1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Encodings.RealVector {
|
---|
28 | /// <summary>
|
---|
29 | /// Single point crossover for real vectors. The implementation is similar to the single point crossover for binary vectors.
|
---|
30 | /// After a breakpoint is randomly chosen in the interval [1,N-1) with N = length of the vector, the first part is copied from parent1 the other part copied from parent2.
|
---|
31 | /// The interval is chosen such that at least one position is taken from a different parent.
|
---|
32 | /// </summary>
|
---|
33 | /// <remarks>
|
---|
34 | /// It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.
|
---|
35 | /// </remarks>
|
---|
36 | [Item("SinglePointCrossover", "Breaks both parent chromosomes at a randomly chosen point and assembles a child by taking one part of the first parent and the other part of the second pard. It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")]
|
---|
37 | [StorableClass(StorableClassType.Empty)]
|
---|
38 | public class SinglePointCrossover : RealVectorCrossover {
|
---|
39 | /// <summary>
|
---|
40 | /// Performs the single point crossover for real vectors. The implementation is similar to the single point crossover for binary vectors.
|
---|
41 | /// After a breakpoint is randomly chosen in the interval [1,N-1) with N = length of the vector, the first part is copied from parent1 the other part copied from parent2.
|
---|
42 | /// </summary>
|
---|
43 | /// <exception cref="ArgumentException">Thrown when the length of the vector is not the same in both parents.</exception>
|
---|
44 | /// <param name="random">A random number generator.</param>
|
---|
45 | /// <param name="parent1">The first parent for crossover.</param>
|
---|
46 | /// <param name="parent2">The second parent for crossover.</param>
|
---|
47 | /// <returns>The newly created real vector, resulting from the single point crossover.</returns>
|
---|
48 | public static DoubleArrayData Apply(IRandom random, DoubleArrayData parent1, DoubleArrayData parent2) {
|
---|
49 | if (parent1.Length != parent2.Length) throw new ArgumentException("SinglePointCrossover: Parents are of unequal length");
|
---|
50 | int length = parent1.Length;
|
---|
51 | DoubleArrayData result = new DoubleArrayData(length);
|
---|
52 | int breakPoint = random.Next(1, length - 1);
|
---|
53 |
|
---|
54 | for (int i = 0; i < breakPoint; i++)
|
---|
55 | result[i] = parent1[i];
|
---|
56 | for (int i = breakPoint; i < length; i++)
|
---|
57 | result[i] = parent2[i];
|
---|
58 |
|
---|
59 | return result;
|
---|
60 | }
|
---|
61 |
|
---|
62 | /// <summary>
|
---|
63 | /// Checks number of parents and forwards the call to <see cref="Apply(IRandom, DoubleArrayData, DoubleArrayData)"/>.
|
---|
64 | /// </summary>
|
---|
65 | /// <exception cref="ArgumentException">Thrown when the parents' vectors are of unequal length or when <paramref name="contiguity"/> is smaller than 0.</exception>
|
---|
66 | /// <param name="random">The pseudo random number generator to use.</param>
|
---|
67 | /// <param name="parents">The list of parents.</param>
|
---|
68 | /// <returns>A new real vector.</returns>
|
---|
69 | protected override HeuristicLab.Data.DoubleArrayData Cross(IRandom random, ItemArray<DoubleArrayData> parents) {
|
---|
70 | if (parents.Length != 2) throw new ArgumentException("SinglePointCrossover: The number of parents is not equal to 2");
|
---|
71 | return Apply(random, parents[0], parents[1]);
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|