Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.DataAnalysis/Dataset.cs @ 1504

Last change on this file since 1504 was 1287, checked in by gkronber, 16 years ago

Merged change sets from CEDMA branch to trunk:

File size: 12.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Xml;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using System.Globalization;
28using System.Text;
29
30namespace HeuristicLab.DataAnalysis {
31  public sealed class Dataset : ItemBase {
32
33    private string name;
34    private double[] samples;
35    private int rows;
36    private int columns;
37    private Dictionary<int, Dictionary<int, double>>[] cachedMeans;
38    private Dictionary<int, Dictionary<int, double>>[] cachedRanges;
39    private double[] scalingFactor;
40    private double[] scalingOffset;
41
42    public string Name {
43      get { return name; }
44      set { name = value; }
45    }
46
47    public int Rows {
48      get { return rows; }
49      set { rows = value; }
50    }
51
52    public int Columns {
53      get { return columns; }
54      set {
55        columns = value;
56        if (variableNames == null || variableNames.Length != columns) {
57          variableNames = new string[columns];
58        }
59      }
60    }
61
62    public double[] ScalingFactor {
63      get { return scalingFactor; }
64    }
65    public double[] ScalingOffset {
66      get { return scalingOffset; }
67    }
68
69    public double GetValue(int i, int j) {
70      return samples[columns * i + j];
71    }
72
73    public void SetValue(int i, int j, double v) {
74      if(v != samples[columns * i + j]) {
75        samples[columns * i + j] = v;
76        CreateDictionaries();
77        FireChanged();
78      }
79    }
80
81    public double[] Samples {
82      get { return samples; }
83      set {
84        scalingFactor = new double[columns];
85        scalingOffset = new double[columns];
86        for(int i = 0; i < scalingFactor.Length; i++) {
87          scalingFactor[i] = 1.0;
88          scalingOffset[i] = 0.0;
89        }
90        samples = value;
91        CreateDictionaries();
92        FireChanged();
93      }
94    }
95
96    private string[] variableNames;
97
98    public Dataset() {
99      Name = "-";
100      variableNames = new string[] { "Var0" };
101      Columns = 1;
102      Rows = 1;
103      Samples = new double[1];
104      scalingOffset = new double[] { 0.0 };
105      scalingFactor = new double[] { 1.0 };
106    }
107
108    private void CreateDictionaries() {
109      // keep a means and ranges dictionary for each column (possible target variable) of the dataset.
110      cachedMeans = new Dictionary<int, Dictionary<int, double>>[columns];
111      cachedRanges = new Dictionary<int, Dictionary<int, double>>[columns];
112      for(int i = 0; i < columns; i++) {
113        cachedMeans[i] = new Dictionary<int, Dictionary<int, double>>();
114        cachedRanges[i] = new Dictionary<int, Dictionary<int, double>>();
115      }
116    }
117
118    public string GetVariableName(int variableIndex) {
119      return variableNames[variableIndex];
120    }
121
122    public void SetVariableName(int variableIndex, string name) {
123      variableNames[variableIndex] = name;
124    }
125
126
127    public override IView CreateView() {
128      return new DatasetView(this);
129    }
130
131    public override object Clone(IDictionary<Guid, object> clonedObjects) {
132      Dataset clone = new Dataset();
133      clonedObjects.Add(Guid, clone);
134      double[] cloneSamples = new double[rows * columns];
135      Array.Copy(samples, cloneSamples, samples.Length);
136      clone.rows = rows;
137      clone.columns = columns;
138      clone.Samples = cloneSamples;
139      clone.Name = Name;
140      clone.variableNames = new string[variableNames.Length];
141      Array.Copy(variableNames, clone.variableNames, variableNames.Length);
142      Array.Copy(scalingFactor, clone.scalingFactor, columns);
143      Array.Copy(scalingOffset, clone.scalingOffset, columns);
144      return clone;
145    }
146
147    public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
148      XmlNode node = base.GetXmlNode(name, document, persistedObjects);
149      XmlAttribute problemName = document.CreateAttribute("Name");
150      problemName.Value = Name;
151      node.Attributes.Append(problemName);
152      XmlAttribute dim1 = document.CreateAttribute("Dimension1");
153      dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat);
154      node.Attributes.Append(dim1);
155      XmlAttribute dim2 = document.CreateAttribute("Dimension2");
156      dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat);
157      node.Attributes.Append(dim2);
158      XmlAttribute variableNames = document.CreateAttribute("VariableNames");
159      variableNames.Value = GetVariableNamesString();
160      node.Attributes.Append(variableNames);
161      XmlAttribute scalingFactorsAttribute = document.CreateAttribute("ScalingFactors");
162      scalingFactorsAttribute.Value = GetString(scalingFactor);
163      node.Attributes.Append(scalingFactorsAttribute);
164      XmlAttribute scalingOffsetsAttribute = document.CreateAttribute("ScalingOffsets");
165      scalingOffsetsAttribute.Value = GetString(scalingOffset);
166      node.Attributes.Append(scalingOffsetsAttribute);
167      node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat);
168      return node;
169    }
170
171    public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
172      base.Populate(node, restoredObjects);
173      Name = node.Attributes["Name"].Value;
174      rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat);
175      columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat);
176
177      variableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value);
178      if(node.Attributes["ScalingFactors"] != null)
179        scalingFactor = ParseDoubleString(node.Attributes["ScalingFactors"].Value);
180      else {
181        scalingFactor = new double[columns]; // compatibility with old serialization format
182        for(int i = 0; i < scalingFactor.Length; i++) scalingFactor[i] = 1.0;
183      }
184      if(node.Attributes["ScalingOffsets"] != null)
185        scalingOffset = ParseDoubleString(node.Attributes["ScalingOffsets"].Value);
186      else {
187        scalingOffset = new double[columns]; // compatibility with old serialization format
188        for(int i = 0; i < scalingOffset.Length; i++) scalingOffset[i] = 0.0;
189      }
190
191      string[] tokens = node.InnerText.Split(';');
192      if(tokens.Length != rows * columns) throw new FormatException();
193      samples = new double[rows * columns];
194      for(int row = 0; row < rows; row++) {
195        for(int column = 0; column < columns; column++) {
196          if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row * columns + column]) == false) {
197            throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
198          }
199        }
200      }
201      CreateDictionaries();
202    }
203
204    public override string ToString() {
205      return ToString(CultureInfo.CurrentCulture.NumberFormat);
206    }
207
208    private string ToString(NumberFormatInfo format) {
209      StringBuilder builder = new StringBuilder();
210      for(int row = 0; row < rows; row++) {
211        for(int column = 0; column < columns; column++) {
212          builder.Append(";");
213          builder.Append(samples[row * columns + column].ToString("r", format));
214        }
215      }
216      if(builder.Length > 0) builder.Remove(0, 1);
217      return builder.ToString();
218    }
219
220    private string GetVariableNamesString() {
221      string s = "";
222      for(int i = 0; i < variableNames.Length; i++) {
223        s += variableNames[i] + "; ";
224      }
225
226      if(variableNames.Length > 0) {
227        s = s.TrimEnd(';', ' ');
228      }
229      return s;
230    }
231    private string GetString(double[] xs) {
232      string s = "";
233      for(int i = 0; i < xs.Length; i++) {
234        s += xs[i].ToString("r", CultureInfo.InvariantCulture) + "; ";
235      }
236
237      if(xs.Length > 0) {
238        s = s.TrimEnd(';', ' ');
239      }
240      return s;
241    }
242
243    private string[] ParseVariableNamesString(string p) {
244      p = p.Trim();
245      string[] tokens = p.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries);
246      for(int i = 0; i < tokens.Length; i++) tokens[i] = tokens[i].Trim();
247      return tokens;
248    }
249    private double[] ParseDoubleString(string s) {
250      s = s.Trim();
251      string[] ss = s.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries);
252      double[] xs = new double[ss.Length];
253      for(int i = 0; i < xs.Length; i++) {
254        xs[i] = double.Parse(ss[i], CultureInfo.InvariantCulture);
255      }
256      return xs;
257    }
258
259    public double GetMean(int column) {
260      return GetMean(column, 0, Rows - 1);
261    }
262
263    public double GetMean(int column, int from, int to) {
264      if(!cachedMeans[column].ContainsKey(from) || !cachedMeans[column][from].ContainsKey(to)) {
265        double[] values = new double[to - from + 1];
266        for(int sample = from; sample <= to; sample++) {
267          values[sample - from] = GetValue(sample, column);
268        }
269        double mean = Statistics.Mean(values);
270        if(!cachedMeans[column].ContainsKey(from)) cachedMeans[column][from] = new Dictionary<int, double>();
271        cachedMeans[column][from][to] = mean;
272        return mean;
273      } else {
274        return cachedMeans[column][from][to];
275      }
276    }
277
278    public double GetRange(int column) {
279      return GetRange(column, 0, Rows - 1);
280    }
281
282    public double GetRange(int column, int from, int to) {
283      if(!cachedRanges[column].ContainsKey(from) || !cachedRanges[column][from].ContainsKey(to)) {
284        double[] values = new double[to - from + 1];
285        for(int sample = from; sample <= to; sample++) {
286          values[sample - from] = GetValue(sample, column);
287        }
288        double range = Statistics.Range(values);
289        if(!cachedRanges[column].ContainsKey(from)) cachedRanges[column][from] = new Dictionary<int, double>();
290        cachedRanges[column][from][to] = range;
291        return range;
292      } else {
293        return cachedRanges[column][from][to];
294      }
295    }
296
297    public double GetMaximum(int column) {
298      double max = Double.NegativeInfinity;
299      for(int i = 0; i < Rows; i++) {
300        double val = GetValue(i, column);
301        if(val > max) max = val;
302      }
303      return max;
304    }
305
306    public double GetMinimum(int column) {
307      double min = Double.PositiveInfinity;
308      for(int i = 0; i < Rows; i++) {
309        double val = GetValue(i, column);
310        if(val < min) min = val;
311      }
312      return min;
313    }
314
315    internal void ScaleVariable(int column) {
316      if(scalingFactor[column] == 1.0 && scalingOffset[column] == 0.0) {
317        double min = GetMinimum(column);
318        double max = GetMaximum(column);
319        double range = max - min;
320        if(range == 0) ScaleVariable(column, 1.0, -min);
321        else ScaleVariable(column, 1.0 / range, -min);
322      }
323      CreateDictionaries();
324      FireChanged();
325    }
326
327    internal void ScaleVariable(int column, double factor, double offset) {
328      scalingFactor[column] = factor;
329      scalingOffset[column] = offset;
330      for(int i = 0; i < Rows; i++) {
331        double origValue = samples[i * columns + column];
332        samples[i * columns + column] = (origValue + offset) * factor;
333      }
334      CreateDictionaries();
335      FireChanged();
336    }
337
338    internal void UnscaleVariable(int column) {
339      if(scalingFactor[column] != 1.0 || scalingOffset[column]!=0.0) {
340        for(int i = 0; i < rows; i++) {
341          double scaledValue = samples[i * columns + column];
342          samples[i * columns + column] = scaledValue / scalingFactor[column] - scalingOffset[column];
343        }
344        scalingFactor[column] = 1.0;
345        scalingOffset[column] = 0.0;
346      }
347    }
348  }
349}
Note: See TracBrowser for help on using the repository browser.