[2] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Xml;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using System.Globalization;
|
---|
| 28 | using System.Text;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.DataAnalysis {
|
---|
| 31 | public class Dataset : ItemBase {
|
---|
| 32 |
|
---|
| 33 | private string name;
|
---|
| 34 | public string Name {
|
---|
| 35 | get { return name; }
|
---|
| 36 | set { name = value; }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | private double[] samples;
|
---|
| 40 | private int rows;
|
---|
| 41 |
|
---|
| 42 | public int Rows {
|
---|
| 43 | get { return rows; }
|
---|
| 44 | set { rows = value; }
|
---|
| 45 | }
|
---|
| 46 | private int columns;
|
---|
| 47 |
|
---|
| 48 | public int Columns {
|
---|
| 49 | get { return columns; }
|
---|
| 50 | set { columns = value; }
|
---|
| 51 | }
|
---|
| 52 | private Dictionary<int, double[]>[] ranges;
|
---|
| 53 | private Dictionary<int, double[]>[] means;
|
---|
| 54 |
|
---|
| 55 | public double GetValue(int i, int j) {
|
---|
| 56 | return samples[columns * i + j];
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | public void SetValue(int i, int j, double v) {
|
---|
| 60 | if(v != samples[columns * i + j]) {
|
---|
| 61 | samples[columns * i + j] = v;
|
---|
| 62 | FireChanged();
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | public double[] Samples {
|
---|
| 67 | get { return samples; }
|
---|
| 68 | set {
|
---|
| 69 | samples = value;
|
---|
| 70 | CreateDictionaries();
|
---|
| 71 | FireChanged();
|
---|
| 72 | }
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | private string[] variableNames;
|
---|
| 76 | public string[] VariableNames {
|
---|
| 77 | get { return variableNames; }
|
---|
| 78 | set { variableNames = value; }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | public Dataset() {
|
---|
| 82 | Name = "-";
|
---|
| 83 | VariableNames = new string[] {"Var0"};
|
---|
| 84 | Columns = 1;
|
---|
| 85 | Rows = 1;
|
---|
| 86 | Samples = new double[1];
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | void samples_Changed(object sender, EventArgs e) {
|
---|
| 90 | CreateDictionaries();
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private void CreateDictionaries() {
|
---|
| 94 | // keep a means and ranges dictionary for each column (possible target variable) of the dataset.
|
---|
| 95 |
|
---|
| 96 | means = new Dictionary<int, double[]>[columns];
|
---|
| 97 | ranges = new Dictionary<int, double[]>[columns];
|
---|
| 98 |
|
---|
| 99 | for(int i = 0; i < columns; i++) {
|
---|
| 100 | means[i] = new Dictionary<int, double[]>();
|
---|
| 101 | ranges[i] = new Dictionary<int, double[]>();
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | public override IView CreateView() {
|
---|
| 106 | return new DatasetView(this);
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
| 110 | Dataset clone = new Dataset();
|
---|
| 111 | clonedObjects.Add(Guid, clone);
|
---|
| 112 | double[] cloneSamples = new double[rows * columns];
|
---|
| 113 | Array.Copy(samples, cloneSamples, samples.Length);
|
---|
| 114 | clone.rows = rows;
|
---|
| 115 | clone.columns = columns;
|
---|
| 116 | clone.Samples = cloneSamples;
|
---|
| 117 | clone.Name = Name;
|
---|
| 118 | clone.VariableNames = new string[VariableNames.Length];
|
---|
| 119 | Array.Copy(VariableNames, clone.VariableNames, VariableNames.Length);
|
---|
| 120 | return clone;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
| 124 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
| 125 | XmlAttribute problemName = document.CreateAttribute("Name");
|
---|
| 126 | problemName.Value = Name;
|
---|
| 127 | node.Attributes.Append(problemName);
|
---|
| 128 | XmlAttribute dim1 = document.CreateAttribute("Dimension1");
|
---|
| 129 | dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 130 | node.Attributes.Append(dim1);
|
---|
| 131 | XmlAttribute dim2 = document.CreateAttribute("Dimension2");
|
---|
| 132 | dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 133 | node.Attributes.Append(dim2);
|
---|
| 134 |
|
---|
| 135 | XmlAttribute variableNames = document.CreateAttribute("VariableNames");
|
---|
| 136 | variableNames.Value = GetVariableNamesString();
|
---|
| 137 | node.Attributes.Append(variableNames);
|
---|
| 138 |
|
---|
| 139 | node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 140 | return node;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
| 144 | base.Populate(node, restoredObjects);
|
---|
| 145 | Name = node.Attributes["Name"].Value;
|
---|
| 146 | rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 147 | columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 148 |
|
---|
| 149 | VariableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value);
|
---|
| 150 |
|
---|
| 151 | string[] tokens = node.InnerText.Split(';');
|
---|
| 152 | if(tokens.Length != rows * columns) throw new FormatException();
|
---|
| 153 | samples = new double[rows * columns];
|
---|
| 154 | for(int row = 0; row < rows; row++) {
|
---|
| 155 | for(int column = 0; column < columns; column++) {
|
---|
| 156 | if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row*columns + column]) == false) {
|
---|
| 157 | throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | CreateDictionaries();
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | public override string ToString() {
|
---|
| 165 | return ToString(CultureInfo.CurrentCulture.NumberFormat);
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | private string ToString(NumberFormatInfo format) {
|
---|
| 169 | StringBuilder builder = new StringBuilder();
|
---|
| 170 | for(int row = 0; row < rows; row++) {
|
---|
| 171 | for(int column = 0; column < columns; column++) {
|
---|
| 172 | builder.Append(";");
|
---|
| 173 | builder.Append(samples[row*columns+column].ToString(format));
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 | if(builder.Length > 0) builder.Remove(0, 1);
|
---|
| 177 | return builder.ToString();
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | private string GetVariableNamesString() {
|
---|
| 181 | string s = "";
|
---|
| 182 | for (int i = 0; i < variableNames.Length; i++) {
|
---|
| 183 | s += variableNames[i] + "; ";
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | if (variableNames.Length > 0) {
|
---|
| 187 | s = s.TrimEnd(';', ' ');
|
---|
| 188 | }
|
---|
| 189 | return s;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | private string[] ParseVariableNamesString(string p) {
|
---|
| 193 | p = p.Trim();
|
---|
| 194 | string[] tokens = p.Split(new char[] {';'}, StringSplitOptions.RemoveEmptyEntries);
|
---|
| 195 | return tokens;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
[132] | 198 | public double GetMean(int column) {
|
---|
| 199 | return GetMean(column, 0, Rows-1);
|
---|
| 200 | }
|
---|
[2] | 201 |
|
---|
| 202 | // return value of GetMean should be memoized because it is called repeatedly in Evaluators
|
---|
| 203 | public double GetMean(int column, int from, int to) {
|
---|
| 204 | Dictionary<int, double[]> columnMeans = means[column];
|
---|
| 205 | if(columnMeans.ContainsKey(from)) {
|
---|
| 206 | double[] fromMeans = columnMeans[from];
|
---|
| 207 | if(fromMeans[to-from] >= 0.0) {
|
---|
| 208 | // already calculated
|
---|
| 209 | return fromMeans[to-from];
|
---|
| 210 | } else {
|
---|
| 211 | // not yet calculated => calculate
|
---|
| 212 | fromMeans[to-from] = CalculateMean(column, from, to);
|
---|
| 213 | return fromMeans[to-from];
|
---|
| 214 | }
|
---|
| 215 | } else {
|
---|
| 216 | // never saw this from-index => create a new array, initialize and recalculate for to-index
|
---|
| 217 | double[] fromMeans = new double[rows - from];
|
---|
| 218 | // fill with negative values to indicate which means have already been calculated
|
---|
| 219 | for(int i=0;i<fromMeans.Length;i++) {fromMeans[i] = -1.0;}
|
---|
| 220 | // store new array in the dictionary
|
---|
| 221 | columnMeans[from] = fromMeans;
|
---|
| 222 | // calculate for specific to-index
|
---|
| 223 | fromMeans[to-from] = CalculateMean(column, from, to);
|
---|
| 224 | return fromMeans[to-from];
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | private double CalculateMean(int column, int from, int to) {
|
---|
| 229 | double[] values = new double[to - from +1];
|
---|
| 230 | for(int sample = from; sample <= to; sample++) {
|
---|
| 231 | values[sample - from] = GetValue(sample, column);
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | return Statistics.Mean(values);
|
---|
| 235 | }
|
---|
| 236 |
|
---|
[132] | 237 | public double GetRange(int column) {
|
---|
| 238 | return GetRange(column, 0, Rows-1);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
[2] | 241 | // return value of GetRange should be memoized because it is called repeatedly in Evaluators
|
---|
| 242 | public double GetRange(int column, int from, int to) {
|
---|
| 243 | Dictionary<int, double[]> columnRanges = ranges[column];
|
---|
| 244 | if(columnRanges.ContainsKey(from)) {
|
---|
| 245 | double[] fromRanges = columnRanges[from];
|
---|
| 246 | if(fromRanges[to-from] >= 0.0) {
|
---|
| 247 | // already calculated
|
---|
| 248 | return fromRanges[to-from];
|
---|
| 249 | } else {
|
---|
| 250 | // not yet calculated => calculate
|
---|
| 251 | fromRanges[to-from] = CalculateRange(column, from, to);
|
---|
| 252 | return fromRanges[to-from];
|
---|
| 253 | }
|
---|
| 254 | } else {
|
---|
| 255 | // never saw this from-index => create a new array, initialize and recalculate for to-index
|
---|
| 256 | double[] fromRanges = new double[rows - from];
|
---|
| 257 | // fill with negative values to indicate which means have already been calculated
|
---|
| 258 | for(int i = 0; i < fromRanges.Length; i++) { fromRanges[i] = -1.0; }
|
---|
| 259 | // store in dictionary
|
---|
| 260 | columnRanges[from] = fromRanges;
|
---|
| 261 | // calculate for specific to-index
|
---|
| 262 | fromRanges[to-from] = CalculateRange(column, from, to);
|
---|
| 263 | return fromRanges[to-from];
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | private double CalculateRange(int column, int from, int to) {
|
---|
| 268 | double[] values = new double[to - from + 1];
|
---|
| 269 | for(int sample = from; sample <= to; sample++) {
|
---|
| 270 | values[sample - from] = GetValue(sample, column);
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | return Statistics.Range(values);
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 | }
|
---|