[10539] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[10539] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10992] | 22 | using System.Collections.Generic;
|
---|
[10539] | 23 | using System.Drawing;
|
---|
[10992] | 24 | using System.Linq;
|
---|
[10539] | 25 | using HeuristicLab.Common;
|
---|
[10245] | 26 | using HeuristicLab.Core;
|
---|
[10992] | 27 | using HeuristicLab.DataPreprocessing.Interfaces;
|
---|
[10245] | 28 |
|
---|
[10539] | 29 | namespace HeuristicLab.DataPreprocessing {
|
---|
[10313] | 30 | [Item("Histogram", "Represents the histogram grid.")]
|
---|
[10658] | 31 | public class HistogramContent : PreprocessingChartContent {
|
---|
[10252] | 32 |
|
---|
[10992] | 33 | public static new Image StaticItemImage {
|
---|
| 34 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Statistics; }
|
---|
[10252] | 35 | }
|
---|
[10992] | 36 | private const int MAX_DISTINCT_VALUES_FOR_CLASSIFCATION = 20;
|
---|
[10252] | 37 |
|
---|
[10992] | 38 | private int classifierVariableIndex = 0;
|
---|
[10245] | 39 |
|
---|
[10914] | 40 | public int ClassifierVariableIndex {
|
---|
[10871] | 41 | get { return this.classifierVariableIndex; }
|
---|
| 42 | set { this.classifierVariableIndex = value; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 |
|
---|
[10992] | 46 | public HistogramContent(IFilteredPreprocessingData preprocessingData)
|
---|
| 47 | : base(preprocessingData) {
|
---|
| 48 | AllInOneMode = false;
|
---|
[10245] | 49 | }
|
---|
| 50 |
|
---|
[10992] | 51 | public HistogramContent(HistogramContent content, Cloner cloner)
|
---|
| 52 | : base(content, cloner) {
|
---|
| 53 | }
|
---|
[10539] | 54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[10245] | 55 | return new HistogramContent(this, cloner);
|
---|
| 56 | }
|
---|
[10992] | 57 |
|
---|
| 58 | public IEnumerable<string> GetVariableNamesForHistogramClassification() {
|
---|
| 59 | List<string> doubleVariableNames = new List<string>();
|
---|
| 60 |
|
---|
| 61 | //only return variable names from type double
|
---|
| 62 | for (int i = 0; i < PreprocessingData.Columns; ++i) {
|
---|
[11156] | 63 | if (PreprocessingData.VariableHasType<double>(i)) {
|
---|
[10992] | 64 | double distinctValueCount = PreprocessingData.GetValues<double>(i).GroupBy(x => x).Count();
|
---|
| 65 | bool distinctValuesOk = distinctValueCount <= MAX_DISTINCT_VALUES_FOR_CLASSIFCATION;
|
---|
| 66 | if (distinctValuesOk)
|
---|
| 67 | doubleVariableNames.Add(PreprocessingData.GetVariableName(i));
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 | return doubleVariableNames;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[10242] | 73 | }
|
---|
| 74 | }
|
---|