1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Drawing;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.DataPreprocessing.Interfaces;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.DataPreprocessing {
|
---|
30 | [Item("Histogram", "Represents the histogram grid.")]
|
---|
31 | public class HistogramContent : PreprocessingChartContent {
|
---|
32 |
|
---|
33 | public static new Image StaticItemImage {
|
---|
34 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Statistics; }
|
---|
35 | }
|
---|
36 | private const int MAX_DISTINCT_VALUES_FOR_CLASSIFCATION = 20;
|
---|
37 |
|
---|
38 | private int classifierVariableIndex = 0;
|
---|
39 |
|
---|
40 | public int ClassifierVariableIndex {
|
---|
41 | get { return this.classifierVariableIndex; }
|
---|
42 | set { this.classifierVariableIndex = value; }
|
---|
43 | }
|
---|
44 |
|
---|
45 |
|
---|
46 | public HistogramContent(IFilteredPreprocessingData preprocessingData)
|
---|
47 | : base(preprocessingData) {
|
---|
48 | AllInOneMode = false;
|
---|
49 | }
|
---|
50 |
|
---|
51 | public HistogramContent(HistogramContent content, Cloner cloner)
|
---|
52 | : base(content, cloner) {
|
---|
53 | }
|
---|
54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
55 | return new HistogramContent(this, cloner);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public IEnumerable<string> GetVariableNamesForHistogramClassification() {
|
---|
59 | List<string> doubleVariableNames = new List<string>();
|
---|
60 |
|
---|
61 | //only return variable names from type double
|
---|
62 | for (int i = 0; i < PreprocessingData.Columns; ++i) {
|
---|
63 | if (PreprocessingData.VariableHasType<double>(i)) {
|
---|
64 | double distinctValueCount = PreprocessingData.GetValues<double>(i).GroupBy(x => x).Count();
|
---|
65 | bool distinctValuesOk = distinctValueCount <= MAX_DISTINCT_VALUES_FOR_CLASSIFCATION;
|
---|
66 | if (distinctValuesOk)
|
---|
67 | doubleVariableNames.Add(PreprocessingData.GetVariableName(i));
|
---|
68 | }
|
---|
69 | }
|
---|
70 | return doubleVariableNames;
|
---|
71 | }
|
---|
72 |
|
---|
73 | }
|
---|
74 | }
|
---|