 914 | goto lbl_rcomm;
|
---|
| 915 | lbl_1:
|
---|
| 916 | state.optstate.f = state.optstate.f+AP.Math.Sqr(state.w[i]*(state.f-state.tasky[i]));
|
---|
| 917 | v = AP.Math.Sqr(state.w[i])*2*(state.f-state.tasky[i]);
|
---|
| 918 | for(i_=0; i_<=k-1;i_++)
|
---|
| 919 | {
|
---|
| 920 | state.optstate.g[i_] = state.optstate.g[i_] + v*state.g[i_];
|
---|
| 921 | }
|
---|
| 922 | i = i+1;
|
---|
| 923 | goto lbl_14;
|
---|
| 924 | lbl_16:
|
---|
| 925 | goto lbl_5;
|
---|
| 926 | lbl_12:
|
---|
| 927 | if( ! state.optstate.needfij )
|
---|
| 928 | {
|
---|
| 929 | goto lbl_17;
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 | //
|
---|
| 933 | // calculate Fi/jac(Fi)
|
---|
| 934 | //
|
---|
| 935 | i = 0;
|
---|
| 936 | lbl_19:
|
---|
| 937 | if( i>n-1 )
|
---|
| 938 | {
|
---|
| 939 | goto lbl_21;
|
---|
| 940 | }
|
---|
| 941 | for(i_=0; i_<=k-1;i_++)
|
---|
| 942 | {
|
---|
| 943 | state.c[i_] = state.optstate.x[i_];
|
---|
| 944 | }
|
---|
| 945 | for(i_=0; i_<=m-1;i_++)
|
---|
| 946 | {
|
---|
| 947 | state.x[i_] = state.taskx[i,i_];
|
---|
| 948 | }
|
---|
| 949 | state.pointindex = i;
|
---|
| 950 | lsfitclearrequestfields(ref state);
|
---|
| 951 | state.needfg = true;
|
---|
| 952 | state.rstate.stage = 2;
|
---|
| 953 | goto lbl_rcomm;
|
---|
| 954 | lbl_2:
|
---|
| 955 | state.optstate.fi[i] = state.w[i]*(state.f-state.tasky[i]);
|
---|
| 956 | v = state.w[i];
|
---|
| 957 | for(i_=0; i_<=k-1;i_++)
|
---|
| 958 | {
|
---|
| 959 | state.optstate.j[i,i_] = v*state.g[i_];
|
---|
| 960 | }
|
---|
| 961 | i = i+1;
|
---|
| 962 | goto lbl_19;
|
---|
| 963 | lbl_21:
|
---|
| 964 | goto lbl_5;
|
---|
| 965 | lbl_17:
|
---|
| 966 | if( ! state.optstate.needfgh )
|
---|
| 967 | {
|
---|
| 968 | goto lbl_22;
|
---|
| 969 | }
|
---|
| 970 |
|
---|
| 971 | //
|
---|
| 972 | // calculate F/grad(F)/hess(F)
|
---|
| 973 | //
|
---|
| 974 | state.optstate.f = 0;
|
---|
| 975 | for(i=0; i<=k-1; i++)
|
---|
| 976 | {
|
---|
| 977 | state.optstate.g[i] = 0;
|
---|
| 978 | }
|
---|
| 979 | for(i=0; i<=k-1; i++)
|
---|
| 980 | {
|
---|
| 981 | for(j=0; j<=k-1; j++)
|
---|
| 982 | {
|
---|
| 983 | state.optstate.h[i,j] = 0;
|
---|
| 984 | }
|
---|
| 985 | }
|
---|
| 986 | i = 0;
|
---|
| 987 | lbl_24:
|
---|
| 988 | if( i>n-1 )
|
---|
| 989 | {
|
---|
| 990 | goto lbl_26;
|
---|
| 991 | }
|
---|
| 992 | for(i_=0; i_<=k-1;i_++)
|
---|
| 993 | {
|
---|
| 994 | state.c[i_] = state.optstate.x[i_];
|
---|
| 995 | }
|
---|
| 996 | for(i_=0; i_<=m-1;i_++)
|
---|
| 997 | {
|
---|
| 998 | state.x[i_] = state.taskx[i,i_];
|
---|
| 999 | }
|
---|
| 1000 | state.pointindex = i;
|
---|
| 1001 | lsfitclearrequestfields(ref state);
|
---|
| 1002 | state.needfgh = true;
|
---|
| 1003 | state.rstate.stage = 3;
|
---|
| 1004 | goto lbl_rcomm;
|
---|
| 1005 | lbl_3:
|
---|
| 1006 | state.optstate.f = state.optstate.f+AP.Math.Sqr(state.w[i]*(state.f-state.tasky[i]));
|
---|
| 1007 | v = AP.Math.Sqr(state.w[i])*2*(state.f-state.tasky[i]);
|
---|
| 1008 | for(i_=0; i_<=k-1;i_++)
|
---|
| 1009 | {
|
---|
| 1010 | state.optstate.g[i_] = state.optstate.g[i_] + v*state.g[i_];
|
---|
| 1011 | }
|
---|
| 1012 | for(j=0; j<=k-1; j++)
|
---|
| 1013 | {
|
---|
| 1014 | v = 2*AP.Math.Sqr(state.w[i])*state.g[j];
|
---|
| 1015 | for(i_=0; i_<=k-1;i_++)
|
---|
| 1016 | {
|
---|
| 1017 | state.optstate.h[j,i_] = state.optstate.h[j,i_] + v*state.g[i_];
|
---|
| 1018 | }
|
---|
| 1019 | v = 2*AP.Math.Sqr(state.w[i])*(state.f-state.tasky[i]);
|
---|
| 1020 | for(i_=0; i_<=k-1;i_++)
|
---|
| 1021 | {
|
---|
| 1022 | state.optstate.h[j,i_] = state.optstate.h[j,i_] + v*state.h[j,i_];
|
---|
| 1023 | }
|
---|
| 1024 | }
|
---|
| 1025 | i = i+1;
|
---|
| 1026 | goto lbl_24;
|
---|
| 1027 | lbl_26:
|
---|
| 1028 | goto lbl_5;
|
---|
| 1029 | lbl_22:
|
---|
| 1030 | goto lbl_5;
|
---|
| 1031 | lbl_6:
|
---|
| 1032 | minlm.minlmresults(ref state.optstate, ref state.c, ref state.optrep);
|
---|
| 1033 | state.repterminationtype = state.optrep.terminationtype;
|
---|
| 1034 |
|
---|
| 1035 | //
|
---|
| 1036 | // calculate errors
|
---|
| 1037 | //
|
---|
| 1038 | if( state.repterminationtype<=0 )
|
---|
| 1039 | {
|
---|
| 1040 | goto lbl_27;
|
---|
| 1041 | }
|
---|
| 1042 | state.reprmserror = 0;
|
---|
| 1043 | state.repavgerror = 0;
|
---|
| 1044 | state.repavgrelerror = 0;
|
---|
| 1045 | state.repmaxerror = 0;
|
---|
| 1046 | relcnt = 0;
|
---|
| 1047 | i = 0;
|
---|
| 1048 | lbl_29:
|
---|
| 1049 | if( i>n-1 )
|
---|
| 1050 | {
|
---|
| 1051 | goto lbl_31;
|
---|
| 1052 | }
|
---|
| 1053 | for(i_=0; i_<=k-1;i_++)
|
---|
| 1054 | {
|
---|
| 1055 | state.c[i_] = state.c[i_];
|
---|
| 1056 | }
|
---|
| 1057 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1058 | {
|
---|
| 1059 | state.x[i_] = state.taskx[i,i_];
|
---|
| 1060 | }
|
---|
| 1061 | state.pointindex = i;
|
---|
| 1062 | lsfitclearrequestfields(ref state);
|
---|
| 1063 | state.needf = true;
|
---|
| 1064 | state.rstate.stage = 4;
|
---|
| 1065 | goto lbl_rcomm;
|
---|
| 1066 | lbl_4:
|
---|
| 1067 | v = state.f;
|
---|
| 1068 | state.reprmserror = state.reprmserror+AP.Math.Sqr(v-state.tasky[i]);
|
---|
| 1069 | state.repavgerror = state.repavgerror+Math.Abs(v-state.tasky[i]);
|
---|
| 1070 | if( (double)(state.tasky[i])!=(double)(0) )
|
---|
| 1071 | {
|
---|
| 1072 | state.repavgrelerror = state.repavgrelerror+Math.Abs(v-state.tasky[i])/Math.Abs(state.tasky[i]);
|
---|
| 1073 | relcnt = relcnt+1;
|
---|
| 1074 | }
|
---|
| 1075 | state.repmaxerror = Math.Max(state.repmaxerror, Math.Abs(v-state.tasky[i]));
|
---|
| 1076 | i = i+1;
|
---|
| 1077 | goto lbl_29;
|
---|
| 1078 | lbl_31:
|
---|
| 1079 | state.reprmserror = Math.Sqrt(state.reprmserror/n);
|
---|
| 1080 | state.repavgerror = state.repavgerror/n;
|
---|
| 1081 | if( (double)(relcnt)!=(double)(0) )
|
---|
| 1082 | {
|
---|
| 1083 | state.repavgrelerror = state.repavgrelerror/relcnt;
|
---|
| 1084 | }
|
---|
| 1085 | lbl_27:
|
---|
| 1086 | result = false;
|
---|
| 1087 | return result;
|
---|
| 1088 |
|
---|
| 1089 | //
|
---|
| 1090 | // Saving state
|
---|
| 1091 | //
|
---|
| 1092 | lbl_rcomm:
|
---|
| 1093 | result = true;
|
---|
| 1094 | state.rstate.ia[0] = n;
|
---|
| 1095 | state.rstate.ia[1] = m;
|
---|
| 1096 | state.rstate.ia[2] = k;
|
---|
| 1097 | state.rstate.ia[3] = i;
|
---|
| 1098 | state.rstate.ia[4] = j;
|
---|
| 1099 | state.rstate.ra[0] = v;
|
---|
| 1100 | state.rstate.ra[1] = relcnt;
|
---|
| 1101 | return result;
|
---|
| 1102 | }
|
---|
| 1103 |
|
---|
| 1104 |
|
---|
| 1105 | /*************************************************************************
|
---|
| 1106 | Nonlinear least squares fitting results.
|
---|
| 1107 |
|
---|
| 1108 | Called after LSFitNonlinearIteration() returned False.
|
---|
| 1109 |
|
---|
| 1110 | INPUT PARAMETERS:
|
---|
| 1111 | State - algorithm state (used by LSFitNonlinearIteration).
|
---|
| 1112 |
|
---|
| 1113 | OUTPUT PARAMETERS:
|
---|
| 1114 | Info - completetion code:
|
---|
| 1115 | * -1 incorrect parameters were specified
|
---|
| 1116 | * 1 relative function improvement is no more than
|
---|
| 1117 | EpsF.
|
---|
| 1118 | * 2 relative step is no more than EpsX.
|
---|
| 1119 | * 4 gradient norm is no more than EpsG
|
---|
| 1120 | * 5 MaxIts steps was taken
|
---|
| 1121 | C - array[0..K-1], solution
|
---|
| 1122 | Rep - optimization report. Following fields are set:
|
---|
| 1123 | * Rep.TerminationType completetion code:
|
---|
| 1124 | * RMSError rms error on the (X,Y).
|
---|
| 1125 | * AvgError average error on the (X,Y).
|
---|
| 1126 | * AvgRelError average relative error on the non-zero Y
|
---|
| 1127 | * MaxError maximum error
|
---|
| 1128 | NON-WEIGHTED ERRORS ARE CALCULATED
|
---|
| 1129 |
|
---|
| 1130 |
|
---|
| 1131 | -- ALGLIB --
|
---|
| 1132 | Copyright 17.08.2009 by Bochkanov Sergey
|
---|
| 1133 | *************************************************************************/
|
---|
| 1134 | public static void lsfitnonlinearresults(ref lsfitstate state,
|
---|
| 1135 | ref int info,
|
---|
| 1136 | ref double[] c,
|
---|
| 1137 | ref lsfitreport rep)
|
---|
| 1138 | {
|
---|
| 1139 | int i_ = 0;
|
---|
| 1140 |
|
---|
| 1141 | info = state.repterminationtype;
|
---|
| 1142 | if( info>0 )
|
---|
| 1143 | {
|
---|
| 1144 | c = new double[state.k];
|
---|
| 1145 | for(i_=0; i_<=state.k-1;i_++)
|
---|
| 1146 | {
|
---|
| 1147 | c[i_] = state.c[i_];
|
---|
| 1148 | }
|
---|
| 1149 | rep.rmserror = state.reprmserror;
|
---|
| 1150 | rep.avgerror = state.repavgerror;
|
---|
| 1151 | rep.avgrelerror = state.repavgrelerror;
|
---|
| 1152 | rep.maxerror = state.repmaxerror;
|
---|
| 1153 | }
|
---|
| 1154 | }
|
---|
| 1155 |
|
---|
| 1156 |
|
---|
| 1157 | public static void lsfitscalexy(ref double[] x,
|
---|
| 1158 | ref double[] y,
|
---|
| 1159 | int n,
|
---|
| 1160 | ref double[] xc,
|
---|
| 1161 | ref double[] yc,
|
---|
| 1162 | ref int[] dc,
|
---|
| 1163 | int k,
|
---|
| 1164 | ref double xa,
|
---|
| 1165 | ref double xb,
|
---|
| 1166 | ref double sa,
|
---|
| 1167 | ref double sb,
|
---|
| 1168 | ref double[] xoriginal,
|
---|
| 1169 | ref double[] yoriginal)
|
---|
| 1170 | {
|
---|
| 1171 | double v = 0;
|
---|
| 1172 | double xmin = 0;
|
---|
| 1173 | double xmax = 0;
|
---|
| 1174 | int i = 0;
|
---|
| 1175 | int i_ = 0;
|
---|
| 1176 |
|
---|
| 1177 | System.Diagnostics.Debug.Assert(n>=1, "LSFitScaleXY: incorrect N");
|
---|
| 1178 | System.Diagnostics.Debug.Assert(k>=0, "LSFitScaleXY: incorrect K");
|
---|
| 1179 |
|
---|
| 1180 | //
|
---|
| 1181 | // Calculate xmin/xmax.
|
---|
| 1182 | // Force xmin<>xmax.
|
---|
| 1183 | //
|
---|
| 1184 | xmin = x[0];
|
---|
| 1185 | xmax = x[0];
|
---|
| 1186 | for(i=1; i<=n-1; i++)
|
---|
| 1187 | {
|
---|
| 1188 | xmin = Math.Min(xmin, x[i]);
|
---|
| 1189 | xmax = Math.Max(xmax, x[i]);
|
---|
| 1190 | }
|
---|
| 1191 | for(i=0; i<=k-1; i++)
|
---|
| 1192 | {
|
---|
| 1193 | xmin = Math.Min(xmin, xc[i]);
|
---|
| 1194 | xmax = Math.Max(xmax, xc[i]);
|
---|
| 1195 | }
|
---|
| 1196 | if( (double)(xmin)==(double)(xmax) )
|
---|
| 1197 | {
|
---|
| 1198 | if( (double)(xmin)==(double)(0) )
|
---|
| 1199 | {
|
---|
| 1200 | xmin = -1;
|
---|
| 1201 | xmax = +1;
|
---|
| 1202 | }
|
---|
| 1203 | else
|
---|
| 1204 | {
|
---|
| 1205 | xmin = 0.5*xmin;
|
---|
| 1206 | }
|
---|
| 1207 | }
|
---|
| 1208 |
|
---|
| 1209 | //
|
---|
| 1210 | // Transform abscissas: map [XA,XB] to [0,1]
|
---|
| 1211 | //
|
---|
| 1212 | // Store old X[] in XOriginal[] (it will be used
|
---|
| 1213 | // to calculate relative error).
|
---|
| 1214 | //
|
---|
| 1215 | xoriginal = new double[n];
|
---|
| 1216 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1217 | {
|
---|
| 1218 | xoriginal[i_] = x[i_];
|
---|
| 1219 | }
|
---|
| 1220 | xa = xmin;
|
---|
| 1221 | xb = xmax;
|
---|
| 1222 | for(i=0; i<=n-1; i++)
|
---|
| 1223 | {
|
---|
| 1224 | x[i] = 2*(x[i]-0.5*(xa+xb))/(xb-xa);
|
---|
| 1225 | }
|
---|
| 1226 | for(i=0; i<=k-1; i++)
|
---|
| 1227 | {
|
---|
| 1228 | System.Diagnostics.Debug.Assert(dc[i]>=0, "LSFitScaleXY: internal error!");
|
---|
| 1229 | xc[i] = 2*(xc[i]-0.5*(xa+xb))/(xb-xa);
|
---|
| 1230 | yc[i] = yc[i]*Math.Pow(0.5*(xb-xa), dc[i]);
|
---|
| 1231 | }
|
---|
| 1232 |
|
---|
| 1233 | //
|
---|
| 1234 | // Transform function values: map [SA,SB] to [0,1]
|
---|
| 1235 | // SA = mean(Y),
|
---|
| 1236 | // SB = SA+stddev(Y).
|
---|
| 1237 | //
|
---|
| 1238 | // Store old Y[] in YOriginal[] (it will be used
|
---|
| 1239 | // to calculate relative error).
|
---|
| 1240 | //
|
---|
| 1241 | yoriginal = new double[n];
|
---|
| 1242 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1243 | {
|
---|
| 1244 | yoriginal[i_] = y[i_];
|
---|
| 1245 | }
|
---|
| 1246 | sa = 0;
|
---|
| 1247 | for(i=0; i<=n-1; i++)
|
---|
| 1248 | {
|
---|
| 1249 | sa = sa+y[i];
|
---|
| 1250 | }
|
---|
| 1251 | sa = sa/n;
|
---|
| 1252 | sb = 0;
|
---|
| 1253 | for(i=0; i<=n-1; i++)
|
---|
| 1254 | {
|
---|
| 1255 | sb = sb+AP.Math.Sqr(y[i]-sa);
|
---|
| 1256 | }
|
---|
| 1257 | sb = Math.Sqrt(sb/n)+sa;
|
---|
| 1258 | if( (double)(sb)==(double)(sa) )
|
---|
| 1259 | {
|
---|
| 1260 | sb = 2*sa;
|
---|
| 1261 | }
|
---|
| 1262 | if( (double)(sb)==(double)(sa) )
|
---|
| 1263 | {
|
---|
| 1264 | sb = sa+1;
|
---|
| 1265 | }
|
---|
| 1266 | for(i=0; i<=n-1; i++)
|
---|
| 1267 | {
|
---|
| 1268 | y[i] = (y[i]-sa)/(sb-sa);
|
---|
| 1269 | }
|
---|
| 1270 | for(i=0; i<=k-1; i++)
|
---|
| 1271 | {
|
---|
| 1272 | if( dc[i]==0 )
|
---|
| 1273 | {
|
---|
| 1274 | yc[i] = (yc[i]-sa)/(sb-sa);
|
---|
| 1275 | }
|
---|
| 1276 | else
|
---|
| 1277 | {
|
---|
| 1278 | yc[i] = yc[i]/(sb-sa);
|
---|
| 1279 | }
|
---|
| 1280 | }
|
---|
| 1281 | }
|
---|
| 1282 |
|
---|
| 1283 |
|
---|
| 1284 | /*************************************************************************
|
---|
| 1285 | Internal fitting subroutine
|
---|
| 1286 | *************************************************************************/
|
---|
| 1287 | private static void lsfitlinearinternal(ref double[] y,
|
---|
| 1288 | ref double[] w,
|
---|
| 1289 | ref double[,] fmatrix,
|
---|
| 1290 | int n,
|
---|
| 1291 | int m,
|
---|
| 1292 | ref int info,
|
---|
| 1293 | ref double[] c,
|
---|
| 1294 | ref lsfitreport rep)
|
---|
| 1295 | {
|
---|
| 1296 | double threshold = 0;
|
---|
| 1297 | double[,] ft = new double[0,0];
|
---|
| 1298 | double[,] q = new double[0,0];
|
---|
| 1299 | double[,] l = new double[0,0];
|
---|
| 1300 | double[,] r = new double[0,0];
|
---|
| 1301 | double[] b = new double[0];
|
---|
| 1302 | double[] wmod = new double[0];
|
---|
| 1303 | double[] tau = new double[0];
|
---|
| 1304 | int i = 0;
|
---|
| 1305 | int j = 0;
|
---|
| 1306 | double v = 0;
|
---|
| 1307 | double[] sv = new double[0];
|
---|
| 1308 | double[,] u = new double[0,0];
|
---|
| 1309 | double[,] vt = new double[0,0];
|
---|
| 1310 | double[] tmp = new double[0];
|
---|
| 1311 | double[] utb = new double[0];
|
---|
| 1312 | double[] sutb = new double[0];
|
---|
| 1313 | int relcnt = 0;
|
---|
| 1314 | int i_ = 0;
|
---|
| 1315 |
|
---|
| 1316 | if( n<1 | m<1 )
|
---|
| 1317 | {
|
---|
| 1318 | info = -1;
|
---|
| 1319 | return;
|
---|
| 1320 | }
|
---|
| 1321 | info = 1;
|
---|
| 1322 | threshold = 1000*AP.Math.MachineEpsilon;
|
---|
| 1323 |
|
---|
| 1324 | //
|
---|
| 1325 | // Degenerate case, needs special handling
|
---|
| 1326 | //
|
---|
| 1327 | if( n<m )
|
---|
| 1328 | {
|
---|
| 1329 |
|
---|
| 1330 | //
|
---|
| 1331 | // Create design matrix.
|
---|
| 1332 | //
|
---|
| 1333 | ft = new double[n, m];
|
---|
| 1334 | b = new double[n];
|
---|
| 1335 | wmod = new double[n];
|
---|
| 1336 | for(j=0; j<=n-1; j++)
|
---|
| 1337 | {
|
---|
| 1338 | v = w[j];
|
---|
| 1339 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1340 | {
|
---|
| 1341 | ft[j,i_] = v*fmatrix[j,i_];
|
---|
| 1342 | }
|
---|
| 1343 | b[j] = w[j]*y[j];
|
---|
| 1344 | wmod[j] = 1;
|
---|
| 1345 | }
|
---|
| 1346 |
|
---|
| 1347 | //
|
---|
| 1348 | // LQ decomposition and reduction to M=N
|
---|
| 1349 | //
|
---|
| 1350 | c = new double[m];
|
---|
| 1351 | for(i=0; i<=m-1; i++)
|
---|
| 1352 | {
|
---|
| 1353 | c[i] = 0;
|
---|
| 1354 | }
|
---|
| 1355 | rep.taskrcond = 0;
|
---|
| 1356 | lq.rmatrixlq(ref ft, n, m, ref tau);
|
---|
| 1357 | lq.rmatrixlqunpackq(ref ft, n, m, ref tau, n, ref q);
|
---|
| 1358 | lq.rmatrixlqunpackl(ref ft, n, m, ref l);
|
---|
| 1359 | lsfitlinearinternal(ref b, ref wmod, ref l, n, n, ref info, ref tmp, ref rep);
|
---|
| 1360 | if( info<=0 )
|
---|
| 1361 | {
|
---|
| 1362 | return;
|
---|
| 1363 | }
|
---|
| 1364 | for(i=0; i<=n-1; i++)
|
---|
| 1365 | {
|
---|
| 1366 | v = tmp[i];
|
---|
| 1367 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1368 | {
|
---|
| 1369 | c[i_] = c[i_] + v*q[i,i_];
|
---|
| 1370 | }
|
---|
| 1371 | }
|
---|
| 1372 | return;
|
---|
| 1373 | }
|
---|
| 1374 |
|
---|
| 1375 | //
|
---|
| 1376 | // N>=M. Generate design matrix and reduce to N=M using
|
---|
| 1377 | // QR decomposition.
|
---|
| 1378 | //
|
---|
| 1379 | ft = new double[n, m];
|
---|
| 1380 | b = new double[n];
|
---|
| 1381 | for(j=0; j<=n-1; j++)
|
---|
| 1382 | {
|
---|
| 1383 | v = w[j];
|
---|
| 1384 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1385 | {
|
---|
| 1386 | ft[j,i_] = v*fmatrix[j,i_];
|
---|
| 1387 | }
|
---|
| 1388 | b[j] = w[j]*y[j];
|
---|
| 1389 | }
|
---|
| 1390 | qr.rmatrixqr(ref ft, n, m, ref tau);
|
---|
| 1391 | qr.rmatrixqrunpackq(ref ft, n, m, ref tau, m, ref q);
|
---|
| 1392 | qr.rmatrixqrunpackr(ref ft, n, m, ref r);
|
---|
| 1393 | tmp = new double[m];
|
---|
| 1394 | for(i=0; i<=m-1; i++)
|
---|
| 1395 | {
|
---|
| 1396 | tmp[i] = 0;
|
---|
| 1397 | }
|
---|
| 1398 | for(i=0; i<=n-1; i++)
|
---|
| 1399 | {
|
---|
| 1400 | v = b[i];
|
---|
| 1401 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1402 | {
|
---|
| 1403 | tmp[i_] = tmp[i_] + v*q[i,i_];
|
---|
| 1404 | }
|
---|
| 1405 | }
|
---|
| 1406 | b = new double[m];
|
---|
| 1407 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1408 | {
|
---|
| 1409 | b[i_] = tmp[i_];
|
---|
| 1410 | }
|
---|
| 1411 |
|
---|
| 1412 | //
|
---|
| 1413 | // R contains reduced MxM design upper triangular matrix,
|
---|
| 1414 | // B contains reduced Mx1 right part.
|
---|
| 1415 | //
|
---|
| 1416 | // Determine system condition number and decide
|
---|
| 1417 | // should we use triangular solver (faster) or
|
---|
| 1418 | // SVD-based solver (more stable).
|
---|
| 1419 | //
|
---|
| 1420 | // We can use LU-based RCond estimator for this task.
|
---|
| 1421 | //
|
---|
| 1422 | rep.taskrcond = rcond.rmatrixlurcondinf(ref r, m);
|
---|
| 1423 | if( (double)(rep.taskrcond)>(double)(threshold) )
|
---|
| 1424 | {
|
---|
| 1425 |
|
---|
| 1426 | //
|
---|
| 1427 | // use QR-based solver
|
---|
| 1428 | //
|
---|
| 1429 | c = new double[m];
|
---|
| 1430 | c[m-1] = b[m-1]/r[m-1,m-1];
|
---|
| 1431 | for(i=m-2; i>=0; i--)
|
---|
| 1432 | {
|
---|
| 1433 | v = 0.0;
|
---|
| 1434 | for(i_=i+1; i_<=m-1;i_++)
|
---|
| 1435 | {
|
---|
| 1436 | v += r[i,i_]*c[i_];
|
---|
| 1437 | }
|
---|
| 1438 | c[i] = (b[i]-v)/r[i,i];
|
---|
| 1439 | }
|
---|
| 1440 | }
|
---|
| 1441 | else
|
---|
| 1442 | {
|
---|
| 1443 |
|
---|
| 1444 | //
|
---|
| 1445 | // use SVD-based solver
|
---|
| 1446 | //
|
---|
| 1447 | if( !svd.rmatrixsvd(r, m, m, 1, 1, 2, ref sv, ref u, ref vt) )
|
---|
| 1448 | {
|
---|
| 1449 | info = -4;
|
---|
| 1450 | return;
|
---|
| 1451 | }
|
---|
| 1452 | utb = new double[m];
|
---|
| 1453 | sutb = new double[m];
|
---|
| 1454 | for(i=0; i<=m-1; i++)
|
---|
| 1455 | {
|
---|
| 1456 | utb[i] = 0;
|
---|
| 1457 | }
|
---|
| 1458 | for(i=0; i<=m-1; i++)
|
---|
| 1459 | {
|
---|
| 1460 | v = b[i];
|
---|
| 1461 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1462 | {
|
---|
| 1463 | utb[i_] = utb[i_] + v*u[i,i_];
|
---|
| 1464 | }
|
---|
| 1465 | }
|
---|
| 1466 | if( (double)(sv[0])>(double)(0) )
|
---|
| 1467 | {
|
---|
| 1468 | rep.taskrcond = sv[m-1]/sv[0];
|
---|
| 1469 | for(i=0; i<=m-1; i++)
|
---|
| 1470 | {
|
---|
| 1471 | if( (double)(sv[i])>(double)(threshold*sv[0]) )
|
---|
| 1472 | {
|
---|
| 1473 | sutb[i] = utb[i]/sv[i];
|
---|
| 1474 | }
|
---|
| 1475 | else
|
---|
| 1476 | {
|
---|
| 1477 | sutb[i] = 0;
|
---|
| 1478 | }
|
---|
| 1479 | }
|
---|
| 1480 | }
|
---|
| 1481 | else
|
---|
| 1482 | {
|
---|
| 1483 | rep.taskrcond = 0;
|
---|
| 1484 | for(i=0; i<=m-1; i++)
|
---|
| 1485 | {
|
---|
| 1486 | sutb[i] = 0;
|
---|
| 1487 | }
|
---|
| 1488 | }
|
---|
| 1489 | c = new double[m];
|
---|
| 1490 | for(i=0; i<=m-1; i++)
|
---|
| 1491 | {
|
---|
| 1492 | c[i] = 0;
|
---|
| 1493 | }
|
---|
| 1494 | for(i=0; i<=m-1; i++)
|
---|
| 1495 | {
|
---|
| 1496 | v = sutb[i];
|
---|
| 1497 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1498 | {
|
---|
| 1499 | c[i_] = c[i_] + v*vt[i,i_];
|
---|
| 1500 | }
|
---|
| 1501 | }
|
---|
| 1502 | }
|
---|
| 1503 |
|
---|
| 1504 | //
|
---|
| 1505 | // calculate errors
|
---|
| 1506 | //
|
---|
| 1507 | rep.rmserror = 0;
|
---|
| 1508 | rep.avgerror = 0;
|
---|
| 1509 | rep.avgrelerror = 0;
|
---|
| 1510 | rep.maxerror = 0;
|
---|
| 1511 | relcnt = 0;
|
---|
| 1512 | for(i=0; i<=n-1; i++)
|
---|
| 1513 | {
|
---|
| 1514 | v = 0.0;
|
---|
| 1515 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1516 | {
|
---|
| 1517 | v += fmatrix[i,i_]*c[i_];
|
---|
| 1518 | }
|
---|
| 1519 | rep.rmserror = rep.rmserror+AP.Math.Sqr(v-y[i]);
|
---|
| 1520 | rep.avgerror = rep.avgerror+Math.Abs(v-y[i]);
|
---|
| 1521 | if( (double)(y[i])!=(double)(0) )
|
---|
| 1522 | {
|
---|
| 1523 | rep.avgrelerror = rep.avgrelerror+Math.Abs(v-y[i])/Math.Abs(y[i]);
|
---|
| 1524 | relcnt = relcnt+1;
|
---|
| 1525 | }
|
---|
| 1526 | rep.maxerror = Math.Max(rep.maxerror, Math.Abs(v-y[i]));
|
---|
| 1527 | }
|
---|
| 1528 | rep.rmserror = Math.Sqrt(rep.rmserror/n);
|
---|
| 1529 | rep.avgerror = rep.avgerror/n;
|
---|
| 1530 | if( relcnt!=0 )
|
---|
| 1531 | {
|
---|
| 1532 | rep.avgrelerror = rep.avgrelerror/relcnt;
|
---|
| 1533 | }
|
---|
| 1534 | }
|
---|
| 1535 |
|
---|
| 1536 |
|
---|
| 1537 | /*************************************************************************
|
---|
| 1538 | Internal subroutine
|
---|
| 1539 | *************************************************************************/
|
---|
| 1540 | private static void lsfitclearrequestfields(ref lsfitstate state)
|
---|
| 1541 | {
|
---|
| 1542 | state.needf = false;
|
---|
| 1543 | state.needfg = false;
|
---|
| 1544 | state.needfgh = false;
|
---|
| 1545 | }
|
---|
| 1546 | }
|
---|
| 1547 | }
|
---|