Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Crossovers/SubtreeCrossover.cs @ 10011

Last change on this file since 10011 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 10.6 KB
RevLine 
[645]1#region License Information
2/* HeuristicLab
[9456]3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[645]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[4068]22using System;
[645]23using System.Collections.Generic;
[4068]24using System.Linq;
[4722]25using HeuristicLab.Common;
[645]26using HeuristicLab.Core;
[3237]27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
[4068]29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[645]30
[5499]31namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
[3237]32  /// <summary>
33  /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
34  /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
35  /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
36  /// until a valid configuration is found.
37  /// </summary> 
[7506]38  [Item("SubtreeSwappingCrossover", "An operator which performs subtree swapping crossover.")]
[3237]39  [StorableClass]
[7506]40  public class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator {
[5499]41    private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
42    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
43    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
[7506]44
[5499]45    #region Parameter Properties
[3237]46    public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
[5499]47      get { return (IValueLookupParameter<PercentValue>)Parameters[InternalCrossoverPointProbabilityParameterName]; }
[645]48    }
[5499]49    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
50      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
51    }
52    public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
53      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
54    }
55    #endregion
56    #region Properties
57    public PercentValue InternalCrossoverPointProbability {
58      get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
59    }
60    public IntValue MaximumSymbolicExpressionTreeLength {
61      get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
62    }
63    public IntValue MaximumSymbolicExpressionTreeDepth {
64      get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
65    }
66    #endregion
[4722]67    [StorableConstructor]
[7506]68    protected SubtreeCrossover(bool deserializing) : base(deserializing) { }
69    protected SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { }
[3237]70    public SubtreeCrossover()
71      : base() {
[5499]72      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
73      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
74      Parameters.Add(new ValueLookupParameter<PercentValue>(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
[3237]75    }
76
[4722]77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new SubtreeCrossover(this, cloner);
79    }
80
[7506]81    public override ISymbolicExpressionTree Crossover(IRandom random,
[5510]82      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
[5499]83      return Cross(random, parent0, parent1, InternalCrossoverPointProbability.Value,
84        MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
[3237]85    }
86
[5510]87    public static ISymbolicExpressionTree Cross(IRandom random,
88      ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
[5549]89      double internalCrossoverPointProbability, int maxTreeLength, int maxTreeDepth) {
[3294]90      // select a random crossover point in the first parent
[5916]91      CutPoint crossoverPoint0;
92      SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeLength, maxTreeDepth, out crossoverPoint0);
[645]93
[5916]94      int childLength = crossoverPoint0.Child != null ? crossoverPoint0.Child.GetLength() : 0;
[5549]95      // calculate the max length and depth that the inserted branch can have
[5916]96      int maxInsertedBranchLength = maxTreeLength - (parent0.Length - childLength);
[7506]97      int maxInsertedBranchDepth = maxTreeDepth - parent0.Root.GetBranchLevel(crossoverPoint0.Parent);
[645]98
[5510]99      List<ISymbolicExpressionTreeNode> allowedBranches = new List<ISymbolicExpressionTreeNode>();
[3997]100      parent1.Root.ForEachNodePostfix((n) => {
[5549]101        if (n.GetLength() <= maxInsertedBranchLength &&
[7506]102            n.GetDepth() <= maxInsertedBranchDepth && crossoverPoint0.IsMatchingPointType(n))
[3997]103          allowedBranches.Add(n);
104      });
[5916]105      // empty branch
[7506]106      if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null);
[645]107
[3997]108      if (allowedBranches.Count == 0) {
[3297]109        return parent0;
110      } else {
[3294]111        var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
[645]112
[5916]113        if (crossoverPoint0.Child != null) {
114          // manipulate the tree of parent0 in place
115          // replace the branch in tree0 with the selected branch from tree1
116          crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex);
117          if (selectedBranch != null) {
118            crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch);
119          }
120        } else {
121          // child is null (additional child should be added under the parent)
122          if (selectedBranch != null) {
123            crossoverPoint0.Parent.AddSubtree(selectedBranch);
124          }
125        }
[3294]126        return parent0;
[645]127      }
128    }
129
[5916]130    private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchLength, int maxBranchDepth, out CutPoint crossoverPoint) {
[3997]131      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
[5686]132      List<CutPoint> internalCrossoverPoints = new List<CutPoint>();
133      List<CutPoint> leafCrossoverPoints = new List<CutPoint>();
[3997]134      parent0.Root.ForEachNodePostfix((n) => {
[7506]135        if (n.SubtreeCount > 0 && n != parent0.Root) {
[5733]136          foreach (var child in n.Subtrees) {
[5549]137            if (child.GetLength() <= maxBranchLength &&
138                child.GetDepth() <= maxBranchDepth) {
[7506]139              if (child.SubtreeCount > 0)
[5686]140                internalCrossoverPoints.Add(new CutPoint(n, child));
[5367]141              else
[5686]142                leafCrossoverPoints.Add(new CutPoint(n, child));
[5367]143            }
[3997]144          }
[7506]145
[5916]146          // add one additional extension point if the number of sub trees for the symbol is not full
[6803]147          if (n.SubtreeCount < n.Grammar.GetMaximumSubtreeCount(n.Symbol)) {
[5916]148            // empty extension point
[6803]149            internalCrossoverPoints.Add(new CutPoint(n, n.SubtreeCount));
[5916]150          }
[3997]151        }
[7506]152      }
153    );
[5367]154
[3997]155      if (random.NextDouble() < internalNodeProbability) {
156        // select from internal node if possible
157        if (internalCrossoverPoints.Count > 0) {
158          // select internal crossover point or leaf
[5916]159          crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
[3997]160        } else {
161          // otherwise select external node
[5916]162          crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
[3997]163        }
164      } else if (leafCrossoverPoints.Count > 0) {
165        // select from leaf crossover point if possible
[5916]166        crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
[3997]167      } else {
168        // otherwise select internal crossover point
[5916]169        crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
[645]170      }
171    }
[3237]172
[5510]173    private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<ISymbolicExpressionTreeNode> branches, double internalNodeProbability) {
[3237]174      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
[5510]175      List<ISymbolicExpressionTreeNode> allowedInternalBranches;
176      List<ISymbolicExpressionTreeNode> allowedLeafBranches;
[3997]177      if (random.NextDouble() < internalNodeProbability) {
178        // select internal node if possible
179        allowedInternalBranches = (from branch in branches
[7506]180                                   where branch != null && branch.SubtreeCount > 0
[3997]181                                   select branch).ToList();
182        if (allowedInternalBranches.Count > 0) {
183          return allowedInternalBranches.SelectRandom(random);
184        } else {
185          // no internal nodes allowed => select leaf nodes
186          allowedLeafBranches = (from branch in branches
[7506]187                                 where branch == null || branch.SubtreeCount == 0
[3989]188                                 select branch).ToList();
[3997]189          return allowedLeafBranches.SelectRandom(random);
190        }
[3237]191      } else {
[3997]192        // select leaf node if possible
193        allowedLeafBranches = (from branch in branches
[7506]194                               where branch == null || branch.SubtreeCount == 0
[3997]195                               select branch).ToList();
196        if (allowedLeafBranches.Count > 0) {
197          return allowedLeafBranches.SelectRandom(random);
198        } else {
199          allowedInternalBranches = (from branch in branches
[7506]200                                     where branch != null && branch.SubtreeCount > 0
[3997]201                                     select branch).ToList();
202          return allowedInternalBranches.SelectRandom(random);
203        }
[3237]204      }
205    }
[645]206  }
207}
Note: See TracBrowser for help on using the repository browser.