[99] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.ES {
|
---|
| 30 | public class SelfAdaptiveMutationStrengthAdjuster : OperatorBase {
|
---|
| 31 | public override string Description {
|
---|
| 32 | get { return @"Mutates the endogenous strategy parameters"; }
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | public SelfAdaptiveMutationStrengthAdjuster()
|
---|
| 36 | : base() {
|
---|
| 37 | AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(IRandom), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("StrategyVector", "Vector containing the endogenous strategy parameters", typeof(DoubleArrayData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("GeneralLearningRate", "The general learning rate will scale all mutations. It's influence is calculated as: e^(GeneralLearningRate*N(0,1))", typeof(DoubleData), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("LearningRate", "Learning parameter defines the strength of the adaption of each component in the object parameter vector", typeof(DoubleData), VariableKind.In));
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public override IOperation Apply(IScope scope) {
|
---|
| 44 | IRandom random = GetVariableValue<IRandom>("Random", scope, true);
|
---|
| 45 | double[] strategyParams = GetVariableValue<DoubleArrayData>("StrategyVector", scope, false).Data;
|
---|
| 46 | double tau = GetVariableValue<DoubleData>("LearningRate", scope, true).Data;
|
---|
| 47 | double tau0 = GetVariableValue<DoubleData>("GeneralLearningRate", scope, true).Data;
|
---|
| 48 |
|
---|
| 49 | NormalDistributedRandom N = new NormalDistributedRandom(random, 0.0, 1.0);
|
---|
| 50 | double generalMultiplier = Math.Exp(tau0 * N.NextDouble());
|
---|
| 51 | for (int i = 0; i < strategyParams.Length; i++) {
|
---|
| 52 | strategyParams[i] *= generalMultiplier * Math.Exp(tau * N.NextDouble());
|
---|
| 53 | }
|
---|
| 54 | return base.Apply(scope);
|
---|
| 55 | }
|
---|
| 56 | }
|
---|
| 57 | }
|
---|