[2645] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class conv
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | 1-dimensional complex convolution.
|
---|
| 29 |
|
---|
| 30 | For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
|
---|
| 31 | choose between three implementations: straightforward O(M*N) formula for
|
---|
| 32 | very small N (or M), overlap-add algorithm for cases where max(M,N) is
|
---|
| 33 | significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
|
---|
| 34 | general FFT-based formula for cases where two previois algorithms are too
|
---|
| 35 | slow.
|
---|
| 36 |
|
---|
| 37 | Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
|
---|
| 38 |
|
---|
| 39 | INPUT PARAMETERS
|
---|
| 40 | A - array[0..M-1] - complex function to be transformed
|
---|
| 41 | M - problem size
|
---|
| 42 | B - array[0..N-1] - complex function to be transformed
|
---|
| 43 | N - problem size
|
---|
| 44 |
|
---|
| 45 | OUTPUT PARAMETERS
|
---|
| 46 | R - convolution: A*B. array[0..N+M-2].
|
---|
| 47 |
|
---|
| 48 | NOTE:
|
---|
| 49 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 50 | functions have non-zero values at negative T's, you can still use this
|
---|
| 51 | subroutine - just shift its result correspondingly.
|
---|
| 52 |
|
---|
| 53 | -- ALGLIB --
|
---|
| 54 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 55 | *************************************************************************/
|
---|
| 56 | public static void convc1d(ref AP.Complex[] a,
|
---|
| 57 | int m,
|
---|
| 58 | ref AP.Complex[] b,
|
---|
| 59 | int n,
|
---|
| 60 | ref AP.Complex[] r)
|
---|
| 61 | {
|
---|
| 62 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1D: incorrect N or M!");
|
---|
| 63 |
|
---|
| 64 | //
|
---|
| 65 | // normalize task: make M>=N,
|
---|
| 66 | // so A will be longer that B.
|
---|
| 67 | //
|
---|
| 68 | if( m<n )
|
---|
| 69 | {
|
---|
| 70 | convc1d(ref b, n, ref a, m, ref r);
|
---|
| 71 | return;
|
---|
| 72 | }
|
---|
| 73 | convc1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | /*************************************************************************
|
---|
| 78 | 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
|
---|
| 79 |
|
---|
| 80 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
| 81 |
|
---|
| 82 | INPUT PARAMETERS
|
---|
| 83 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
| 84 | M - convolved signal length
|
---|
| 85 | B - array[0..N-1] - response
|
---|
| 86 | N - response length, N<=M
|
---|
| 87 |
|
---|
| 88 | OUTPUT PARAMETERS
|
---|
| 89 | R - deconvolved signal. array[0..M-N].
|
---|
| 90 |
|
---|
| 91 | NOTE:
|
---|
| 92 | deconvolution is unstable process and may result in division by zero
|
---|
| 93 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
| 94 |
|
---|
| 95 | NOTE:
|
---|
| 96 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 97 | functions have non-zero values at negative T's, you can still use this
|
---|
| 98 | subroutine - just shift its result correspondingly.
|
---|
| 99 |
|
---|
| 100 | -- ALGLIB --
|
---|
| 101 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 102 | *************************************************************************/
|
---|
| 103 | public static void convc1dinv(ref AP.Complex[] a,
|
---|
| 104 | int m,
|
---|
| 105 | ref AP.Complex[] b,
|
---|
| 106 | int n,
|
---|
| 107 | ref AP.Complex[] r)
|
---|
| 108 | {
|
---|
| 109 | int i = 0;
|
---|
| 110 | int p = 0;
|
---|
| 111 | double[] buf = new double[0];
|
---|
| 112 | double[] buf2 = new double[0];
|
---|
| 113 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 114 | AP.Complex c1 = 0;
|
---|
| 115 | AP.Complex c2 = 0;
|
---|
| 116 | AP.Complex c3 = 0;
|
---|
| 117 | double t = 0;
|
---|
| 118 |
|
---|
| 119 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvC1DInv: incorrect N or M!");
|
---|
| 120 | p = ftbase.ftbasefindsmooth(m);
|
---|
| 121 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
| 122 | buf = new double[2*p];
|
---|
| 123 | for(i=0; i<=m-1; i++)
|
---|
| 124 | {
|
---|
| 125 | buf[2*i+0] = a[i].x;
|
---|
| 126 | buf[2*i+1] = a[i].y;
|
---|
| 127 | }
|
---|
| 128 | for(i=m; i<=p-1; i++)
|
---|
| 129 | {
|
---|
| 130 | buf[2*i+0] = 0;
|
---|
| 131 | buf[2*i+1] = 0;
|
---|
| 132 | }
|
---|
| 133 | buf2 = new double[2*p];
|
---|
| 134 | for(i=0; i<=n-1; i++)
|
---|
| 135 | {
|
---|
| 136 | buf2[2*i+0] = b[i].x;
|
---|
| 137 | buf2[2*i+1] = b[i].y;
|
---|
| 138 | }
|
---|
| 139 | for(i=n; i<=p-1; i++)
|
---|
| 140 | {
|
---|
| 141 | buf2[2*i+0] = 0;
|
---|
| 142 | buf2[2*i+1] = 0;
|
---|
| 143 | }
|
---|
| 144 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
| 145 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
| 146 | for(i=0; i<=p-1; i++)
|
---|
| 147 | {
|
---|
| 148 | c1.x = buf[2*i+0];
|
---|
| 149 | c1.y = buf[2*i+1];
|
---|
| 150 | c2.x = buf2[2*i+0];
|
---|
| 151 | c2.y = buf2[2*i+1];
|
---|
| 152 | c3 = c1/c2;
|
---|
| 153 | buf[2*i+0] = c3.x;
|
---|
| 154 | buf[2*i+1] = -c3.y;
|
---|
| 155 | }
|
---|
| 156 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
| 157 | t = (double)(1)/(double)(p);
|
---|
| 158 | r = new AP.Complex[m-n+1];
|
---|
| 159 | for(i=0; i<=m-n; i++)
|
---|
| 160 | {
|
---|
| 161 | r[i].x = +(t*buf[2*i+0]);
|
---|
| 162 | r[i].y = -(t*buf[2*i+1]);
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | /*************************************************************************
|
---|
| 168 | 1-dimensional circular complex convolution.
|
---|
| 169 |
|
---|
| 170 | For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
|
---|
| 171 | complexity for any M/N.
|
---|
| 172 |
|
---|
| 173 | IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
|
---|
| 174 | conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
|
---|
| 175 | signal, periodic function, and another - R - is a response, non-periodic
|
---|
| 176 | function with limited length.
|
---|
| 177 |
|
---|
| 178 | INPUT PARAMETERS
|
---|
| 179 | S - array[0..M-1] - complex periodic signal
|
---|
| 180 | M - problem size
|
---|
| 181 | B - array[0..N-1] - complex non-periodic response
|
---|
| 182 | N - problem size
|
---|
| 183 |
|
---|
| 184 | OUTPUT PARAMETERS
|
---|
| 185 | R - convolution: A*B. array[0..M-1].
|
---|
| 186 |
|
---|
| 187 | NOTE:
|
---|
| 188 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 189 | functions have non-zero values at negative T's, you can still use this
|
---|
| 190 | subroutine - just shift its result correspondingly.
|
---|
| 191 |
|
---|
| 192 | -- ALGLIB --
|
---|
| 193 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 194 | *************************************************************************/
|
---|
| 195 | public static void convc1dcircular(ref AP.Complex[] s,
|
---|
| 196 | int m,
|
---|
| 197 | ref AP.Complex[] r,
|
---|
| 198 | int n,
|
---|
| 199 | ref AP.Complex[] c)
|
---|
| 200 | {
|
---|
| 201 | AP.Complex[] buf = new AP.Complex[0];
|
---|
| 202 | int i1 = 0;
|
---|
| 203 | int i2 = 0;
|
---|
| 204 | int j2 = 0;
|
---|
| 205 | int i_ = 0;
|
---|
| 206 | int i1_ = 0;
|
---|
| 207 |
|
---|
| 208 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
| 209 |
|
---|
| 210 | //
|
---|
| 211 | // normalize task: make M>=N,
|
---|
| 212 | // so A will be longer (at least - not shorter) that B.
|
---|
| 213 | //
|
---|
| 214 | if( m<n )
|
---|
| 215 | {
|
---|
| 216 | buf = new AP.Complex[m];
|
---|
| 217 | for(i1=0; i1<=m-1; i1++)
|
---|
| 218 | {
|
---|
| 219 | buf[i1] = 0;
|
---|
| 220 | }
|
---|
| 221 | i1 = 0;
|
---|
| 222 | while( i1<n )
|
---|
| 223 | {
|
---|
| 224 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 225 | j2 = i2-i1;
|
---|
| 226 | i1_ = (i1) - (0);
|
---|
| 227 | for(i_=0; i_<=j2;i_++)
|
---|
| 228 | {
|
---|
| 229 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
| 230 | }
|
---|
| 231 | i1 = i1+m;
|
---|
| 232 | }
|
---|
| 233 | convc1dcircular(ref s, m, ref buf, m, ref c);
|
---|
| 234 | return;
|
---|
| 235 | }
|
---|
| 236 | convc1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 |
|
---|
| 240 | /*************************************************************************
|
---|
| 241 | 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
|
---|
| 242 |
|
---|
| 243 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
| 244 |
|
---|
| 245 | INPUT PARAMETERS
|
---|
| 246 | A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
|
---|
| 247 | M - convolved signal length
|
---|
| 248 | B - array[0..N-1] - non-periodic response
|
---|
| 249 | N - response length
|
---|
| 250 |
|
---|
| 251 | OUTPUT PARAMETERS
|
---|
| 252 | R - deconvolved signal. array[0..M-1].
|
---|
| 253 |
|
---|
| 254 | NOTE:
|
---|
| 255 | deconvolution is unstable process and may result in division by zero
|
---|
| 256 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
| 257 |
|
---|
| 258 | NOTE:
|
---|
| 259 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 260 | functions have non-zero values at negative T's, you can still use this
|
---|
| 261 | subroutine - just shift its result correspondingly.
|
---|
| 262 |
|
---|
| 263 | -- ALGLIB --
|
---|
| 264 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 265 | *************************************************************************/
|
---|
| 266 | public static void convc1dcircularinv(ref AP.Complex[] a,
|
---|
| 267 | int m,
|
---|
| 268 | ref AP.Complex[] b,
|
---|
| 269 | int n,
|
---|
| 270 | ref AP.Complex[] r)
|
---|
| 271 | {
|
---|
| 272 | int i = 0;
|
---|
| 273 | int p = 0;
|
---|
| 274 | int i1 = 0;
|
---|
| 275 | int i2 = 0;
|
---|
| 276 | int j2 = 0;
|
---|
| 277 | double[] buf = new double[0];
|
---|
| 278 | double[] buf2 = new double[0];
|
---|
| 279 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
| 280 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 281 | AP.Complex c1 = 0;
|
---|
| 282 | AP.Complex c2 = 0;
|
---|
| 283 | AP.Complex c3 = 0;
|
---|
| 284 | double t = 0;
|
---|
| 285 | int i_ = 0;
|
---|
| 286 | int i1_ = 0;
|
---|
| 287 |
|
---|
| 288 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircularInv: incorrect N or M!");
|
---|
| 289 |
|
---|
| 290 | //
|
---|
| 291 | // normalize task: make M>=N,
|
---|
| 292 | // so A will be longer (at least - not shorter) that B.
|
---|
| 293 | //
|
---|
| 294 | if( m<n )
|
---|
| 295 | {
|
---|
| 296 | cbuf = new AP.Complex[m];
|
---|
| 297 | for(i=0; i<=m-1; i++)
|
---|
| 298 | {
|
---|
| 299 | cbuf[i] = 0;
|
---|
| 300 | }
|
---|
| 301 | i1 = 0;
|
---|
| 302 | while( i1<n )
|
---|
| 303 | {
|
---|
| 304 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 305 | j2 = i2-i1;
|
---|
| 306 | i1_ = (i1) - (0);
|
---|
| 307 | for(i_=0; i_<=j2;i_++)
|
---|
| 308 | {
|
---|
| 309 | cbuf[i_] = cbuf[i_] + b[i_+i1_];
|
---|
| 310 | }
|
---|
| 311 | i1 = i1+m;
|
---|
| 312 | }
|
---|
| 313 | convc1dcircularinv(ref a, m, ref cbuf, m, ref r);
|
---|
| 314 | return;
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | //
|
---|
| 318 | // Task is normalized
|
---|
| 319 | //
|
---|
| 320 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
| 321 | buf = new double[2*m];
|
---|
| 322 | for(i=0; i<=m-1; i++)
|
---|
| 323 | {
|
---|
| 324 | buf[2*i+0] = a[i].x;
|
---|
| 325 | buf[2*i+1] = a[i].y;
|
---|
| 326 | }
|
---|
| 327 | buf2 = new double[2*m];
|
---|
| 328 | for(i=0; i<=n-1; i++)
|
---|
| 329 | {
|
---|
| 330 | buf2[2*i+0] = b[i].x;
|
---|
| 331 | buf2[2*i+1] = b[i].y;
|
---|
| 332 | }
|
---|
| 333 | for(i=n; i<=m-1; i++)
|
---|
| 334 | {
|
---|
| 335 | buf2[2*i+0] = 0;
|
---|
| 336 | buf2[2*i+1] = 0;
|
---|
| 337 | }
|
---|
| 338 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
| 339 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
| 340 | for(i=0; i<=m-1; i++)
|
---|
| 341 | {
|
---|
| 342 | c1.x = buf[2*i+0];
|
---|
| 343 | c1.y = buf[2*i+1];
|
---|
| 344 | c2.x = buf2[2*i+0];
|
---|
| 345 | c2.y = buf2[2*i+1];
|
---|
| 346 | c3 = c1/c2;
|
---|
| 347 | buf[2*i+0] = c3.x;
|
---|
| 348 | buf[2*i+1] = -c3.y;
|
---|
| 349 | }
|
---|
| 350 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
| 351 | t = (double)(1)/(double)(m);
|
---|
| 352 | r = new AP.Complex[m];
|
---|
| 353 | for(i=0; i<=m-1; i++)
|
---|
| 354 | {
|
---|
| 355 | r[i].x = +(t*buf[2*i+0]);
|
---|
| 356 | r[i].y = -(t*buf[2*i+1]);
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 |
|
---|
| 361 | /*************************************************************************
|
---|
| 362 | 1-dimensional real convolution.
|
---|
| 363 |
|
---|
| 364 | Analogous to ConvC1D(), see ConvC1D() comments for more details.
|
---|
| 365 |
|
---|
| 366 | INPUT PARAMETERS
|
---|
| 367 | A - array[0..M-1] - real function to be transformed
|
---|
| 368 | M - problem size
|
---|
| 369 | B - array[0..N-1] - real function to be transformed
|
---|
| 370 | N - problem size
|
---|
| 371 |
|
---|
| 372 | OUTPUT PARAMETERS
|
---|
| 373 | R - convolution: A*B. array[0..N+M-2].
|
---|
| 374 |
|
---|
| 375 | NOTE:
|
---|
| 376 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 377 | functions have non-zero values at negative T's, you can still use this
|
---|
| 378 | subroutine - just shift its result correspondingly.
|
---|
| 379 |
|
---|
| 380 | -- ALGLIB --
|
---|
| 381 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 382 | *************************************************************************/
|
---|
| 383 | public static void convr1d(ref double[] a,
|
---|
| 384 | int m,
|
---|
| 385 | ref double[] b,
|
---|
| 386 | int n,
|
---|
| 387 | ref double[] r)
|
---|
| 388 | {
|
---|
| 389 | int i = 0;
|
---|
| 390 | int j = 0;
|
---|
| 391 | int p = 0;
|
---|
| 392 | int q = 0;
|
---|
| 393 | AP.Complex[] abuf = new AP.Complex[0];
|
---|
| 394 | AP.Complex[] bbuf = new AP.Complex[0];
|
---|
| 395 | AP.Complex v = 0;
|
---|
| 396 | double flop1 = 0;
|
---|
| 397 | double flop2 = 0;
|
---|
| 398 |
|
---|
| 399 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1D: incorrect N or M!");
|
---|
| 400 |
|
---|
| 401 | //
|
---|
| 402 | // normalize task: make M>=N,
|
---|
| 403 | // so A will be longer that B.
|
---|
| 404 | //
|
---|
| 405 | if( m<n )
|
---|
| 406 | {
|
---|
| 407 | convr1d(ref b, n, ref a, m, ref r);
|
---|
| 408 | return;
|
---|
| 409 | }
|
---|
| 410 | convr1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 |
|
---|
| 414 | /*************************************************************************
|
---|
| 415 | 1-dimensional real deconvolution (inverse of ConvC1D()).
|
---|
| 416 |
|
---|
| 417 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
| 418 |
|
---|
| 419 | INPUT PARAMETERS
|
---|
| 420 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
| 421 | M - convolved signal length
|
---|
| 422 | B - array[0..N-1] - response
|
---|
| 423 | N - response length, N<=M
|
---|
| 424 |
|
---|
| 425 | OUTPUT PARAMETERS
|
---|
| 426 | R - deconvolved signal. array[0..M-N].
|
---|
| 427 |
|
---|
| 428 | NOTE:
|
---|
| 429 | deconvolution is unstable process and may result in division by zero
|
---|
| 430 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
| 431 |
|
---|
| 432 | NOTE:
|
---|
| 433 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 434 | functions have non-zero values at negative T's, you can still use this
|
---|
| 435 | subroutine - just shift its result correspondingly.
|
---|
| 436 |
|
---|
| 437 | -- ALGLIB --
|
---|
| 438 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 439 | *************************************************************************/
|
---|
| 440 | public static void convr1dinv(ref double[] a,
|
---|
| 441 | int m,
|
---|
| 442 | ref double[] b,
|
---|
| 443 | int n,
|
---|
| 444 | ref double[] r)
|
---|
| 445 | {
|
---|
| 446 | int i = 0;
|
---|
| 447 | int p = 0;
|
---|
| 448 | double[] buf = new double[0];
|
---|
| 449 | double[] buf2 = new double[0];
|
---|
| 450 | double[] buf3 = new double[0];
|
---|
| 451 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 452 | AP.Complex c1 = 0;
|
---|
| 453 | AP.Complex c2 = 0;
|
---|
| 454 | AP.Complex c3 = 0;
|
---|
| 455 | double t = 0;
|
---|
| 456 | int i_ = 0;
|
---|
| 457 |
|
---|
| 458 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvR1DInv: incorrect N or M!");
|
---|
| 459 | p = ftbase.ftbasefindsmootheven(m);
|
---|
| 460 | buf = new double[p];
|
---|
| 461 | for(i_=0; i_<=m-1;i_++)
|
---|
| 462 | {
|
---|
| 463 | buf[i_] = a[i_];
|
---|
| 464 | }
|
---|
| 465 | for(i=m; i<=p-1; i++)
|
---|
| 466 | {
|
---|
| 467 | buf[i] = 0;
|
---|
| 468 | }
|
---|
| 469 | buf2 = new double[p];
|
---|
| 470 | for(i_=0; i_<=n-1;i_++)
|
---|
| 471 | {
|
---|
| 472 | buf2[i_] = b[i_];
|
---|
| 473 | }
|
---|
| 474 | for(i=n; i<=p-1; i++)
|
---|
| 475 | {
|
---|
| 476 | buf2[i] = 0;
|
---|
| 477 | }
|
---|
| 478 | buf3 = new double[p];
|
---|
| 479 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
| 480 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
| 481 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
| 482 | buf[0] = buf[0]/buf2[0];
|
---|
| 483 | buf[1] = buf[1]/buf2[1];
|
---|
| 484 | for(i=1; i<=p/2-1; i++)
|
---|
| 485 | {
|
---|
| 486 | c1.x = buf[2*i+0];
|
---|
| 487 | c1.y = buf[2*i+1];
|
---|
| 488 | c2.x = buf2[2*i+0];
|
---|
| 489 | c2.y = buf2[2*i+1];
|
---|
| 490 | c3 = c1/c2;
|
---|
| 491 | buf[2*i+0] = c3.x;
|
---|
| 492 | buf[2*i+1] = c3.y;
|
---|
| 493 | }
|
---|
| 494 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
| 495 | r = new double[m-n+1];
|
---|
| 496 | for(i_=0; i_<=m-n;i_++)
|
---|
| 497 | {
|
---|
| 498 | r[i_] = buf[i_];
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 |
|
---|
| 503 | /*************************************************************************
|
---|
| 504 | 1-dimensional circular real convolution.
|
---|
| 505 |
|
---|
| 506 | Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
|
---|
| 507 |
|
---|
| 508 | INPUT PARAMETERS
|
---|
| 509 | S - array[0..M-1] - real signal
|
---|
| 510 | M - problem size
|
---|
| 511 | B - array[0..N-1] - real response
|
---|
| 512 | N - problem size
|
---|
| 513 |
|
---|
| 514 | OUTPUT PARAMETERS
|
---|
| 515 | R - convolution: A*B. array[0..M-1].
|
---|
| 516 |
|
---|
| 517 | NOTE:
|
---|
| 518 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 519 | functions have non-zero values at negative T's, you can still use this
|
---|
| 520 | subroutine - just shift its result correspondingly.
|
---|
| 521 |
|
---|
| 522 | -- ALGLIB --
|
---|
| 523 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 524 | *************************************************************************/
|
---|
| 525 | public static void convr1dcircular(ref double[] s,
|
---|
| 526 | int m,
|
---|
| 527 | ref double[] r,
|
---|
| 528 | int n,
|
---|
| 529 | ref double[] c)
|
---|
| 530 | {
|
---|
| 531 | double[] buf = new double[0];
|
---|
| 532 | int i1 = 0;
|
---|
| 533 | int i2 = 0;
|
---|
| 534 | int j2 = 0;
|
---|
| 535 | int i_ = 0;
|
---|
| 536 | int i1_ = 0;
|
---|
| 537 |
|
---|
| 538 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
| 539 |
|
---|
| 540 | //
|
---|
| 541 | // normalize task: make M>=N,
|
---|
| 542 | // so A will be longer (at least - not shorter) that B.
|
---|
| 543 | //
|
---|
| 544 | if( m<n )
|
---|
| 545 | {
|
---|
| 546 | buf = new double[m];
|
---|
| 547 | for(i1=0; i1<=m-1; i1++)
|
---|
| 548 | {
|
---|
| 549 | buf[i1] = 0;
|
---|
| 550 | }
|
---|
| 551 | i1 = 0;
|
---|
| 552 | while( i1<n )
|
---|
| 553 | {
|
---|
| 554 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 555 | j2 = i2-i1;
|
---|
| 556 | i1_ = (i1) - (0);
|
---|
| 557 | for(i_=0; i_<=j2;i_++)
|
---|
| 558 | {
|
---|
| 559 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
| 560 | }
|
---|
| 561 | i1 = i1+m;
|
---|
| 562 | }
|
---|
| 563 | convr1dcircular(ref s, m, ref buf, m, ref c);
|
---|
| 564 | return;
|
---|
| 565 | }
|
---|
| 566 |
|
---|
| 567 | //
|
---|
| 568 | // reduce to usual convolution
|
---|
| 569 | //
|
---|
| 570 | convr1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 |
|
---|
| 574 | /*************************************************************************
|
---|
| 575 | 1-dimensional complex deconvolution (inverse of ConvC1D()).
|
---|
| 576 |
|
---|
| 577 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
| 578 |
|
---|
| 579 | INPUT PARAMETERS
|
---|
| 580 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
| 581 | M - convolved signal length
|
---|
| 582 | B - array[0..N-1] - response
|
---|
| 583 | N - response length
|
---|
| 584 |
|
---|
| 585 | OUTPUT PARAMETERS
|
---|
| 586 | R - deconvolved signal. array[0..M-N].
|
---|
| 587 |
|
---|
| 588 | NOTE:
|
---|
| 589 | deconvolution is unstable process and may result in division by zero
|
---|
| 590 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
| 591 |
|
---|
| 592 | NOTE:
|
---|
| 593 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
| 594 | functions have non-zero values at negative T's, you can still use this
|
---|
| 595 | subroutine - just shift its result correspondingly.
|
---|
| 596 |
|
---|
| 597 | -- ALGLIB --
|
---|
| 598 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 599 | *************************************************************************/
|
---|
| 600 | public static void convr1dcircularinv(ref double[] a,
|
---|
| 601 | int m,
|
---|
| 602 | ref double[] b,
|
---|
| 603 | int n,
|
---|
| 604 | ref double[] r)
|
---|
| 605 | {
|
---|
| 606 | int i = 0;
|
---|
| 607 | int i1 = 0;
|
---|
| 608 | int i2 = 0;
|
---|
| 609 | int j2 = 0;
|
---|
| 610 | double[] buf = new double[0];
|
---|
| 611 | double[] buf2 = new double[0];
|
---|
| 612 | double[] buf3 = new double[0];
|
---|
| 613 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
| 614 | AP.Complex[] cbuf2 = new AP.Complex[0];
|
---|
| 615 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 616 | AP.Complex c1 = 0;
|
---|
| 617 | AP.Complex c2 = 0;
|
---|
| 618 | AP.Complex c3 = 0;
|
---|
| 619 | double t = 0;
|
---|
| 620 | int i_ = 0;
|
---|
| 621 | int i1_ = 0;
|
---|
| 622 |
|
---|
| 623 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1DCircularInv: incorrect N or M!");
|
---|
| 624 |
|
---|
| 625 | //
|
---|
| 626 | // normalize task: make M>=N,
|
---|
| 627 | // so A will be longer (at least - not shorter) that B.
|
---|
| 628 | //
|
---|
| 629 | if( m<n )
|
---|
| 630 | {
|
---|
| 631 | buf = new double[m];
|
---|
| 632 | for(i=0; i<=m-1; i++)
|
---|
| 633 | {
|
---|
| 634 | buf[i] = 0;
|
---|
| 635 | }
|
---|
| 636 | i1 = 0;
|
---|
| 637 | while( i1<n )
|
---|
| 638 | {
|
---|
| 639 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 640 | j2 = i2-i1;
|
---|
| 641 | i1_ = (i1) - (0);
|
---|
| 642 | for(i_=0; i_<=j2;i_++)
|
---|
| 643 | {
|
---|
| 644 | buf[i_] = buf[i_] + b[i_+i1_];
|
---|
| 645 | }
|
---|
| 646 | i1 = i1+m;
|
---|
| 647 | }
|
---|
| 648 | convr1dcircularinv(ref a, m, ref buf, m, ref r);
|
---|
| 649 | return;
|
---|
| 650 | }
|
---|
| 651 |
|
---|
| 652 | //
|
---|
| 653 | // Task is normalized
|
---|
| 654 | //
|
---|
| 655 | if( m%2==0 )
|
---|
| 656 | {
|
---|
| 657 |
|
---|
| 658 | //
|
---|
| 659 | // size is even, use fast even-size FFT
|
---|
| 660 | //
|
---|
| 661 | buf = new double[m];
|
---|
| 662 | for(i_=0; i_<=m-1;i_++)
|
---|
| 663 | {
|
---|
| 664 | buf[i_] = a[i_];
|
---|
| 665 | }
|
---|
| 666 | buf2 = new double[m];
|
---|
| 667 | for(i_=0; i_<=n-1;i_++)
|
---|
| 668 | {
|
---|
| 669 | buf2[i_] = b[i_];
|
---|
| 670 | }
|
---|
| 671 | for(i=n; i<=m-1; i++)
|
---|
| 672 | {
|
---|
| 673 | buf2[i] = 0;
|
---|
| 674 | }
|
---|
| 675 | buf3 = new double[m];
|
---|
| 676 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
| 677 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
| 678 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
| 679 | buf[0] = buf[0]/buf2[0];
|
---|
| 680 | buf[1] = buf[1]/buf2[1];
|
---|
| 681 | for(i=1; i<=m/2-1; i++)
|
---|
| 682 | {
|
---|
| 683 | c1.x = buf[2*i+0];
|
---|
| 684 | c1.y = buf[2*i+1];
|
---|
| 685 | c2.x = buf2[2*i+0];
|
---|
| 686 | c2.y = buf2[2*i+1];
|
---|
| 687 | c3 = c1/c2;
|
---|
| 688 | buf[2*i+0] = c3.x;
|
---|
| 689 | buf[2*i+1] = c3.y;
|
---|
| 690 | }
|
---|
| 691 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
| 692 | r = new double[m];
|
---|
| 693 | for(i_=0; i_<=m-1;i_++)
|
---|
| 694 | {
|
---|
| 695 | r[i_] = buf[i_];
|
---|
| 696 | }
|
---|
| 697 | }
|
---|
| 698 | else
|
---|
| 699 | {
|
---|
| 700 |
|
---|
| 701 | //
|
---|
| 702 | // odd-size, use general real FFT
|
---|
| 703 | //
|
---|
| 704 | fft.fftr1d(ref a, m, ref cbuf);
|
---|
| 705 | buf2 = new double[m];
|
---|
| 706 | for(i_=0; i_<=n-1;i_++)
|
---|
| 707 | {
|
---|
| 708 | buf2[i_] = b[i_];
|
---|
| 709 | }
|
---|
| 710 | for(i=n; i<=m-1; i++)
|
---|
| 711 | {
|
---|
| 712 | buf2[i] = 0;
|
---|
| 713 | }
|
---|
| 714 | fft.fftr1d(ref buf2, m, ref cbuf2);
|
---|
| 715 | for(i=0; i<=(int)Math.Floor((double)(m)/(double)(2)); i++)
|
---|
| 716 | {
|
---|
| 717 | cbuf[i] = cbuf[i]/cbuf2[i];
|
---|
| 718 | }
|
---|
| 719 | fft.fftr1dinv(ref cbuf, m, ref r);
|
---|
| 720 | }
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 |
|
---|
| 724 | /*************************************************************************
|
---|
| 725 | 1-dimensional complex convolution.
|
---|
| 726 |
|
---|
| 727 | Extended subroutine which allows to choose convolution algorithm.
|
---|
| 728 | Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().
|
---|
| 729 |
|
---|
| 730 | INPUT PARAMETERS
|
---|
| 731 | A - array[0..M-1] - complex function to be transformed
|
---|
| 732 | M - problem size
|
---|
| 733 | B - array[0..N-1] - complex function to be transformed
|
---|
| 734 | N - problem size, N<=M
|
---|
| 735 | Alg - algorithm type:
|
---|
| 736 | *-2 auto-select Q for overlap-add
|
---|
| 737 | *-1 auto-select algorithm and parameters
|
---|
| 738 | * 0 straightforward formula for small N's
|
---|
| 739 | * 1 general FFT-based code
|
---|
| 740 | * 2 overlap-add with length Q
|
---|
| 741 | Q - length for overlap-add
|
---|
| 742 |
|
---|
| 743 | OUTPUT PARAMETERS
|
---|
| 744 | R - convolution: A*B. array[0..N+M-1].
|
---|
| 745 |
|
---|
| 746 | -- ALGLIB --
|
---|
| 747 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 748 | *************************************************************************/
|
---|
| 749 | public static void convc1dx(ref AP.Complex[] a,
|
---|
| 750 | int m,
|
---|
| 751 | ref AP.Complex[] b,
|
---|
| 752 | int n,
|
---|
| 753 | bool circular,
|
---|
| 754 | int alg,
|
---|
| 755 | int q,
|
---|
| 756 | ref AP.Complex[] r)
|
---|
| 757 | {
|
---|
| 758 | int i = 0;
|
---|
| 759 | int j = 0;
|
---|
| 760 | int p = 0;
|
---|
| 761 | int ptotal = 0;
|
---|
| 762 | int i1 = 0;
|
---|
| 763 | int i2 = 0;
|
---|
| 764 | int j1 = 0;
|
---|
| 765 | int j2 = 0;
|
---|
| 766 | AP.Complex[] bbuf = new AP.Complex[0];
|
---|
| 767 | AP.Complex v = 0;
|
---|
| 768 | double ax = 0;
|
---|
| 769 | double ay = 0;
|
---|
| 770 | double bx = 0;
|
---|
| 771 | double by = 0;
|
---|
| 772 | double t = 0;
|
---|
| 773 | double tx = 0;
|
---|
| 774 | double ty = 0;
|
---|
| 775 | double flopcand = 0;
|
---|
| 776 | double flopbest = 0;
|
---|
| 777 | int algbest = 0;
|
---|
| 778 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 779 | double[] buf = new double[0];
|
---|
| 780 | double[] buf2 = new double[0];
|
---|
| 781 | int i_ = 0;
|
---|
| 782 | int i1_ = 0;
|
---|
| 783 |
|
---|
| 784 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
| 785 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
| 786 |
|
---|
| 787 | //
|
---|
| 788 | // Auto-select
|
---|
| 789 | //
|
---|
| 790 | if( alg==-1 | alg==-2 )
|
---|
| 791 | {
|
---|
| 792 |
|
---|
| 793 | //
|
---|
| 794 | // Initial candidate: straightforward implementation.
|
---|
| 795 | //
|
---|
| 796 | // If we want to use auto-fitted overlap-add,
|
---|
| 797 | // flop count is initialized by large real number - to force
|
---|
| 798 | // another algorithm selection
|
---|
| 799 | //
|
---|
| 800 | algbest = 0;
|
---|
| 801 | if( alg==-1 )
|
---|
| 802 | {
|
---|
| 803 | flopbest = 2*m*n;
|
---|
| 804 | }
|
---|
| 805 | else
|
---|
| 806 | {
|
---|
| 807 | flopbest = AP.Math.MaxRealNumber;
|
---|
| 808 | }
|
---|
| 809 |
|
---|
| 810 | //
|
---|
| 811 | // Another candidate - generic FFT code
|
---|
| 812 | //
|
---|
| 813 | if( alg==-1 )
|
---|
| 814 | {
|
---|
| 815 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
| 816 | {
|
---|
| 817 |
|
---|
| 818 | //
|
---|
| 819 | // special code for circular convolution of a sequence with a smooth length
|
---|
| 820 | //
|
---|
| 821 | flopcand = 3*ftbase.ftbasegetflopestimate(m)+6*m;
|
---|
| 822 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 823 | {
|
---|
| 824 | algbest = 1;
|
---|
| 825 | flopbest = flopcand;
|
---|
| 826 | }
|
---|
| 827 | }
|
---|
| 828 | else
|
---|
| 829 | {
|
---|
| 830 |
|
---|
| 831 | //
|
---|
| 832 | // general cyclic/non-cyclic convolution
|
---|
| 833 | //
|
---|
| 834 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
| 835 | flopcand = 3*ftbase.ftbasegetflopestimate(p)+6*p;
|
---|
| 836 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 837 | {
|
---|
| 838 | algbest = 1;
|
---|
| 839 | flopbest = flopcand;
|
---|
| 840 | }
|
---|
| 841 | }
|
---|
| 842 | }
|
---|
| 843 |
|
---|
| 844 | //
|
---|
| 845 | // Another candidate - overlap-add
|
---|
| 846 | //
|
---|
| 847 | q = 1;
|
---|
| 848 | ptotal = 1;
|
---|
| 849 | while( ptotal<n )
|
---|
| 850 | {
|
---|
| 851 | ptotal = ptotal*2;
|
---|
| 852 | }
|
---|
| 853 | while( ptotal<=m+n-1 )
|
---|
| 854 | {
|
---|
| 855 | p = ptotal-n+1;
|
---|
| 856 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal)+8*ptotal);
|
---|
| 857 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 858 | {
|
---|
| 859 | flopbest = flopcand;
|
---|
| 860 | algbest = 2;
|
---|
| 861 | q = p;
|
---|
| 862 | }
|
---|
| 863 | ptotal = ptotal*2;
|
---|
| 864 | }
|
---|
| 865 | alg = algbest;
|
---|
| 866 | convc1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
| 867 | return;
|
---|
| 868 | }
|
---|
| 869 |
|
---|
| 870 | //
|
---|
| 871 | // straightforward formula for
|
---|
| 872 | // circular and non-circular convolutions.
|
---|
| 873 | //
|
---|
| 874 | // Very simple code, no further comments needed.
|
---|
| 875 | //
|
---|
| 876 | if( alg==0 )
|
---|
| 877 | {
|
---|
| 878 |
|
---|
| 879 | //
|
---|
| 880 | // Special case: N=1
|
---|
| 881 | //
|
---|
| 882 | if( n==1 )
|
---|
| 883 | {
|
---|
| 884 | r = new AP.Complex[m];
|
---|
| 885 | v = b[0];
|
---|
| 886 | for(i_=0; i_<=m-1;i_++)
|
---|
| 887 | {
|
---|
| 888 | r[i_] = v*a[i_];
|
---|
| 889 | }
|
---|
| 890 | return;
|
---|
| 891 | }
|
---|
| 892 |
|
---|
| 893 | //
|
---|
| 894 | // use straightforward formula
|
---|
| 895 | //
|
---|
| 896 | if( circular )
|
---|
| 897 | {
|
---|
| 898 |
|
---|
| 899 | //
|
---|
| 900 | // circular convolution
|
---|
| 901 | //
|
---|
| 902 | r = new AP.Complex[m];
|
---|
| 903 | v = b[0];
|
---|
| 904 | for(i_=0; i_<=m-1;i_++)
|
---|
| 905 | {
|
---|
| 906 | r[i_] = v*a[i_];
|
---|
| 907 | }
|
---|
| 908 | for(i=1; i<=n-1; i++)
|
---|
| 909 | {
|
---|
| 910 | v = b[i];
|
---|
| 911 | i1 = 0;
|
---|
| 912 | i2 = i-1;
|
---|
| 913 | j1 = m-i;
|
---|
| 914 | j2 = m-1;
|
---|
| 915 | i1_ = (j1) - (i1);
|
---|
| 916 | for(i_=i1; i_<=i2;i_++)
|
---|
| 917 | {
|
---|
| 918 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 919 | }
|
---|
| 920 | i1 = i;
|
---|
| 921 | i2 = m-1;
|
---|
| 922 | j1 = 0;
|
---|
| 923 | j2 = m-i-1;
|
---|
| 924 | i1_ = (j1) - (i1);
|
---|
| 925 | for(i_=i1; i_<=i2;i_++)
|
---|
| 926 | {
|
---|
| 927 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 928 | }
|
---|
| 929 | }
|
---|
| 930 | }
|
---|
| 931 | else
|
---|
| 932 | {
|
---|
| 933 |
|
---|
| 934 | //
|
---|
| 935 | // non-circular convolution
|
---|
| 936 | //
|
---|
| 937 | r = new AP.Complex[m+n-1];
|
---|
| 938 | for(i=0; i<=m+n-2; i++)
|
---|
| 939 | {
|
---|
| 940 | r[i] = 0;
|
---|
| 941 | }
|
---|
| 942 | for(i=0; i<=n-1; i++)
|
---|
| 943 | {
|
---|
| 944 | v = b[i];
|
---|
| 945 | i1_ = (0) - (i);
|
---|
| 946 | for(i_=i; i_<=i+m-1;i_++)
|
---|
| 947 | {
|
---|
| 948 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 949 | }
|
---|
| 950 | }
|
---|
| 951 | }
|
---|
| 952 | return;
|
---|
| 953 | }
|
---|
| 954 |
|
---|
| 955 | //
|
---|
| 956 | // general FFT-based code for
|
---|
| 957 | // circular and non-circular convolutions.
|
---|
| 958 | //
|
---|
| 959 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
| 960 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
| 961 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
| 962 | //
|
---|
| 963 | // IF convolution is non-circular, we use zero-padding + FFT.
|
---|
| 964 | //
|
---|
| 965 | if( alg==1 )
|
---|
| 966 | {
|
---|
| 967 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
| 968 | {
|
---|
| 969 |
|
---|
| 970 | //
|
---|
| 971 | // special code for circular convolution with smooth M
|
---|
| 972 | //
|
---|
| 973 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
| 974 | buf = new double[2*m];
|
---|
| 975 | for(i=0; i<=m-1; i++)
|
---|
| 976 | {
|
---|
| 977 | buf[2*i+0] = a[i].x;
|
---|
| 978 | buf[2*i+1] = a[i].y;
|
---|
| 979 | }
|
---|
| 980 | buf2 = new double[2*m];
|
---|
| 981 | for(i=0; i<=n-1; i++)
|
---|
| 982 | {
|
---|
| 983 | buf2[2*i+0] = b[i].x;
|
---|
| 984 | buf2[2*i+1] = b[i].y;
|
---|
| 985 | }
|
---|
| 986 | for(i=n; i<=m-1; i++)
|
---|
| 987 | {
|
---|
| 988 | buf2[2*i+0] = 0;
|
---|
| 989 | buf2[2*i+1] = 0;
|
---|
| 990 | }
|
---|
| 991 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
| 992 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
| 993 | for(i=0; i<=m-1; i++)
|
---|
| 994 | {
|
---|
| 995 | ax = buf[2*i+0];
|
---|
| 996 | ay = buf[2*i+1];
|
---|
| 997 | bx = buf2[2*i+0];
|
---|
| 998 | by = buf2[2*i+1];
|
---|
| 999 | tx = ax*bx-ay*by;
|
---|
| 1000 | ty = ax*by+ay*bx;
|
---|
| 1001 | buf[2*i+0] = tx;
|
---|
| 1002 | buf[2*i+1] = -ty;
|
---|
| 1003 | }
|
---|
| 1004 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
| 1005 | t = (double)(1)/(double)(m);
|
---|
| 1006 | r = new AP.Complex[m];
|
---|
| 1007 | for(i=0; i<=m-1; i++)
|
---|
| 1008 | {
|
---|
| 1009 | r[i].x = +(t*buf[2*i+0]);
|
---|
| 1010 | r[i].y = -(t*buf[2*i+1]);
|
---|
| 1011 | }
|
---|
| 1012 | }
|
---|
| 1013 | else
|
---|
| 1014 | {
|
---|
| 1015 |
|
---|
| 1016 | //
|
---|
| 1017 | // M is non-smooth, general code (circular/non-circular):
|
---|
| 1018 | // * first part is the same for circular and non-circular
|
---|
| 1019 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
| 1020 | // * second part differs:
|
---|
| 1021 | // * for non-circular convolution we just copy array
|
---|
| 1022 | // * for circular convolution we add array tail to its head
|
---|
| 1023 | //
|
---|
| 1024 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
| 1025 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
| 1026 | buf = new double[2*p];
|
---|
| 1027 | for(i=0; i<=m-1; i++)
|
---|
| 1028 | {
|
---|
| 1029 | buf[2*i+0] = a[i].x;
|
---|
| 1030 | buf[2*i+1] = a[i].y;
|
---|
| 1031 | }
|
---|
| 1032 | for(i=m; i<=p-1; i++)
|
---|
| 1033 | {
|
---|
| 1034 | buf[2*i+0] = 0;
|
---|
| 1035 | buf[2*i+1] = 0;
|
---|
| 1036 | }
|
---|
| 1037 | buf2 = new double[2*p];
|
---|
| 1038 | for(i=0; i<=n-1; i++)
|
---|
| 1039 | {
|
---|
| 1040 | buf2[2*i+0] = b[i].x;
|
---|
| 1041 | buf2[2*i+1] = b[i].y;
|
---|
| 1042 | }
|
---|
| 1043 | for(i=n; i<=p-1; i++)
|
---|
| 1044 | {
|
---|
| 1045 | buf2[2*i+0] = 0;
|
---|
| 1046 | buf2[2*i+1] = 0;
|
---|
| 1047 | }
|
---|
| 1048 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
| 1049 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
| 1050 | for(i=0; i<=p-1; i++)
|
---|
| 1051 | {
|
---|
| 1052 | ax = buf[2*i+0];
|
---|
| 1053 | ay = buf[2*i+1];
|
---|
| 1054 | bx = buf2[2*i+0];
|
---|
| 1055 | by = buf2[2*i+1];
|
---|
| 1056 | tx = ax*bx-ay*by;
|
---|
| 1057 | ty = ax*by+ay*bx;
|
---|
| 1058 | buf[2*i+0] = tx;
|
---|
| 1059 | buf[2*i+1] = -ty;
|
---|
| 1060 | }
|
---|
| 1061 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
| 1062 | t = (double)(1)/(double)(p);
|
---|
| 1063 | if( circular )
|
---|
| 1064 | {
|
---|
| 1065 |
|
---|
| 1066 | //
|
---|
| 1067 | // circular, add tail to head
|
---|
| 1068 | //
|
---|
| 1069 | r = new AP.Complex[m];
|
---|
| 1070 | for(i=0; i<=m-1; i++)
|
---|
| 1071 | {
|
---|
| 1072 | r[i].x = +(t*buf[2*i+0]);
|
---|
| 1073 | r[i].y = -(t*buf[2*i+1]);
|
---|
| 1074 | }
|
---|
| 1075 | for(i=m; i<=m+n-2; i++)
|
---|
| 1076 | {
|
---|
| 1077 | r[i-m].x = r[i-m].x+t*buf[2*i+0];
|
---|
| 1078 | r[i-m].y = r[i-m].y-t*buf[2*i+1];
|
---|
| 1079 | }
|
---|
| 1080 | }
|
---|
| 1081 | else
|
---|
| 1082 | {
|
---|
| 1083 |
|
---|
| 1084 | //
|
---|
| 1085 | // non-circular, just copy
|
---|
| 1086 | //
|
---|
| 1087 | r = new AP.Complex[m+n-1];
|
---|
| 1088 | for(i=0; i<=m+n-2; i++)
|
---|
| 1089 | {
|
---|
| 1090 | r[i].x = +(t*buf[2*i+0]);
|
---|
| 1091 | r[i].y = -(t*buf[2*i+1]);
|
---|
| 1092 | }
|
---|
| 1093 | }
|
---|
| 1094 | }
|
---|
| 1095 | return;
|
---|
| 1096 | }
|
---|
| 1097 |
|
---|
| 1098 | //
|
---|
| 1099 | // overlap-add method for
|
---|
| 1100 | // circular and non-circular convolutions.
|
---|
| 1101 | //
|
---|
| 1102 | // First part of code (separate FFTs of input blocks) is the same
|
---|
| 1103 | // for all types of convolution. Second part (overlapping outputs)
|
---|
| 1104 | // differs for different types of convolution. We just copy output
|
---|
| 1105 | // when convolution is non-circular. We wrap it around, if it is
|
---|
| 1106 | // circular.
|
---|
| 1107 | //
|
---|
| 1108 | if( alg==2 )
|
---|
| 1109 | {
|
---|
| 1110 | buf = new double[2*(q+n-1)];
|
---|
| 1111 |
|
---|
| 1112 | //
|
---|
| 1113 | // prepare R
|
---|
| 1114 | //
|
---|
| 1115 | if( circular )
|
---|
| 1116 | {
|
---|
| 1117 | r = new AP.Complex[m];
|
---|
| 1118 | for(i=0; i<=m-1; i++)
|
---|
| 1119 | {
|
---|
| 1120 | r[i] = 0;
|
---|
| 1121 | }
|
---|
| 1122 | }
|
---|
| 1123 | else
|
---|
| 1124 | {
|
---|
| 1125 | r = new AP.Complex[m+n-1];
|
---|
| 1126 | for(i=0; i<=m+n-2; i++)
|
---|
| 1127 | {
|
---|
| 1128 | r[i] = 0;
|
---|
| 1129 | }
|
---|
| 1130 | }
|
---|
| 1131 |
|
---|
| 1132 | //
|
---|
| 1133 | // pre-calculated FFT(B)
|
---|
| 1134 | //
|
---|
| 1135 | bbuf = new AP.Complex[q+n-1];
|
---|
| 1136 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1137 | {
|
---|
| 1138 | bbuf[i_] = b[i_];
|
---|
| 1139 | }
|
---|
| 1140 | for(j=n; j<=q+n-2; j++)
|
---|
| 1141 | {
|
---|
| 1142 | bbuf[j] = 0;
|
---|
| 1143 | }
|
---|
| 1144 | fft.fftc1d(ref bbuf, q+n-1);
|
---|
| 1145 |
|
---|
| 1146 | //
|
---|
| 1147 | // prepare FFT plan for chunks of A
|
---|
| 1148 | //
|
---|
| 1149 | ftbase.ftbasegeneratecomplexfftplan(q+n-1, ref plan);
|
---|
| 1150 |
|
---|
| 1151 | //
|
---|
| 1152 | // main overlap-add cycle
|
---|
| 1153 | //
|
---|
| 1154 | i = 0;
|
---|
| 1155 | while( i<=m-1 )
|
---|
| 1156 | {
|
---|
| 1157 | p = Math.Min(q, m-i);
|
---|
| 1158 | for(j=0; j<=p-1; j++)
|
---|
| 1159 | {
|
---|
| 1160 | buf[2*j+0] = a[i+j].x;
|
---|
| 1161 | buf[2*j+1] = a[i+j].y;
|
---|
| 1162 | }
|
---|
| 1163 | for(j=p; j<=q+n-2; j++)
|
---|
| 1164 | {
|
---|
| 1165 | buf[2*j+0] = 0;
|
---|
| 1166 | buf[2*j+1] = 0;
|
---|
| 1167 | }
|
---|
| 1168 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
| 1169 | for(j=0; j<=q+n-2; j++)
|
---|
| 1170 | {
|
---|
| 1171 | ax = buf[2*j+0];
|
---|
| 1172 | ay = buf[2*j+1];
|
---|
| 1173 | bx = bbuf[j].x;
|
---|
| 1174 | by = bbuf[j].y;
|
---|
| 1175 | tx = ax*bx-ay*by;
|
---|
| 1176 | ty = ax*by+ay*bx;
|
---|
| 1177 | buf[2*j+0] = tx;
|
---|
| 1178 | buf[2*j+1] = -ty;
|
---|
| 1179 | }
|
---|
| 1180 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
| 1181 | t = (double)(1)/((double)(q+n-1));
|
---|
| 1182 | if( circular )
|
---|
| 1183 | {
|
---|
| 1184 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
| 1185 | j2 = j1+1;
|
---|
| 1186 | }
|
---|
| 1187 | else
|
---|
| 1188 | {
|
---|
| 1189 | j1 = p+n-2;
|
---|
| 1190 | j2 = j1+1;
|
---|
| 1191 | }
|
---|
| 1192 | for(j=0; j<=j1; j++)
|
---|
| 1193 | {
|
---|
| 1194 | r[i+j].x = r[i+j].x+buf[2*j+0]*t;
|
---|
| 1195 | r[i+j].y = r[i+j].y-buf[2*j+1]*t;
|
---|
| 1196 | }
|
---|
| 1197 | for(j=j2; j<=p+n-2; j++)
|
---|
| 1198 | {
|
---|
| 1199 | r[j-j2].x = r[j-j2].x+buf[2*j+0]*t;
|
---|
| 1200 | r[j-j2].y = r[j-j2].y-buf[2*j+1]*t;
|
---|
| 1201 | }
|
---|
| 1202 | i = i+p;
|
---|
| 1203 | }
|
---|
| 1204 | return;
|
---|
| 1205 | }
|
---|
| 1206 | }
|
---|
| 1207 |
|
---|
| 1208 |
|
---|
| 1209 | /*************************************************************************
|
---|
| 1210 | 1-dimensional real convolution.
|
---|
| 1211 |
|
---|
| 1212 | Extended subroutine which allows to choose convolution algorithm.
|
---|
| 1213 | Intended for internal use, ALGLIB users should call ConvR1D().
|
---|
| 1214 |
|
---|
| 1215 | INPUT PARAMETERS
|
---|
| 1216 | A - array[0..M-1] - complex function to be transformed
|
---|
| 1217 | M - problem size
|
---|
| 1218 | B - array[0..N-1] - complex function to be transformed
|
---|
| 1219 | N - problem size, N<=M
|
---|
| 1220 | Alg - algorithm type:
|
---|
| 1221 | *-2 auto-select Q for overlap-add
|
---|
| 1222 | *-1 auto-select algorithm and parameters
|
---|
| 1223 | * 0 straightforward formula for small N's
|
---|
| 1224 | * 1 general FFT-based code
|
---|
| 1225 | * 2 overlap-add with length Q
|
---|
| 1226 | Q - length for overlap-add
|
---|
| 1227 |
|
---|
| 1228 | OUTPUT PARAMETERS
|
---|
| 1229 | R - convolution: A*B. array[0..N+M-1].
|
---|
| 1230 |
|
---|
| 1231 | -- ALGLIB --
|
---|
| 1232 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 1233 | *************************************************************************/
|
---|
| 1234 | public static void convr1dx(ref double[] a,
|
---|
| 1235 | int m,
|
---|
| 1236 | ref double[] b,
|
---|
| 1237 | int n,
|
---|
| 1238 | bool circular,
|
---|
| 1239 | int alg,
|
---|
| 1240 | int q,
|
---|
| 1241 | ref double[] r)
|
---|
| 1242 | {
|
---|
| 1243 | double v = 0;
|
---|
| 1244 | int i = 0;
|
---|
| 1245 | int j = 0;
|
---|
| 1246 | int p = 0;
|
---|
| 1247 | int ptotal = 0;
|
---|
| 1248 | int i1 = 0;
|
---|
| 1249 | int i2 = 0;
|
---|
| 1250 | int j1 = 0;
|
---|
| 1251 | int j2 = 0;
|
---|
| 1252 | double ax = 0;
|
---|
| 1253 | double ay = 0;
|
---|
| 1254 | double bx = 0;
|
---|
| 1255 | double by = 0;
|
---|
| 1256 | double t = 0;
|
---|
| 1257 | double tx = 0;
|
---|
| 1258 | double ty = 0;
|
---|
| 1259 | double flopcand = 0;
|
---|
| 1260 | double flopbest = 0;
|
---|
| 1261 | int algbest = 0;
|
---|
| 1262 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
| 1263 | double[] buf = new double[0];
|
---|
| 1264 | double[] buf2 = new double[0];
|
---|
| 1265 | double[] buf3 = new double[0];
|
---|
| 1266 | int i_ = 0;
|
---|
| 1267 | int i1_ = 0;
|
---|
| 1268 |
|
---|
| 1269 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
| 1270 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
| 1271 |
|
---|
| 1272 | //
|
---|
| 1273 | // handle special cases
|
---|
| 1274 | //
|
---|
| 1275 | if( Math.Min(m, n)<=2 )
|
---|
| 1276 | {
|
---|
| 1277 | alg = 0;
|
---|
| 1278 | }
|
---|
| 1279 |
|
---|
| 1280 | //
|
---|
| 1281 | // Auto-select
|
---|
| 1282 | //
|
---|
| 1283 | if( alg<0 )
|
---|
| 1284 | {
|
---|
| 1285 |
|
---|
| 1286 | //
|
---|
| 1287 | // Initial candidate: straightforward implementation.
|
---|
| 1288 | //
|
---|
| 1289 | // If we want to use auto-fitted overlap-add,
|
---|
| 1290 | // flop count is initialized by large real number - to force
|
---|
| 1291 | // another algorithm selection
|
---|
| 1292 | //
|
---|
| 1293 | algbest = 0;
|
---|
| 1294 | if( alg==-1 )
|
---|
| 1295 | {
|
---|
| 1296 | flopbest = 0.15*m*n;
|
---|
| 1297 | }
|
---|
| 1298 | else
|
---|
| 1299 | {
|
---|
| 1300 | flopbest = AP.Math.MaxRealNumber;
|
---|
| 1301 | }
|
---|
| 1302 |
|
---|
| 1303 | //
|
---|
| 1304 | // Another candidate - generic FFT code
|
---|
| 1305 | //
|
---|
| 1306 | if( alg==-1 )
|
---|
| 1307 | {
|
---|
| 1308 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
| 1309 | {
|
---|
| 1310 |
|
---|
| 1311 | //
|
---|
| 1312 | // special code for circular convolution of a sequence with a smooth length
|
---|
| 1313 | //
|
---|
| 1314 | flopcand = 3*ftbase.ftbasegetflopestimate(m/2)+(double)(6*m)/(double)(2);
|
---|
| 1315 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 1316 | {
|
---|
| 1317 | algbest = 1;
|
---|
| 1318 | flopbest = flopcand;
|
---|
| 1319 | }
|
---|
| 1320 | }
|
---|
| 1321 | else
|
---|
| 1322 | {
|
---|
| 1323 |
|
---|
| 1324 | //
|
---|
| 1325 | // general cyclic/non-cyclic convolution
|
---|
| 1326 | //
|
---|
| 1327 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
| 1328 | flopcand = 3*ftbase.ftbasegetflopestimate(p/2)+(double)(6*p)/(double)(2);
|
---|
| 1329 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 1330 | {
|
---|
| 1331 | algbest = 1;
|
---|
| 1332 | flopbest = flopcand;
|
---|
| 1333 | }
|
---|
| 1334 | }
|
---|
| 1335 | }
|
---|
| 1336 |
|
---|
| 1337 | //
|
---|
| 1338 | // Another candidate - overlap-add
|
---|
| 1339 | //
|
---|
| 1340 | q = 1;
|
---|
| 1341 | ptotal = 1;
|
---|
| 1342 | while( ptotal<n )
|
---|
| 1343 | {
|
---|
| 1344 | ptotal = ptotal*2;
|
---|
| 1345 | }
|
---|
| 1346 | while( ptotal<=m+n-1 )
|
---|
| 1347 | {
|
---|
| 1348 | p = ptotal-n+1;
|
---|
| 1349 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal/2)+1*(ptotal/2));
|
---|
| 1350 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
| 1351 | {
|
---|
| 1352 | flopbest = flopcand;
|
---|
| 1353 | algbest = 2;
|
---|
| 1354 | q = p;
|
---|
| 1355 | }
|
---|
| 1356 | ptotal = ptotal*2;
|
---|
| 1357 | }
|
---|
| 1358 | alg = algbest;
|
---|
| 1359 | convr1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
| 1360 | return;
|
---|
| 1361 | }
|
---|
| 1362 |
|
---|
| 1363 | //
|
---|
| 1364 | // straightforward formula for
|
---|
| 1365 | // circular and non-circular convolutions.
|
---|
| 1366 | //
|
---|
| 1367 | // Very simple code, no further comments needed.
|
---|
| 1368 | //
|
---|
| 1369 | if( alg==0 )
|
---|
| 1370 | {
|
---|
| 1371 |
|
---|
| 1372 | //
|
---|
| 1373 | // Special case: N=1
|
---|
| 1374 | //
|
---|
| 1375 | if( n==1 )
|
---|
| 1376 | {
|
---|
| 1377 | r = new double[m];
|
---|
| 1378 | v = b[0];
|
---|
| 1379 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1380 | {
|
---|
| 1381 | r[i_] = v*a[i_];
|
---|
| 1382 | }
|
---|
| 1383 | return;
|
---|
| 1384 | }
|
---|
| 1385 |
|
---|
| 1386 | //
|
---|
| 1387 | // use straightforward formula
|
---|
| 1388 | //
|
---|
| 1389 | if( circular )
|
---|
| 1390 | {
|
---|
| 1391 |
|
---|
| 1392 | //
|
---|
| 1393 | // circular convolution
|
---|
| 1394 | //
|
---|
| 1395 | r = new double[m];
|
---|
| 1396 | v = b[0];
|
---|
| 1397 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1398 | {
|
---|
| 1399 | r[i_] = v*a[i_];
|
---|
| 1400 | }
|
---|
| 1401 | for(i=1; i<=n-1; i++)
|
---|
| 1402 | {
|
---|
| 1403 | v = b[i];
|
---|
| 1404 | i1 = 0;
|
---|
| 1405 | i2 = i-1;
|
---|
| 1406 | j1 = m-i;
|
---|
| 1407 | j2 = m-1;
|
---|
| 1408 | i1_ = (j1) - (i1);
|
---|
| 1409 | for(i_=i1; i_<=i2;i_++)
|
---|
| 1410 | {
|
---|
| 1411 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 1412 | }
|
---|
| 1413 | i1 = i;
|
---|
| 1414 | i2 = m-1;
|
---|
| 1415 | j1 = 0;
|
---|
| 1416 | j2 = m-i-1;
|
---|
| 1417 | i1_ = (j1) - (i1);
|
---|
| 1418 | for(i_=i1; i_<=i2;i_++)
|
---|
| 1419 | {
|
---|
| 1420 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 1421 | }
|
---|
| 1422 | }
|
---|
| 1423 | }
|
---|
| 1424 | else
|
---|
| 1425 | {
|
---|
| 1426 |
|
---|
| 1427 | //
|
---|
| 1428 | // non-circular convolution
|
---|
| 1429 | //
|
---|
| 1430 | r = new double[m+n-1];
|
---|
| 1431 | for(i=0; i<=m+n-2; i++)
|
---|
| 1432 | {
|
---|
| 1433 | r[i] = 0;
|
---|
| 1434 | }
|
---|
| 1435 | for(i=0; i<=n-1; i++)
|
---|
| 1436 | {
|
---|
| 1437 | v = b[i];
|
---|
| 1438 | i1_ = (0) - (i);
|
---|
| 1439 | for(i_=i; i_<=i+m-1;i_++)
|
---|
| 1440 | {
|
---|
| 1441 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
| 1442 | }
|
---|
| 1443 | }
|
---|
| 1444 | }
|
---|
| 1445 | return;
|
---|
| 1446 | }
|
---|
| 1447 |
|
---|
| 1448 | //
|
---|
| 1449 | // general FFT-based code for
|
---|
| 1450 | // circular and non-circular convolutions.
|
---|
| 1451 | //
|
---|
| 1452 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
| 1453 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
| 1454 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
| 1455 | //
|
---|
| 1456 | // If convolution is non-circular, we use zero-padding + FFT.
|
---|
| 1457 | //
|
---|
| 1458 | // We assume that M+N-1>2 - we should call small case code otherwise
|
---|
| 1459 | //
|
---|
| 1460 | if( alg==1 )
|
---|
| 1461 | {
|
---|
| 1462 | System.Diagnostics.Debug.Assert(m+n-1>2, "ConvR1DX: internal error!");
|
---|
| 1463 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
| 1464 | {
|
---|
| 1465 |
|
---|
| 1466 | //
|
---|
| 1467 | // special code for circular convolution with smooth even M
|
---|
| 1468 | //
|
---|
| 1469 | buf = new double[m];
|
---|
| 1470 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1471 | {
|
---|
| 1472 | buf[i_] = a[i_];
|
---|
| 1473 | }
|
---|
| 1474 | buf2 = new double[m];
|
---|
| 1475 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1476 | {
|
---|
| 1477 | buf2[i_] = b[i_];
|
---|
| 1478 | }
|
---|
| 1479 | for(i=n; i<=m-1; i++)
|
---|
| 1480 | {
|
---|
| 1481 | buf2[i] = 0;
|
---|
| 1482 | }
|
---|
| 1483 | buf3 = new double[m];
|
---|
| 1484 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
| 1485 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
| 1486 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
| 1487 | buf[0] = buf[0]*buf2[0];
|
---|
| 1488 | buf[1] = buf[1]*buf2[1];
|
---|
| 1489 | for(i=1; i<=m/2-1; i++)
|
---|
| 1490 | {
|
---|
| 1491 | ax = buf[2*i+0];
|
---|
| 1492 | ay = buf[2*i+1];
|
---|
| 1493 | bx = buf2[2*i+0];
|
---|
| 1494 | by = buf2[2*i+1];
|
---|
| 1495 | tx = ax*bx-ay*by;
|
---|
| 1496 | ty = ax*by+ay*bx;
|
---|
| 1497 | buf[2*i+0] = tx;
|
---|
| 1498 | buf[2*i+1] = ty;
|
---|
| 1499 | }
|
---|
| 1500 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
| 1501 | r = new double[m];
|
---|
| 1502 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1503 | {
|
---|
| 1504 | r[i_] = buf[i_];
|
---|
| 1505 | }
|
---|
| 1506 | }
|
---|
| 1507 | else
|
---|
| 1508 | {
|
---|
| 1509 |
|
---|
| 1510 | //
|
---|
| 1511 | // M is non-smooth or non-even, general code (circular/non-circular):
|
---|
| 1512 | // * first part is the same for circular and non-circular
|
---|
| 1513 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
| 1514 | // * second part differs:
|
---|
| 1515 | // * for non-circular convolution we just copy array
|
---|
| 1516 | // * for circular convolution we add array tail to its head
|
---|
| 1517 | //
|
---|
| 1518 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
| 1519 | buf = new double[p];
|
---|
| 1520 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1521 | {
|
---|
| 1522 | buf[i_] = a[i_];
|
---|
| 1523 | }
|
---|
| 1524 | for(i=m; i<=p-1; i++)
|
---|
| 1525 | {
|
---|
| 1526 | buf[i] = 0;
|
---|
| 1527 | }
|
---|
| 1528 | buf2 = new double[p];
|
---|
| 1529 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1530 | {
|
---|
| 1531 | buf2[i_] = b[i_];
|
---|
| 1532 | }
|
---|
| 1533 | for(i=n; i<=p-1; i++)
|
---|
| 1534 | {
|
---|
| 1535 | buf2[i] = 0;
|
---|
| 1536 | }
|
---|
| 1537 | buf3 = new double[p];
|
---|
| 1538 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
| 1539 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
| 1540 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
| 1541 | buf[0] = buf[0]*buf2[0];
|
---|
| 1542 | buf[1] = buf[1]*buf2[1];
|
---|
| 1543 | for(i=1; i<=p/2-1; i++)
|
---|
| 1544 | {
|
---|
| 1545 | ax = buf[2*i+0];
|
---|
| 1546 | ay = buf[2*i+1];
|
---|
| 1547 | bx = buf2[2*i+0];
|
---|
| 1548 | by = buf2[2*i+1];
|
---|
| 1549 | tx = ax*bx-ay*by;
|
---|
| 1550 | ty = ax*by+ay*bx;
|
---|
| 1551 | buf[2*i+0] = tx;
|
---|
| 1552 | buf[2*i+1] = ty;
|
---|
| 1553 | }
|
---|
| 1554 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
| 1555 | if( circular )
|
---|
| 1556 | {
|
---|
| 1557 |
|
---|
| 1558 | //
|
---|
| 1559 | // circular, add tail to head
|
---|
| 1560 | //
|
---|
| 1561 | r = new double[m];
|
---|
| 1562 | for(i_=0; i_<=m-1;i_++)
|
---|
| 1563 | {
|
---|
| 1564 | r[i_] = buf[i_];
|
---|
| 1565 | }
|
---|
| 1566 | if( n>=2 )
|
---|
| 1567 | {
|
---|
| 1568 | i1_ = (m) - (0);
|
---|
| 1569 | for(i_=0; i_<=n-2;i_++)
|
---|
| 1570 | {
|
---|
| 1571 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
| 1572 | }
|
---|
| 1573 | }
|
---|
| 1574 | }
|
---|
| 1575 | else
|
---|
| 1576 | {
|
---|
| 1577 |
|
---|
| 1578 | //
|
---|
| 1579 | // non-circular, just copy
|
---|
| 1580 | //
|
---|
| 1581 | r = new double[m+n-1];
|
---|
| 1582 | for(i_=0; i_<=m+n-2;i_++)
|
---|
| 1583 | {
|
---|
| 1584 | r[i_] = buf[i_];
|
---|
| 1585 | }
|
---|
| 1586 | }
|
---|
| 1587 | }
|
---|
| 1588 | return;
|
---|
| 1589 | }
|
---|
| 1590 |
|
---|
| 1591 | //
|
---|
| 1592 | // overlap-add method
|
---|
| 1593 | //
|
---|
| 1594 | if( alg==2 )
|
---|
| 1595 | {
|
---|
| 1596 | System.Diagnostics.Debug.Assert((q+n-1)%2==0, "ConvR1DX: internal error!");
|
---|
| 1597 | buf = new double[q+n-1];
|
---|
| 1598 | buf2 = new double[q+n-1];
|
---|
| 1599 | buf3 = new double[q+n-1];
|
---|
| 1600 | ftbase.ftbasegeneratecomplexfftplan((q+n-1)/2, ref plan);
|
---|
| 1601 |
|
---|
| 1602 | //
|
---|
| 1603 | // prepare R
|
---|
| 1604 | //
|
---|
| 1605 | if( circular )
|
---|
| 1606 | {
|
---|
| 1607 | r = new double[m];
|
---|
| 1608 | for(i=0; i<=m-1; i++)
|
---|
| 1609 | {
|
---|
| 1610 | r[i] = 0;
|
---|
| 1611 | }
|
---|
| 1612 | }
|
---|
| 1613 | else
|
---|
| 1614 | {
|
---|
| 1615 | r = new double[m+n-1];
|
---|
| 1616 | for(i=0; i<=m+n-2; i++)
|
---|
| 1617 | {
|
---|
| 1618 | r[i] = 0;
|
---|
| 1619 | }
|
---|
| 1620 | }
|
---|
| 1621 |
|
---|
| 1622 | //
|
---|
| 1623 | // pre-calculated FFT(B)
|
---|
| 1624 | //
|
---|
| 1625 | for(i_=0; i_<=n-1;i_++)
|
---|
| 1626 | {
|
---|
| 1627 | buf2[i_] = b[i_];
|
---|
| 1628 | }
|
---|
| 1629 | for(j=n; j<=q+n-2; j++)
|
---|
| 1630 | {
|
---|
| 1631 | buf2[j] = 0;
|
---|
| 1632 | }
|
---|
| 1633 | fft.fftr1dinternaleven(ref buf2, q+n-1, ref buf3, ref plan);
|
---|
| 1634 |
|
---|
| 1635 | //
|
---|
| 1636 | // main overlap-add cycle
|
---|
| 1637 | //
|
---|
| 1638 | i = 0;
|
---|
| 1639 | while( i<=m-1 )
|
---|
| 1640 | {
|
---|
| 1641 | p = Math.Min(q, m-i);
|
---|
| 1642 | i1_ = (i) - (0);
|
---|
| 1643 | for(i_=0; i_<=p-1;i_++)
|
---|
| 1644 | {
|
---|
| 1645 | buf[i_] = a[i_+i1_];
|
---|
| 1646 | }
|
---|
| 1647 | for(j=p; j<=q+n-2; j++)
|
---|
| 1648 | {
|
---|
| 1649 | buf[j] = 0;
|
---|
| 1650 | }
|
---|
| 1651 | fft.fftr1dinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
| 1652 | buf[0] = buf[0]*buf2[0];
|
---|
| 1653 | buf[1] = buf[1]*buf2[1];
|
---|
| 1654 | for(j=1; j<=(q+n-1)/2-1; j++)
|
---|
| 1655 | {
|
---|
| 1656 | ax = buf[2*j+0];
|
---|
| 1657 | ay = buf[2*j+1];
|
---|
| 1658 | bx = buf2[2*j+0];
|
---|
| 1659 | by = buf2[2*j+1];
|
---|
| 1660 | tx = ax*bx-ay*by;
|
---|
| 1661 | ty = ax*by+ay*bx;
|
---|
| 1662 | buf[2*j+0] = tx;
|
---|
| 1663 | buf[2*j+1] = ty;
|
---|
| 1664 | }
|
---|
| 1665 | fft.fftr1dinvinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
| 1666 | if( circular )
|
---|
| 1667 | {
|
---|
| 1668 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
| 1669 | j2 = j1+1;
|
---|
| 1670 | }
|
---|
| 1671 | else
|
---|
| 1672 | {
|
---|
| 1673 | j1 = p+n-2;
|
---|
| 1674 | j2 = j1+1;
|
---|
| 1675 | }
|
---|
| 1676 | i1_ = (0) - (i);
|
---|
| 1677 | for(i_=i; i_<=i+j1;i_++)
|
---|
| 1678 | {
|
---|
| 1679 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
| 1680 | }
|
---|
| 1681 | if( p+n-2>=j2 )
|
---|
| 1682 | {
|
---|
| 1683 | i1_ = (j2) - (0);
|
---|
| 1684 | for(i_=0; i_<=p+n-2-j2;i_++)
|
---|
| 1685 | {
|
---|
| 1686 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
| 1687 | }
|
---|
| 1688 | }
|
---|
| 1689 | i = i+p;
|
---|
| 1690 | }
|
---|
| 1691 | return;
|
---|
| 1692 | }
|
---|
| 1693 | }
|
---|
| 1694 | }
|
---|
| 1695 | }
|
---|