[4189] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[5445] | 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[4189] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[4722] | 25 | using HeuristicLab.Common;
|
---|
[4189] | 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[4722] | 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators;
|
---|
[4189] | 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Manipulators {
|
---|
| 33 | [StorableClass]
|
---|
| 34 | [Item("ReplaceBranchManipulation", "Selects a branch of the tree randomly and replaces it with a newly initialized branch (using PTC2).")]
|
---|
[4722] | 35 | public sealed class ReplaceBranchManipulation : SymbolicExpressionTreeManipulator {
|
---|
| 36 | [StorableConstructor]
|
---|
| 37 | private ReplaceBranchManipulation(bool deserializing) : base(deserializing) { }
|
---|
| 38 | private ReplaceBranchManipulation(ReplaceBranchManipulation original, Cloner cloner) : base(original, cloner) { }
|
---|
| 39 | public ReplaceBranchManipulation() : base() { }
|
---|
[4189] | 40 |
|
---|
[4722] | 41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 42 | return new ReplaceBranchManipulation(this, cloner);
|
---|
[4189] | 43 | }
|
---|
| 44 |
|
---|
| 45 | protected override void Manipulate(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, IntValue maxTreeSize, IntValue maxTreeHeight, out bool success) {
|
---|
| 46 | ReplaceRandomBranch(random, symbolicExpressionTree, grammar, maxTreeSize.Value, maxTreeHeight.Value, out success);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public static void ReplaceRandomBranch(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, int maxTreeSize, int maxTreeHeight, out bool success) {
|
---|
| 50 | success = false;
|
---|
| 51 | // select any node as parent (except the root node)
|
---|
| 52 | var manipulationPoint = (from parent in symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1)
|
---|
| 53 | from subtree in parent.SubTrees
|
---|
| 54 | select new { Parent = parent, Node = subtree, Index = parent.SubTrees.IndexOf(subtree) }).SelectRandom(random);
|
---|
[5014] | 55 |
|
---|
| 56 | int maxSize = maxTreeSize - symbolicExpressionTree.Size + manipulationPoint.Node.GetSize();
|
---|
| 57 | int maxHeight = maxTreeHeight - symbolicExpressionTree.Height + manipulationPoint.Node.GetHeight();
|
---|
[4189] | 58 | // find possible symbols for the node (also considering the existing branches below it)
|
---|
[5015] | 59 | var allowedSymbols = from symbol in manipulationPoint.Parent.GetAllowedSymbols(manipulationPoint.Index)
|
---|
| 60 | where manipulationPoint.Node.Grammar.GetMinExpressionDepth(symbol) <= maxHeight
|
---|
| 61 | where manipulationPoint.Node.Grammar.GetMinExpressionLength(symbol) <= maxSize
|
---|
[4189] | 62 | select symbol;
|
---|
[5367] | 63 | if (allowedSymbols.Count() == 0) return;
|
---|
[4189] | 64 |
|
---|
[5014] | 65 | var seedSymbol = SelectRandomSymbol(random, allowedSymbols); // replace the old node with the new node
|
---|
[4189] | 66 | var seedNode = seedSymbol.CreateTreeNode();
|
---|
| 67 | if (seedNode.HasLocalParameters)
|
---|
| 68 | seedNode.ResetLocalParameters(random);
|
---|
| 69 |
|
---|
| 70 | manipulationPoint.Parent.RemoveSubTree(manipulationPoint.Index);
|
---|
| 71 | manipulationPoint.Parent.InsertSubTree(manipulationPoint.Index, seedNode);
|
---|
[5014] | 72 | seedNode = ProbabilisticTreeCreator.PTC2(random, seedNode, maxSize, maxHeight, 0, 0);
|
---|
[4189] | 73 | success = true;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | private static Symbol SelectRandomSymbol(IRandom random, IEnumerable<Symbol> symbols) {
|
---|
| 77 | var symbolList = symbols.ToList();
|
---|
| 78 | var ticketsSum = symbolList.Select(x => x.InitialFrequency).Sum();
|
---|
| 79 | if (ticketsSum == 0.0) throw new ArgumentException("The initial frequency of all allowed symbols is zero.");
|
---|
| 80 | var r = random.NextDouble() * ticketsSum;
|
---|
| 81 | double aggregatedTickets = 0;
|
---|
| 82 | for (int i = 0; i < symbolList.Count; i++) {
|
---|
| 83 | aggregatedTickets += symbolList[i].InitialFrequency;
|
---|
| 84 | if (aggregatedTickets > r) {
|
---|
| 85 | return symbolList[i];
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | // this should never happen
|
---|
| 89 | throw new ArgumentException("There is a problem with the initial frequency setting of allowed symbols.");
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | }
|
---|