1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class autogk
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Integration report:
|
---|
29 | * TerminationType = completetion code:
|
---|
30 | * -5 non-convergence of Gauss-Kronrod nodes
|
---|
31 | calculation subroutine.
|
---|
32 | * -1 incorrect parameters were specified
|
---|
33 | * 1 OK
|
---|
34 | * Rep.NFEV countains number of function calculations
|
---|
35 | * Rep.NIntervals contains number of intervals [a,b]
|
---|
36 | was partitioned into.
|
---|
37 | *************************************************************************/
|
---|
38 | public struct autogkreport
|
---|
39 | {
|
---|
40 | public int terminationtype;
|
---|
41 | public int nfev;
|
---|
42 | public int nintervals;
|
---|
43 | };
|
---|
44 |
|
---|
45 |
|
---|
46 | public struct autogkinternalstate
|
---|
47 | {
|
---|
48 | public double a;
|
---|
49 | public double b;
|
---|
50 | public double eps;
|
---|
51 | public double xwidth;
|
---|
52 | public double x;
|
---|
53 | public double f;
|
---|
54 | public int info;
|
---|
55 | public double r;
|
---|
56 | public double[,] heap;
|
---|
57 | public int heapsize;
|
---|
58 | public int heapwidth;
|
---|
59 | public int heapused;
|
---|
60 | public double sumerr;
|
---|
61 | public double sumabs;
|
---|
62 | public double[] qn;
|
---|
63 | public double[] wg;
|
---|
64 | public double[] wk;
|
---|
65 | public double[] wr;
|
---|
66 | public int n;
|
---|
67 | public AP.rcommstate rstate;
|
---|
68 | };
|
---|
69 |
|
---|
70 |
|
---|
71 | /*************************************************************************
|
---|
72 | This structure stores internal state of the integration algorithm between
|
---|
73 | subsequent calls of the AutoGKIteration() subroutine.
|
---|
74 | *************************************************************************/
|
---|
75 | public struct autogkstate
|
---|
76 | {
|
---|
77 | public double a;
|
---|
78 | public double b;
|
---|
79 | public double alpha;
|
---|
80 | public double beta;
|
---|
81 | public double xwidth;
|
---|
82 | public double x;
|
---|
83 | public double xminusa;
|
---|
84 | public double bminusx;
|
---|
85 | public double f;
|
---|
86 | public int wrappermode;
|
---|
87 | public autogkinternalstate internalstate;
|
---|
88 | public AP.rcommstate rstate;
|
---|
89 | public double v;
|
---|
90 | public int terminationtype;
|
---|
91 | public int nfev;
|
---|
92 | public int nintervals;
|
---|
93 | };
|
---|
94 |
|
---|
95 |
|
---|
96 |
|
---|
97 |
|
---|
98 | /*************************************************************************
|
---|
99 | Integration of a smooth function F(x) on a finite interval [a,b].
|
---|
100 |
|
---|
101 | Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
|
---|
102 | is calculated with accuracy close to the machine precision.
|
---|
103 |
|
---|
104 | Algorithm works well only with smooth integrands. It may be used with
|
---|
105 | continuous non-smooth integrands, but with less performance.
|
---|
106 |
|
---|
107 | It should never be used with integrands which have integrable singularities
|
---|
108 | at lower or upper limits - algorithm may crash. Use AutoGKSingular in such
|
---|
109 | cases.
|
---|
110 |
|
---|
111 | INPUT PARAMETERS:
|
---|
112 | A, B - interval boundaries (A<B, A=B or A>B)
|
---|
113 |
|
---|
114 | OUTPUT PARAMETERS
|
---|
115 | State - structure which stores algorithm state between subsequent
|
---|
116 | calls of AutoGKIteration. Used for reverse communication.
|
---|
117 | This structure should be passed to the AutoGKIteration
|
---|
118 | subroutine.
|
---|
119 |
|
---|
120 | SEE ALSO
|
---|
121 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
122 |
|
---|
123 |
|
---|
124 | -- ALGLIB --
|
---|
125 | Copyright 06.05.2009 by Bochkanov Sergey
|
---|
126 | *************************************************************************/
|
---|
127 | public static void autogksmooth(double a,
|
---|
128 | double b,
|
---|
129 | ref autogkstate state)
|
---|
130 | {
|
---|
131 | autogksmoothw(a, b, 0.0, ref state);
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 | /*************************************************************************
|
---|
136 | Integration of a smooth function F(x) on a finite interval [a,b].
|
---|
137 |
|
---|
138 | This subroutine is same as AutoGKSmooth(), but it guarantees that interval
|
---|
139 | [a,b] is partitioned into subintervals which have width at most XWidth.
|
---|
140 |
|
---|
141 | Subroutine can be used when integrating nearly-constant function with
|
---|
142 | narrow "bumps" (about XWidth wide). If "bumps" are too narrow, AutoGKSmooth
|
---|
143 | subroutine can overlook them.
|
---|
144 |
|
---|
145 | INPUT PARAMETERS:
|
---|
146 | A, B - interval boundaries (A<B, A=B or A>B)
|
---|
147 |
|
---|
148 | OUTPUT PARAMETERS
|
---|
149 | State - structure which stores algorithm state between subsequent
|
---|
150 | calls of AutoGKIteration. Used for reverse communication.
|
---|
151 | This structure should be passed to the AutoGKIteration
|
---|
152 | subroutine.
|
---|
153 |
|
---|
154 | SEE ALSO
|
---|
155 | AutoGKSmooth, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
156 |
|
---|
157 |
|
---|
158 | -- ALGLIB --
|
---|
159 | Copyright 06.05.2009 by Bochkanov Sergey
|
---|
160 | *************************************************************************/
|
---|
161 | public static void autogksmoothw(double a,
|
---|
162 | double b,
|
---|
163 | double xwidth,
|
---|
164 | ref autogkstate state)
|
---|
165 | {
|
---|
166 | state.wrappermode = 0;
|
---|
167 | state.a = a;
|
---|
168 | state.b = b;
|
---|
169 | state.xwidth = xwidth;
|
---|
170 | state.rstate.ra = new double[10+1];
|
---|
171 | state.rstate.stage = -1;
|
---|
172 | }
|
---|
173 |
|
---|
174 |
|
---|
175 | /*************************************************************************
|
---|
176 | Integration on a finite interval [A,B].
|
---|
177 | Integrand have integrable singularities at A/B.
|
---|
178 |
|
---|
179 | F(X) must diverge as "(x-A)^alpha" at A, as "(B-x)^beta" at B, with known
|
---|
180 | alpha/beta (alpha>-1, beta>-1). If alpha/beta are not known, estimates
|
---|
181 | from below can be used (but these estimates should be greater than -1 too).
|
---|
182 |
|
---|
183 | One of alpha/beta variables (or even both alpha/beta) may be equal to 0,
|
---|
184 | which means than function F(x) is non-singular at A/B. Anyway (singular at
|
---|
185 | bounds or not), function F(x) is supposed to be continuous on (A,B).
|
---|
186 |
|
---|
187 | Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result
|
---|
188 | is calculated with accuracy close to the machine precision.
|
---|
189 |
|
---|
190 | INPUT PARAMETERS:
|
---|
191 | A, B - interval boundaries (A<B, A=B or A>B)
|
---|
192 | Alpha - power-law coefficient of the F(x) at A,
|
---|
193 | Alpha>-1
|
---|
194 | Beta - power-law coefficient of the F(x) at B,
|
---|
195 | Beta>-1
|
---|
196 |
|
---|
197 | OUTPUT PARAMETERS
|
---|
198 | State - structure which stores algorithm state between subsequent
|
---|
199 | calls of AutoGKIteration. Used for reverse communication.
|
---|
200 | This structure should be passed to the AutoGKIteration
|
---|
201 | subroutine.
|
---|
202 |
|
---|
203 | SEE ALSO
|
---|
204 | AutoGKSmooth, AutoGKSmoothW, AutoGKIteration, AutoGKResults.
|
---|
205 |
|
---|
206 |
|
---|
207 | -- ALGLIB --
|
---|
208 | Copyright 06.05.2009 by Bochkanov Sergey
|
---|
209 | *************************************************************************/
|
---|
210 | public static void autogksingular(double a,
|
---|
211 | double b,
|
---|
212 | double alpha,
|
---|
213 | double beta,
|
---|
214 | ref autogkstate state)
|
---|
215 | {
|
---|
216 | state.wrappermode = 1;
|
---|
217 | state.a = a;
|
---|
218 | state.b = b;
|
---|
219 | state.alpha = alpha;
|
---|
220 | state.beta = beta;
|
---|
221 | state.xwidth = 0.0;
|
---|
222 | state.rstate.ra = new double[10+1];
|
---|
223 | state.rstate.stage = -1;
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | /*************************************************************************
|
---|
228 | One step of adaptive integration process.
|
---|
229 |
|
---|
230 | Called after initialization with one of AutoGKXXX subroutines.
|
---|
231 | See HTML documentation for examples.
|
---|
232 |
|
---|
233 | Input parameters:
|
---|
234 | State - structure which stores algorithm state between calls and
|
---|
235 | which is used for reverse communication. Must be
|
---|
236 | initialized with one of AutoGKXXX subroutines.
|
---|
237 |
|
---|
238 | If suborutine returned False, iterative proces has converged. If subroutine
|
---|
239 | returned True, caller should calculate function value State.F at State.X
|
---|
240 | and call AutoGKIteration again.
|
---|
241 |
|
---|
242 | NOTE:
|
---|
243 |
|
---|
244 | When integrating "difficult" functions with integrable singularities like
|
---|
245 |
|
---|
246 | F(x) = (x-A)^alpha * (B-x)^beta
|
---|
247 |
|
---|
248 | subroutine may require the value of F at points which are too close to A/B.
|
---|
249 | Sometimes to calculate integral with high enough precision we may need to
|
---|
250 | calculate F(A+delta) when delta is less than machine epsilon. In finite
|
---|
251 | precision arithmetics A+delta will be effectively equal to A, so we may
|
---|
252 | find us in situation when we are trying to calculate something like
|
---|
253 | 1/sqrt(1-1).
|
---|
254 |
|
---|
255 | To avoid such situations, AutoGKIteration subroutine fills not only
|
---|
256 | State.X field, but also State.XMinusA (which equals to X-A) and
|
---|
257 | State.BMinusX (which equals to B-X) fields. If X is too close to A or B
|
---|
258 | (X-A<0.001*A, or B-X<0.001*B, for example) use these fields instead of
|
---|
259 | State.X
|
---|
260 |
|
---|
261 |
|
---|
262 | -- ALGLIB --
|
---|
263 | Copyright 07.05.2009 by Bochkanov Sergey
|
---|
264 | *************************************************************************/
|
---|
265 | public static bool autogkiteration(ref autogkstate state)
|
---|
266 | {
|
---|
267 | bool result = new bool();
|
---|
268 | double s = 0;
|
---|
269 | double tmp = 0;
|
---|
270 | double eps = 0;
|
---|
271 | double a = 0;
|
---|
272 | double b = 0;
|
---|
273 | double x = 0;
|
---|
274 | double t = 0;
|
---|
275 | double alpha = 0;
|
---|
276 | double beta = 0;
|
---|
277 | double v1 = 0;
|
---|
278 | double v2 = 0;
|
---|
279 |
|
---|
280 |
|
---|
281 | //
|
---|
282 | // Reverse communication preparations
|
---|
283 | // I know it looks ugly, but it works the same way
|
---|
284 | // anywhere from C++ to Python.
|
---|
285 | //
|
---|
286 | // This code initializes locals by:
|
---|
287 | // * random values determined during code
|
---|
288 | // generation - on first subroutine call
|
---|
289 | // * values from previous call - on subsequent calls
|
---|
290 | //
|
---|
291 | if( state.rstate.stage>=0 )
|
---|
292 | {
|
---|
293 | s = state.rstate.ra[0];
|
---|
294 | tmp = state.rstate.ra[1];
|
---|
295 | eps = state.rstate.ra[2];
|
---|
296 | a = state.rstate.ra[3];
|
---|
297 | b = state.rstate.ra[4];
|
---|
298 | x = state.rstate.ra[5];
|
---|
299 | t = state.rstate.ra[6];
|
---|
300 | alpha = state.rstate.ra[7];
|
---|
301 | beta = state.rstate.ra[8];
|
---|
302 | v1 = state.rstate.ra[9];
|
---|
303 | v2 = state.rstate.ra[10];
|
---|
304 | }
|
---|
305 | else
|
---|
306 | {
|
---|
307 | s = -983;
|
---|
308 | tmp = -989;
|
---|
309 | eps = -834;
|
---|
310 | a = 900;
|
---|
311 | b = -287;
|
---|
312 | x = 364;
|
---|
313 | t = 214;
|
---|
314 | alpha = -338;
|
---|
315 | beta = -686;
|
---|
316 | v1 = 912;
|
---|
317 | v2 = 585;
|
---|
318 | }
|
---|
319 | if( state.rstate.stage==0 )
|
---|
320 | {
|
---|
321 | goto lbl_0;
|
---|
322 | }
|
---|
323 | if( state.rstate.stage==1 )
|
---|
324 | {
|
---|
325 | goto lbl_1;
|
---|
326 | }
|
---|
327 | if( state.rstate.stage==2 )
|
---|
328 | {
|
---|
329 | goto lbl_2;
|
---|
330 | }
|
---|
331 |
|
---|
332 | //
|
---|
333 | // Routine body
|
---|
334 | //
|
---|
335 | eps = 0;
|
---|
336 | a = state.a;
|
---|
337 | b = state.b;
|
---|
338 | alpha = state.alpha;
|
---|
339 | beta = state.beta;
|
---|
340 | state.terminationtype = -1;
|
---|
341 | state.nfev = 0;
|
---|
342 | state.nintervals = 0;
|
---|
343 |
|
---|
344 | //
|
---|
345 | // smooth function at a finite interval
|
---|
346 | //
|
---|
347 | if( state.wrappermode!=0 )
|
---|
348 | {
|
---|
349 | goto lbl_3;
|
---|
350 | }
|
---|
351 |
|
---|
352 | //
|
---|
353 | // special case
|
---|
354 | //
|
---|
355 | if( (double)(a)==(double)(b) )
|
---|
356 | {
|
---|
357 | state.terminationtype = 1;
|
---|
358 | state.v = 0;
|
---|
359 | result = false;
|
---|
360 | return result;
|
---|
361 | }
|
---|
362 |
|
---|
363 | //
|
---|
364 | // general case
|
---|
365 | //
|
---|
366 | autogkinternalprepare(a, b, eps, state.xwidth, ref state.internalstate);
|
---|
367 | lbl_5:
|
---|
368 | if( ! autogkinternaliteration(ref state.internalstate) )
|
---|
369 | {
|
---|
370 | goto lbl_6;
|
---|
371 | }
|
---|
372 | x = state.internalstate.x;
|
---|
373 | state.x = x;
|
---|
374 | state.xminusa = x-a;
|
---|
375 | state.bminusx = b-x;
|
---|
376 | state.rstate.stage = 0;
|
---|
377 | goto lbl_rcomm;
|
---|
378 | lbl_0:
|
---|
379 | state.nfev = state.nfev+1;
|
---|
380 | state.internalstate.f = state.f;
|
---|
381 | goto lbl_5;
|
---|
382 | lbl_6:
|
---|
383 | state.v = state.internalstate.r;
|
---|
384 | state.terminationtype = state.internalstate.info;
|
---|
385 | state.nintervals = state.internalstate.heapused;
|
---|
386 | result = false;
|
---|
387 | return result;
|
---|
388 | lbl_3:
|
---|
389 |
|
---|
390 | //
|
---|
391 | // function with power-law singularities at the ends of a finite interval
|
---|
392 | //
|
---|
393 | if( state.wrappermode!=1 )
|
---|
394 | {
|
---|
395 | goto lbl_7;
|
---|
396 | }
|
---|
397 |
|
---|
398 | //
|
---|
399 | // test coefficients
|
---|
400 | //
|
---|
401 | if( (double)(alpha)<=(double)(-1) | (double)(beta)<=(double)(-1) )
|
---|
402 | {
|
---|
403 | state.terminationtype = -1;
|
---|
404 | state.v = 0;
|
---|
405 | result = false;
|
---|
406 | return result;
|
---|
407 | }
|
---|
408 |
|
---|
409 | //
|
---|
410 | // special cases
|
---|
411 | //
|
---|
412 | if( (double)(a)==(double)(b) )
|
---|
413 | {
|
---|
414 | state.terminationtype = 1;
|
---|
415 | state.v = 0;
|
---|
416 | result = false;
|
---|
417 | return result;
|
---|
418 | }
|
---|
419 |
|
---|
420 | //
|
---|
421 | // reduction to general form
|
---|
422 | //
|
---|
423 | if( (double)(a)<(double)(b) )
|
---|
424 | {
|
---|
425 | s = +1;
|
---|
426 | }
|
---|
427 | else
|
---|
428 | {
|
---|
429 | s = -1;
|
---|
430 | tmp = a;
|
---|
431 | a = b;
|
---|
432 | b = tmp;
|
---|
433 | tmp = alpha;
|
---|
434 | alpha = beta;
|
---|
435 | beta = tmp;
|
---|
436 | }
|
---|
437 | alpha = Math.Min(alpha, 0);
|
---|
438 | beta = Math.Min(beta, 0);
|
---|
439 |
|
---|
440 | //
|
---|
441 | // first, integrate left half of [a,b]:
|
---|
442 | // integral(f(x)dx, a, (b+a)/2) =
|
---|
443 | // = 1/(1+alpha) * integral(t^(-alpha/(1+alpha))*f(a+t^(1/(1+alpha)))dt, 0, (0.5*(b-a))^(1+alpha))
|
---|
444 | //
|
---|
445 | autogkinternalprepare(0, Math.Pow(0.5*(b-a), 1+alpha), eps, state.xwidth, ref state.internalstate);
|
---|
446 | lbl_9:
|
---|
447 | if( ! autogkinternaliteration(ref state.internalstate) )
|
---|
448 | {
|
---|
449 | goto lbl_10;
|
---|
450 | }
|
---|
451 |
|
---|
452 | //
|
---|
453 | // Fill State.X, State.XMinusA, State.BMinusX.
|
---|
454 | // Latter two are filled correctly even if B<A.
|
---|
455 | //
|
---|
456 | x = state.internalstate.x;
|
---|
457 | t = Math.Pow(x, 1/(1+alpha));
|
---|
458 | state.x = a+t;
|
---|
459 | if( (double)(s)>(double)(0) )
|
---|
460 | {
|
---|
461 | state.xminusa = t;
|
---|
462 | state.bminusx = b-(a+t);
|
---|
463 | }
|
---|
464 | else
|
---|
465 | {
|
---|
466 | state.xminusa = a+t-b;
|
---|
467 | state.bminusx = -t;
|
---|
468 | }
|
---|
469 | state.rstate.stage = 1;
|
---|
470 | goto lbl_rcomm;
|
---|
471 | lbl_1:
|
---|
472 | if( (double)(alpha)!=(double)(0) )
|
---|
473 | {
|
---|
474 | state.internalstate.f = state.f*Math.Pow(x, -(alpha/(1+alpha)))/(1+alpha);
|
---|
475 | }
|
---|
476 | else
|
---|
477 | {
|
---|
478 | state.internalstate.f = state.f;
|
---|
479 | }
|
---|
480 | state.nfev = state.nfev+1;
|
---|
481 | goto lbl_9;
|
---|
482 | lbl_10:
|
---|
483 | v1 = state.internalstate.r;
|
---|
484 | state.nintervals = state.nintervals+state.internalstate.heapused;
|
---|
485 |
|
---|
486 | //
|
---|
487 | // then, integrate right half of [a,b]:
|
---|
488 | // integral(f(x)dx, (b+a)/2, b) =
|
---|
489 | // = 1/(1+beta) * integral(t^(-beta/(1+beta))*f(b-t^(1/(1+beta)))dt, 0, (0.5*(b-a))^(1+beta))
|
---|
490 | //
|
---|
491 | autogkinternalprepare(0, Math.Pow(0.5*(b-a), 1+beta), eps, state.xwidth, ref state.internalstate);
|
---|
492 | lbl_11:
|
---|
493 | if( ! autogkinternaliteration(ref state.internalstate) )
|
---|
494 | {
|
---|
495 | goto lbl_12;
|
---|
496 | }
|
---|
497 |
|
---|
498 | //
|
---|
499 | // Fill State.X, State.XMinusA, State.BMinusX.
|
---|
500 | // Latter two are filled correctly (X-A, B-X) even if B<A.
|
---|
501 | //
|
---|
502 | x = state.internalstate.x;
|
---|
503 | t = Math.Pow(x, 1/(1+beta));
|
---|
504 | state.x = b-t;
|
---|
505 | if( (double)(s)>(double)(0) )
|
---|
506 | {
|
---|
507 | state.xminusa = b-t-a;
|
---|
508 | state.bminusx = t;
|
---|
509 | }
|
---|
510 | else
|
---|
511 | {
|
---|
512 | state.xminusa = -t;
|
---|
513 | state.bminusx = a-(b-t);
|
---|
514 | }
|
---|
515 | state.rstate.stage = 2;
|
---|
516 | goto lbl_rcomm;
|
---|
517 | lbl_2:
|
---|
518 | if( (double)(beta)!=(double)(0) )
|
---|
519 | {
|
---|
520 | state.internalstate.f = state.f*Math.Pow(x, -(beta/(1+beta)))/(1+beta);
|
---|
521 | }
|
---|
522 | else
|
---|
523 | {
|
---|
524 | state.internalstate.f = state.f;
|
---|
525 | }
|
---|
526 | state.nfev = state.nfev+1;
|
---|
527 | goto lbl_11;
|
---|
528 | lbl_12:
|
---|
529 | v2 = state.internalstate.r;
|
---|
530 | state.nintervals = state.nintervals+state.internalstate.heapused;
|
---|
531 |
|
---|
532 | //
|
---|
533 | // final result
|
---|
534 | //
|
---|
535 | state.v = s*(v1+v2);
|
---|
536 | state.terminationtype = 1;
|
---|
537 | result = false;
|
---|
538 | return result;
|
---|
539 | lbl_7:
|
---|
540 | result = false;
|
---|
541 | return result;
|
---|
542 |
|
---|
543 | //
|
---|
544 | // Saving state
|
---|
545 | //
|
---|
546 | lbl_rcomm:
|
---|
547 | result = true;
|
---|
548 | state.rstate.ra[0] = s;
|
---|
549 | state.rstate.ra[1] = tmp;
|
---|
550 | state.rstate.ra[2] = eps;
|
---|
551 | state.rstate.ra[3] = a;
|
---|
552 | state.rstate.ra[4] = b;
|
---|
553 | state.rstate.ra[5] = x;
|
---|
554 | state.rstate.ra[6] = t;
|
---|
555 | state.rstate.ra[7] = alpha;
|
---|
556 | state.rstate.ra[8] = beta;
|
---|
557 | state.rstate.ra[9] = v1;
|
---|
558 | state.rstate.ra[10] = v2;
|
---|
559 | return result;
|
---|
560 | }
|
---|
561 |
|
---|
562 |
|
---|
563 | /*************************************************************************
|
---|
564 | Adaptive integration results
|
---|
565 |
|
---|
566 | Called after AutoGKIteration returned False.
|
---|
567 |
|
---|
568 | Input parameters:
|
---|
569 | State - algorithm state (used by AutoGKIteration).
|
---|
570 |
|
---|
571 | Output parameters:
|
---|
572 | V - integral(f(x)dx,a,b)
|
---|
573 | Rep - optimization report (see AutoGKReport description)
|
---|
574 |
|
---|
575 | -- ALGLIB --
|
---|
576 | Copyright 14.11.2007 by Bochkanov Sergey
|
---|
577 | *************************************************************************/
|
---|
578 | public static void autogkresults(ref autogkstate state,
|
---|
579 | ref double v,
|
---|
580 | ref autogkreport rep)
|
---|
581 | {
|
---|
582 | v = state.v;
|
---|
583 | rep.terminationtype = state.terminationtype;
|
---|
584 | rep.nfev = state.nfev;
|
---|
585 | rep.nintervals = state.nintervals;
|
---|
586 | }
|
---|
587 |
|
---|
588 |
|
---|
589 | /*************************************************************************
|
---|
590 | Internal AutoGK subroutine
|
---|
591 | eps<0 - error
|
---|
592 | eps=0 - automatic eps selection
|
---|
593 |
|
---|
594 | width<0 - error
|
---|
595 | width=0 - no width requirements
|
---|
596 | *************************************************************************/
|
---|
597 | private static void autogkinternalprepare(double a,
|
---|
598 | double b,
|
---|
599 | double eps,
|
---|
600 | double xwidth,
|
---|
601 | ref autogkinternalstate state)
|
---|
602 | {
|
---|
603 |
|
---|
604 | //
|
---|
605 | // Save settings
|
---|
606 | //
|
---|
607 | state.a = a;
|
---|
608 | state.b = b;
|
---|
609 | state.eps = eps;
|
---|
610 | state.xwidth = xwidth;
|
---|
611 |
|
---|
612 | //
|
---|
613 | // Prepare RComm structure
|
---|
614 | //
|
---|
615 | state.rstate.ia = new int[3+1];
|
---|
616 | state.rstate.ra = new double[8+1];
|
---|
617 | state.rstate.stage = -1;
|
---|
618 | }
|
---|
619 |
|
---|
620 |
|
---|
621 | /*************************************************************************
|
---|
622 | Internal AutoGK subroutine
|
---|
623 | *************************************************************************/
|
---|
624 | private static bool autogkinternaliteration(ref autogkinternalstate state)
|
---|
625 | {
|
---|
626 | bool result = new bool();
|
---|
627 | double c1 = 0;
|
---|
628 | double c2 = 0;
|
---|
629 | int i = 0;
|
---|
630 | int j = 0;
|
---|
631 | double intg = 0;
|
---|
632 | double intk = 0;
|
---|
633 | double inta = 0;
|
---|
634 | double v = 0;
|
---|
635 | double ta = 0;
|
---|
636 | double tb = 0;
|
---|
637 | int ns = 0;
|
---|
638 | double qeps = 0;
|
---|
639 | int info = 0;
|
---|
640 |
|
---|
641 |
|
---|
642 | //
|
---|
643 | // Reverse communication preparations
|
---|
644 | // I know it looks ugly, but it works the same way
|
---|
645 | // anywhere from C++ to Python.
|
---|
646 | //
|
---|
647 | // This code initializes locals by:
|
---|
648 | // * random values determined during code
|
---|
649 | // generation - on first subroutine call
|
---|
650 | // * values from previous call - on subsequent calls
|
---|
651 | //
|
---|
652 | if( state.rstate.stage>=0 )
|
---|
653 | {
|
---|
654 | i = state.rstate.ia[0];
|
---|
655 | j = state.rstate.ia[1];
|
---|
656 | ns = state.rstate.ia[2];
|
---|
657 | info = state.rstate.ia[3];
|
---|
658 | c1 = state.rstate.ra[0];
|
---|
659 | c2 = state.rstate.ra[1];
|
---|
660 | intg = state.rstate.ra[2];
|
---|
661 | intk = state.rstate.ra[3];
|
---|
662 | inta = state.rstate.ra[4];
|
---|
663 | v = state.rstate.ra[5];
|
---|
664 | ta = state.rstate.ra[6];
|
---|
665 | tb = state.rstate.ra[7];
|
---|
666 | qeps = state.rstate.ra[8];
|
---|
667 | }
|
---|
668 | else
|
---|
669 | {
|
---|
670 | i = 497;
|
---|
671 | j = -271;
|
---|
672 | ns = -581;
|
---|
673 | info = 745;
|
---|
674 | c1 = -533;
|
---|
675 | c2 = -77;
|
---|
676 | intg = 678;
|
---|
677 | intk = -293;
|
---|
678 | inta = 316;
|
---|
679 | v = 647;
|
---|
680 | ta = -756;
|
---|
681 | tb = 830;
|
---|
682 | qeps = -871;
|
---|
683 | }
|
---|
684 | if( state.rstate.stage==0 )
|
---|
685 | {
|
---|
686 | goto lbl_0;
|
---|
687 | }
|
---|
688 | if( state.rstate.stage==1 )
|
---|
689 | {
|
---|
690 | goto lbl_1;
|
---|
691 | }
|
---|
692 | if( state.rstate.stage==2 )
|
---|
693 | {
|
---|
694 | goto lbl_2;
|
---|
695 | }
|
---|
696 |
|
---|
697 | //
|
---|
698 | // Routine body
|
---|
699 | //
|
---|
700 |
|
---|
701 | //
|
---|
702 | // initialize quadratures.
|
---|
703 | // use 15-point Gauss-Kronrod formula.
|
---|
704 | //
|
---|
705 | state.n = 15;
|
---|
706 | gkq.gkqgenerategausslegendre(state.n, ref info, ref state.qn, ref state.wk, ref state.wg);
|
---|
707 | if( info<0 )
|
---|
708 | {
|
---|
709 | state.info = -5;
|
---|
710 | state.r = 0;
|
---|
711 | result = false;
|
---|
712 | return result;
|
---|
713 | }
|
---|
714 | state.wr = new double[state.n];
|
---|
715 | for(i=0; i<=state.n-1; i++)
|
---|
716 | {
|
---|
717 | if( i==0 )
|
---|
718 | {
|
---|
719 | state.wr[i] = 0.5*Math.Abs(state.qn[1]-state.qn[0]);
|
---|
720 | continue;
|
---|
721 | }
|
---|
722 | if( i==state.n-1 )
|
---|
723 | {
|
---|
724 | state.wr[state.n-1] = 0.5*Math.Abs(state.qn[state.n-1]-state.qn[state.n-2]);
|
---|
725 | continue;
|
---|
726 | }
|
---|
727 | state.wr[i] = 0.5*Math.Abs(state.qn[i-1]-state.qn[i+1]);
|
---|
728 | }
|
---|
729 |
|
---|
730 | //
|
---|
731 | // special case
|
---|
732 | //
|
---|
733 | if( (double)(state.a)==(double)(state.b) )
|
---|
734 | {
|
---|
735 | state.info = 1;
|
---|
736 | state.r = 0;
|
---|
737 | result = false;
|
---|
738 | return result;
|
---|
739 | }
|
---|
740 |
|
---|
741 | //
|
---|
742 | // test parameters
|
---|
743 | //
|
---|
744 | if( (double)(state.eps)<(double)(0) | (double)(state.xwidth)<(double)(0) )
|
---|
745 | {
|
---|
746 | state.info = -1;
|
---|
747 | state.r = 0;
|
---|
748 | result = false;
|
---|
749 | return result;
|
---|
750 | }
|
---|
751 | state.info = 1;
|
---|
752 | if( (double)(state.eps)==(double)(0) )
|
---|
753 | {
|
---|
754 | state.eps = 1000*AP.Math.MachineEpsilon;
|
---|
755 | }
|
---|
756 |
|
---|
757 | //
|
---|
758 | // First, prepare heap
|
---|
759 | // * column 0 - absolute error
|
---|
760 | // * column 1 - integral of a F(x) (calculated using Kronrod extension nodes)
|
---|
761 | // * column 2 - integral of a |F(x)| (calculated using modified rect. method)
|
---|
762 | // * column 3 - left boundary of a subinterval
|
---|
763 | // * column 4 - right boundary of a subinterval
|
---|
764 | //
|
---|
765 | if( (double)(state.xwidth)!=(double)(0) )
|
---|
766 | {
|
---|
767 | goto lbl_3;
|
---|
768 | }
|
---|
769 |
|
---|
770 | //
|
---|
771 | // no maximum width requirements
|
---|
772 | // start from one big subinterval
|
---|
773 | //
|
---|
774 | state.heapwidth = 5;
|
---|
775 | state.heapsize = 1;
|
---|
776 | state.heapused = 1;
|
---|
777 | state.heap = new double[state.heapsize, state.heapwidth];
|
---|
778 | c1 = 0.5*(state.b-state.a);
|
---|
779 | c2 = 0.5*(state.b+state.a);
|
---|
780 | intg = 0;
|
---|
781 | intk = 0;
|
---|
782 | inta = 0;
|
---|
783 | i = 0;
|
---|
784 | lbl_5:
|
---|
785 | if( i>state.n-1 )
|
---|
786 | {
|
---|
787 | goto lbl_7;
|
---|
788 | }
|
---|
789 |
|
---|
790 | //
|
---|
791 | // obtain F
|
---|
792 | //
|
---|
793 | state.x = c1*state.qn[i]+c2;
|
---|
794 | state.rstate.stage = 0;
|
---|
795 | goto lbl_rcomm;
|
---|
796 | lbl_0:
|
---|
797 | v = state.f;
|
---|
798 |
|
---|
799 | //
|
---|
800 | // Gauss-Kronrod formula
|
---|
801 | //
|
---|
802 | intk = intk+v*state.wk[i];
|
---|
803 | if( i%2==1 )
|
---|
804 | {
|
---|
805 | intg = intg+v*state.wg[i];
|
---|
806 | }
|
---|
807 |
|
---|
808 | //
|
---|
809 | // Integral |F(x)|
|
---|
810 | // Use rectangles method
|
---|
811 | //
|
---|
812 | inta = inta+Math.Abs(v)*state.wr[i];
|
---|
813 | i = i+1;
|
---|
814 | goto lbl_5;
|
---|
815 | lbl_7:
|
---|
816 | intk = intk*(state.b-state.a)*0.5;
|
---|
817 | intg = intg*(state.b-state.a)*0.5;
|
---|
818 | inta = inta*(state.b-state.a)*0.5;
|
---|
819 | state.heap[0,0] = Math.Abs(intg-intk);
|
---|
820 | state.heap[0,1] = intk;
|
---|
821 | state.heap[0,2] = inta;
|
---|
822 | state.heap[0,3] = state.a;
|
---|
823 | state.heap[0,4] = state.b;
|
---|
824 | state.sumerr = state.heap[0,0];
|
---|
825 | state.sumabs = Math.Abs(inta);
|
---|
826 | goto lbl_4;
|
---|
827 | lbl_3:
|
---|
828 |
|
---|
829 | //
|
---|
830 | // maximum subinterval should be no more than XWidth.
|
---|
831 | // so we create Ceil((B-A)/XWidth)+1 small subintervals
|
---|
832 | //
|
---|
833 | ns = (int)Math.Ceiling(Math.Abs(state.b-state.a)/state.xwidth)+1;
|
---|
834 | state.heapsize = ns;
|
---|
835 | state.heapused = ns;
|
---|
836 | state.heapwidth = 5;
|
---|
837 | state.heap = new double[state.heapsize, state.heapwidth];
|
---|
838 | state.sumerr = 0;
|
---|
839 | state.sumabs = 0;
|
---|
840 | j = 0;
|
---|
841 | lbl_8:
|
---|
842 | if( j>ns-1 )
|
---|
843 | {
|
---|
844 | goto lbl_10;
|
---|
845 | }
|
---|
846 | ta = state.a+j*(state.b-state.a)/ns;
|
---|
847 | tb = state.a+(j+1)*(state.b-state.a)/ns;
|
---|
848 | c1 = 0.5*(tb-ta);
|
---|
849 | c2 = 0.5*(tb+ta);
|
---|
850 | intg = 0;
|
---|
851 | intk = 0;
|
---|
852 | inta = 0;
|
---|
853 | i = 0;
|
---|
854 | lbl_11:
|
---|
855 | if( i>state.n-1 )
|
---|
856 | {
|
---|
857 | goto lbl_13;
|
---|
858 | }
|
---|
859 |
|
---|
860 | //
|
---|
861 | // obtain F
|
---|
862 | //
|
---|
863 | state.x = c1*state.qn[i]+c2;
|
---|
864 | state.rstate.stage = 1;
|
---|
865 | goto lbl_rcomm;
|
---|
866 | lbl_1:
|
---|
867 | v = state.f;
|
---|
868 |
|
---|
869 | //
|
---|
870 | // Gauss-Kronrod formula
|
---|
871 | //
|
---|
872 | intk = intk+v*state.wk[i];
|
---|
873 | if( i%2==1 )
|
---|
874 | {
|
---|
875 | intg = intg+v*state.wg[i];
|
---|
876 | }
|
---|
877 |
|
---|
878 | //
|
---|
879 | // Integral |F(x)|
|
---|
880 | // Use rectangles method
|
---|
881 | //
|
---|
882 | inta = inta+Math.Abs(v)*state.wr[i];
|
---|
883 | i = i+1;
|
---|
884 | goto lbl_11;
|
---|
885 | lbl_13:
|
---|
886 | intk = intk*(tb-ta)*0.5;
|
---|
887 | intg = intg*(tb-ta)*0.5;
|
---|
888 | inta = inta*(tb-ta)*0.5;
|
---|
889 | state.heap[j,0] = Math.Abs(intg-intk);
|
---|
890 | state.heap[j,1] = intk;
|
---|
891 | state.heap[j,2] = inta;
|
---|
892 | state.heap[j,3] = ta;
|
---|
893 | state.heap[j,4] = tb;
|
---|
894 | state.sumerr = state.sumerr+state.heap[j,0];
|
---|
895 | state.sumabs = state.sumabs+Math.Abs(inta);
|
---|
896 | j = j+1;
|
---|
897 | goto lbl_8;
|
---|
898 | lbl_10:
|
---|
899 | lbl_4:
|
---|
900 |
|
---|
901 | //
|
---|
902 | // method iterations
|
---|
903 | //
|
---|
904 | lbl_14:
|
---|
905 | if( false )
|
---|
906 | {
|
---|
907 | goto lbl_15;
|
---|
908 | }
|
---|
909 |
|
---|
910 | //
|
---|
911 | // additional memory if needed
|
---|
912 | //
|
---|
913 | if( state.heapused==state.heapsize )
|
---|
914 | {
|
---|
915 | mheapresize(ref state.heap, ref state.heapsize, 4*state.heapsize, state.heapwidth);
|
---|
916 | }
|
---|
917 |
|
---|
918 | //
|
---|
919 | // TODO: every 20 iterations recalculate errors/sums
|
---|
920 | // TODO: one more criterion to prevent infinite loops with too strict Eps
|
---|
921 | //
|
---|
922 | if( (double)(state.sumerr)<=(double)(state.eps*state.sumabs) )
|
---|
923 | {
|
---|
924 | state.r = 0;
|
---|
925 | for(j=0; j<=state.heapused-1; j++)
|
---|
926 | {
|
---|
927 | state.r = state.r+state.heap[j,1];
|
---|
928 | }
|
---|
929 | result = false;
|
---|
930 | return result;
|
---|
931 | }
|
---|
932 |
|
---|
933 | //
|
---|
934 | // Exclude interval with maximum absolute error
|
---|
935 | //
|
---|
936 | mheappop(ref state.heap, state.heapused, state.heapwidth);
|
---|
937 | state.sumerr = state.sumerr-state.heap[state.heapused-1,0];
|
---|
938 | state.sumabs = state.sumabs-state.heap[state.heapused-1,2];
|
---|
939 |
|
---|
940 | //
|
---|
941 | // Divide interval, create subintervals
|
---|
942 | //
|
---|
943 | ta = state.heap[state.heapused-1,3];
|
---|
944 | tb = state.heap[state.heapused-1,4];
|
---|
945 | state.heap[state.heapused-1,3] = ta;
|
---|
946 | state.heap[state.heapused-1,4] = 0.5*(ta+tb);
|
---|
947 | state.heap[state.heapused,3] = 0.5*(ta+tb);
|
---|
948 | state.heap[state.heapused,4] = tb;
|
---|
949 | j = state.heapused-1;
|
---|
950 | lbl_16:
|
---|
951 | if( j>state.heapused )
|
---|
952 | {
|
---|
953 | goto lbl_18;
|
---|
954 | }
|
---|
955 | c1 = 0.5*(state.heap[j,4]-state.heap[j,3]);
|
---|
956 | c2 = 0.5*(state.heap[j,4]+state.heap[j,3]);
|
---|
957 | intg = 0;
|
---|
958 | intk = 0;
|
---|
959 | inta = 0;
|
---|
960 | i = 0;
|
---|
961 | lbl_19:
|
---|
962 | if( i>state.n-1 )
|
---|
963 | {
|
---|
964 | goto lbl_21;
|
---|
965 | }
|
---|
966 |
|
---|
967 | //
|
---|
968 | // F(x)
|
---|
969 | //
|
---|
970 | state.x = c1*state.qn[i]+c2;
|
---|
971 | state.rstate.stage = 2;
|
---|
972 | goto lbl_rcomm;
|
---|
973 | lbl_2:
|
---|
974 | v = state.f;
|
---|
975 |
|
---|
976 | //
|
---|
977 | // Gauss-Kronrod formula
|
---|
978 | //
|
---|
979 | intk = intk+v*state.wk[i];
|
---|
980 | if( i%2==1 )
|
---|
981 | {
|
---|
982 | intg = intg+v*state.wg[i];
|
---|
983 | }
|
---|
984 |
|
---|
985 | //
|
---|
986 | // Integral |F(x)|
|
---|
987 | // Use rectangles method
|
---|
988 | //
|
---|
989 | inta = inta+Math.Abs(v)*state.wr[i];
|
---|
990 | i = i+1;
|
---|
991 | goto lbl_19;
|
---|
992 | lbl_21:
|
---|
993 | intk = intk*(state.heap[j,4]-state.heap[j,3])*0.5;
|
---|
994 | intg = intg*(state.heap[j,4]-state.heap[j,3])*0.5;
|
---|
995 | inta = inta*(state.heap[j,4]-state.heap[j,3])*0.5;
|
---|
996 | state.heap[j,0] = Math.Abs(intg-intk);
|
---|
997 | state.heap[j,1] = intk;
|
---|
998 | state.heap[j,2] = inta;
|
---|
999 | state.sumerr = state.sumerr+state.heap[j,0];
|
---|
1000 | state.sumabs = state.sumabs+state.heap[j,2];
|
---|
1001 | j = j+1;
|
---|
1002 | goto lbl_16;
|
---|
1003 | lbl_18:
|
---|
1004 | mheappush(ref state.heap, state.heapused-1, state.heapwidth);
|
---|
1005 | mheappush(ref state.heap, state.heapused, state.heapwidth);
|
---|
1006 | state.heapused = state.heapused+1;
|
---|
1007 | goto lbl_14;
|
---|
1008 | lbl_15:
|
---|
1009 | result = false;
|
---|
1010 | return result;
|
---|
1011 |
|
---|
1012 | //
|
---|
1013 | // Saving state
|
---|
1014 | //
|
---|
1015 | lbl_rcomm:
|
---|
1016 | result = true;
|
---|
1017 | state.rstate.ia[0] = i;
|
---|
1018 | state.rstate.ia[1] = j;
|
---|
1019 | state.rstate.ia[2] = ns;
|
---|
1020 | state.rstate.ia[3] = info;
|
---|
1021 | state.rstate.ra[0] = c1;
|
---|
1022 | state.rstate.ra[1] = c2;
|
---|
1023 | state.rstate.ra[2] = intg;
|
---|
1024 | state.rstate.ra[3] = intk;
|
---|
1025 | state.rstate.ra[4] = inta;
|
---|
1026 | state.rstate.ra[5] = v;
|
---|
1027 | state.rstate.ra[6] = ta;
|
---|
1028 | state.rstate.ra[7] = tb;
|
---|
1029 | state.rstate.ra[8] = qeps;
|
---|
1030 | return result;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 |
|
---|
1034 | private static void mheappop(ref double[,] heap,
|
---|
1035 | int heapsize,
|
---|
1036 | int heapwidth)
|
---|
1037 | {
|
---|
1038 | int i = 0;
|
---|
1039 | int p = 0;
|
---|
1040 | double t = 0;
|
---|
1041 | int maxcp = 0;
|
---|
1042 |
|
---|
1043 | if( heapsize==1 )
|
---|
1044 | {
|
---|
1045 | return;
|
---|
1046 | }
|
---|
1047 | for(i=0; i<=heapwidth-1; i++)
|
---|
1048 | {
|
---|
1049 | t = heap[heapsize-1,i];
|
---|
1050 | heap[heapsize-1,i] = heap[0,i];
|
---|
1051 | heap[0,i] = t;
|
---|
1052 | }
|
---|
1053 | p = 0;
|
---|
1054 | while( 2*p+1<heapsize-1 )
|
---|
1055 | {
|
---|
1056 | maxcp = 2*p+1;
|
---|
1057 | if( 2*p+2<heapsize-1 )
|
---|
1058 | {
|
---|
1059 | if( (double)(heap[2*p+2,0])>(double)(heap[2*p+1,0]) )
|
---|
1060 | {
|
---|
1061 | maxcp = 2*p+2;
|
---|
1062 | }
|
---|
1063 | }
|
---|
1064 | if( (double)(heap[p,0])<(double)(heap[maxcp,0]) )
|
---|
1065 | {
|
---|
1066 | for(i=0; i<=heapwidth-1; i++)
|
---|
1067 | {
|
---|
1068 | t = heap[p,i];
|
---|
1069 | heap[p,i] = heap[maxcp,i];
|
---|
1070 | heap[maxcp,i] = t;
|
---|
1071 | }
|
---|
1072 | p = maxcp;
|
---|
1073 | }
|
---|
1074 | else
|
---|
1075 | {
|
---|
1076 | break;
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 |
|
---|
1082 | private static void mheappush(ref double[,] heap,
|
---|
1083 | int heapsize,
|
---|
1084 | int heapwidth)
|
---|
1085 | {
|
---|
1086 | int i = 0;
|
---|
1087 | int p = 0;
|
---|
1088 | double t = 0;
|
---|
1089 | int parent = 0;
|
---|
1090 |
|
---|
1091 | if( heapsize==0 )
|
---|
1092 | {
|
---|
1093 | return;
|
---|
1094 | }
|
---|
1095 | p = heapsize;
|
---|
1096 | while( p!=0 )
|
---|
1097 | {
|
---|
1098 | parent = (p-1)/2;
|
---|
1099 | if( (double)(heap[p,0])>(double)(heap[parent,0]) )
|
---|
1100 | {
|
---|
1101 | for(i=0; i<=heapwidth-1; i++)
|
---|
1102 | {
|
---|
1103 | t = heap[p,i];
|
---|
1104 | heap[p,i] = heap[parent,i];
|
---|
1105 | heap[parent,i] = t;
|
---|
1106 | }
|
---|
1107 | p = parent;
|
---|
1108 | }
|
---|
1109 | else
|
---|
1110 | {
|
---|
1111 | break;
|
---|
1112 | }
|
---|
1113 | }
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 |
|
---|
1117 | private static void mheapresize(ref double[,] heap,
|
---|
1118 | ref int heapsize,
|
---|
1119 | int newheapsize,
|
---|
1120 | int heapwidth)
|
---|
1121 | {
|
---|
1122 | double[,] tmp = new double[0,0];
|
---|
1123 | int i = 0;
|
---|
1124 | int i_ = 0;
|
---|
1125 |
|
---|
1126 | tmp = new double[heapsize, heapwidth];
|
---|
1127 | for(i=0; i<=heapsize-1; i++)
|
---|
1128 | {
|
---|
1129 | for(i_=0; i_<=heapwidth-1;i_++)
|
---|
1130 | {
|
---|
1131 | tmp[i,i_] = heap[i,i_];
|
---|
1132 | }
|
---|
1133 | }
|
---|
1134 | heap = new double[newheapsize, heapwidth];
|
---|
1135 | for(i=0; i<=heapsize-1; i++)
|
---|
1136 | {
|
---|
1137 | for(i_=0; i_<=heapwidth-1;i_++)
|
---|
1138 | {
|
---|
1139 | heap[i,i_] = tmp[i,i_];
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 | heapsize = newheapsize;
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 | }
|
---|