1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Random;
|
---|
25 | using HeuristicLab.GP.Interfaces;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Encodings.SymbolicExpressionTree {
|
---|
28 | /// <summary>
|
---|
29 | /// Implementation of a homologous crossover operator as described in:
|
---|
30 | /// William B. Langdon
|
---|
31 | /// Size Fair and Homologous Tree Genetic Programming Crossovers,
|
---|
32 | /// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000
|
---|
33 | /// </summary>
|
---|
34 | public class LangdonHomologousCrossOver : SizeFairCrossOver {
|
---|
35 | protected override IFunctionTree SelectReplacement(MersenneTwister random, List<int> replacedTrail, List<CrossoverPoint> crossoverPoints) {
|
---|
36 | List<CrossoverPoint> bestPoints = new List<CrossoverPoint> { crossoverPoints[0] };
|
---|
37 | int bestMatchLength = MatchingSteps(replacedTrail, crossoverPoints[0].trail);
|
---|
38 | for (int i = 1; i < crossoverPoints.Count; i++) {
|
---|
39 | int currentMatchLength = MatchingSteps(replacedTrail, crossoverPoints[i].trail);
|
---|
40 | if (currentMatchLength > bestMatchLength) {
|
---|
41 | bestMatchLength = currentMatchLength;
|
---|
42 | bestPoints.Clear();
|
---|
43 | bestPoints.Add(crossoverPoints[i]);
|
---|
44 | } else if (currentMatchLength == bestMatchLength) {
|
---|
45 | bestPoints.Add(crossoverPoints[i]);
|
---|
46 | }
|
---|
47 | }
|
---|
48 | return bestPoints[random.Next(bestPoints.Count)].tree;
|
---|
49 | }
|
---|
50 | private int MatchingSteps(List<int> t1, List<int> t2) {
|
---|
51 | int n = Math.Min(t1.Count, t2.Count);
|
---|
52 | for (int i = 0; i < n; i++) if (t1[i] != t2[i]) return i;
|
---|
53 | return n;
|
---|
54 | }
|
---|
55 | }
|
---|
56 | }
|
---|