Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.DataAnalysis/3.2/Dataset.cs @ 2202

Last change on this file since 2202 was 2162, checked in by gkronber, 15 years ago

Implemented #707: ProblemInjector creates a new dataset that contains only the target variable and all allowed input variables.

File size: 14.0 KB
RevLine 
[2]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Xml;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using System.Globalization;
28using System.Text;
29
30namespace HeuristicLab.DataAnalysis {
[207]31  public sealed class Dataset : ItemBase {
[2]32
33    private string name;
34    private double[] samples;
35    private int rows;
[333]36    private int columns;
[237]37    private Dictionary<int, Dictionary<int, double>>[] cachedMeans;
38    private Dictionary<int, Dictionary<int, double>>[] cachedRanges;
39    private double[] scalingFactor;
40    private double[] scalingOffset;
[2038]41    private bool cachedValuesInvalidated = true;
[2]42
[2038]43    private bool fireChangeEvents = true;
44    public bool FireChangeEvents {
45      get { return fireChangeEvents; }
46      set { fireChangeEvents = value; }
47    }
48
[333]49    public string Name {
50      get { return name; }
51      set { name = value; }
[312]52    }
53
[2]54    public int Rows {
55      get { return rows; }
56      set { rows = value; }
57    }
58
59    public int Columns {
60      get { return columns; }
[1786]61      set {
[1287]62        columns = value;
63        if (variableNames == null || variableNames.Length != columns) {
64          variableNames = new string[columns];
65        }
66      }
[2]67    }
68
[333]69    public double[] ScalingFactor {
70      get { return scalingFactor; }
[2162]71      set {
72        if (value.Length != scalingFactor.Length)
73          throw new ArgumentException("Length of scaling factor array doesn't match number of variables");
74        scalingFactor = value;
75      }
[333]76    }
77    public double[] ScalingOffset {
78      get { return scalingOffset; }
[2162]79      set {
80        if (value.Length != scalingOffset.Length)
81          throw new ArgumentException("Length of scaling offset array doesn't match number of variables");
82        scalingOffset = value; }
[333]83    }
84
[2]85    public double GetValue(int i, int j) {
86      return samples[columns * i + j];
87    }
88
89    public void SetValue(int i, int j, double v) {
[1786]90      if (v != samples[columns * i + j]) {
[2]91        samples[columns * i + j] = v;
[2038]92        cachedValuesInvalidated = true;
93        if (fireChangeEvents) FireChanged();
[2]94      }
95    }
96
97    public double[] Samples {
98      get { return samples; }
[237]99      set {
100        scalingFactor = new double[columns];
101        scalingOffset = new double[columns];
[1786]102        for (int i = 0; i < scalingFactor.Length; i++) {
[237]103          scalingFactor[i] = 1.0;
104          scalingOffset[i] = 0.0;
105        }
[2]106        samples = value;
[2038]107        cachedValuesInvalidated = true;
108        if (fireChangeEvents) FireChanged();
[2]109      }
110    }
111
112    private string[] variableNames;
113
114    public Dataset() {
115      Name = "-";
[1287]116      variableNames = new string[] { "Var0" };
[2]117      Columns = 1;
118      Rows = 1;
119      Samples = new double[1];
[237]120      scalingOffset = new double[] { 0.0 };
121      scalingFactor = new double[] { 1.0 };
[2038]122      cachedValuesInvalidated = true;
123      fireChangeEvents = true;
[2]124    }
125
[1287]126    public string GetVariableName(int variableIndex) {
127      return variableNames[variableIndex];
128    }
129
[2012]130    public int GetVariableIndex(string variableName) {
131      for (int i = 0; i < variableNames.Length; i++) {
132        if (variableNames[i].Equals(variableName)) return i;
133      }
134      throw new ArgumentException("The variable name " + variableName + " was not found.");
135    }
136
[1287]137    public void SetVariableName(int variableIndex, string name) {
138      variableNames[variableIndex] = name;
139    }
140
[2]141    public override IView CreateView() {
142      return new DatasetView(this);
143    }
144
[2012]145    #region persistence
[2]146    public override object Clone(IDictionary<Guid, object> clonedObjects) {
147      Dataset clone = new Dataset();
148      clonedObjects.Add(Guid, clone);
149      double[] cloneSamples = new double[rows * columns];
150      Array.Copy(samples, cloneSamples, samples.Length);
151      clone.rows = rows;
152      clone.columns = columns;
153      clone.Samples = cloneSamples;
154      clone.Name = Name;
[1287]155      clone.variableNames = new string[variableNames.Length];
156      Array.Copy(variableNames, clone.variableNames, variableNames.Length);
[237]157      Array.Copy(scalingFactor, clone.scalingFactor, columns);
158      Array.Copy(scalingOffset, clone.scalingOffset, columns);
[2]159      return clone;
160    }
161
162    public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
163      XmlNode node = base.GetXmlNode(name, document, persistedObjects);
164      XmlAttribute problemName = document.CreateAttribute("Name");
165      problemName.Value = Name;
166      node.Attributes.Append(problemName);
167      XmlAttribute dim1 = document.CreateAttribute("Dimension1");
168      dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat);
169      node.Attributes.Append(dim1);
170      XmlAttribute dim2 = document.CreateAttribute("Dimension2");
171      dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat);
172      node.Attributes.Append(dim2);
173      XmlAttribute variableNames = document.CreateAttribute("VariableNames");
174      variableNames.Value = GetVariableNamesString();
175      node.Attributes.Append(variableNames);
[237]176      XmlAttribute scalingFactorsAttribute = document.CreateAttribute("ScalingFactors");
177      scalingFactorsAttribute.Value = GetString(scalingFactor);
178      node.Attributes.Append(scalingFactorsAttribute);
179      XmlAttribute scalingOffsetsAttribute = document.CreateAttribute("ScalingOffsets");
180      scalingOffsetsAttribute.Value = GetString(scalingOffset);
181      node.Attributes.Append(scalingOffsetsAttribute);
[2]182      node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat);
183      return node;
184    }
185
186    public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
187      base.Populate(node, restoredObjects);
188      Name = node.Attributes["Name"].Value;
189      rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat);
190      columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat);
[237]191
[1287]192      variableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value);
[1786]193      if (node.Attributes["ScalingFactors"] != null)
[237]194        scalingFactor = ParseDoubleString(node.Attributes["ScalingFactors"].Value);
195      else {
196        scalingFactor = new double[columns]; // compatibility with old serialization format
[1786]197        for (int i = 0; i < scalingFactor.Length; i++) scalingFactor[i] = 1.0;
[237]198      }
[1786]199      if (node.Attributes["ScalingOffsets"] != null)
[237]200        scalingOffset = ParseDoubleString(node.Attributes["ScalingOffsets"].Value);
201      else {
202        scalingOffset = new double[columns]; // compatibility with old serialization format
[1786]203        for (int i = 0; i < scalingOffset.Length; i++) scalingOffset[i] = 0.0;
[237]204      }
[2]205
206      string[] tokens = node.InnerText.Split(';');
[1786]207      if (tokens.Length != rows * columns) throw new FormatException();
[2]208      samples = new double[rows * columns];
[1786]209      for (int row = 0; row < rows; row++) {
210        for (int column = 0; column < columns; column++) {
211          if (double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row * columns + column]) == false) {
[2]212            throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
213          }
214        }
215      }
216    }
217
218    public override string ToString() {
219      return ToString(CultureInfo.CurrentCulture.NumberFormat);
220    }
221
222    private string ToString(NumberFormatInfo format) {
223      StringBuilder builder = new StringBuilder();
[1786]224      for (int row = 0; row < rows; row++) {
225        for (int column = 0; column < columns; column++) {
[2]226          builder.Append(";");
[344]227          builder.Append(samples[row * columns + column].ToString("r", format));
[2]228        }
229      }
[1786]230      if (builder.Length > 0) builder.Remove(0, 1);
[2]231      return builder.ToString();
232    }
233
234    private string GetVariableNamesString() {
235      string s = "";
[1786]236      for (int i = 0; i < variableNames.Length; i++) {
[2]237        s += variableNames[i] + "; ";
238      }
239
[1786]240      if (variableNames.Length > 0) {
[2]241        s = s.TrimEnd(';', ' ');
242      }
243      return s;
244    }
[237]245    private string GetString(double[] xs) {
246      string s = "";
[1786]247      for (int i = 0; i < xs.Length; i++) {
[344]248        s += xs[i].ToString("r", CultureInfo.InvariantCulture) + "; ";
[237]249      }
[2]250
[1786]251      if (xs.Length > 0) {
[237]252        s = s.TrimEnd(';', ' ');
253      }
254      return s;
255    }
256
[2]257    private string[] ParseVariableNamesString(string p) {
258      p = p.Trim();
[237]259      string[] tokens = p.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries);
[1786]260      for (int i = 0; i < tokens.Length; i++) tokens[i] = tokens[i].Trim();
[2]261      return tokens;
262    }
[237]263    private double[] ParseDoubleString(string s) {
264      s = s.Trim();
265      string[] ss = s.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries);
266      double[] xs = new double[ss.Length];
[1786]267      for (int i = 0; i < xs.Length; i++) {
[237]268        xs[i] = double.Parse(ss[i], CultureInfo.InvariantCulture);
269      }
270      return xs;
271    }
[2012]272    #endregion
[2]273
[132]274    public double GetMean(int column) {
[1784]275      return GetMean(column, 0, Rows);
[132]276    }
[2]277
278    public double GetMean(int column, int from, int to) {
[2038]279      if (cachedValuesInvalidated) CreateDictionaries();
[1786]280      if (!cachedMeans[column].ContainsKey(from) || !cachedMeans[column][from].ContainsKey(to)) {
[1784]281        double[] values = new double[to - from];
[1786]282        for (int sample = from; sample < to; sample++) {
[196]283          values[sample - from] = GetValue(sample, column);
284        }
285        double mean = Statistics.Mean(values);
[1786]286        if (!cachedMeans[column].ContainsKey(from)) cachedMeans[column][from] = new Dictionary<int, double>();
[196]287        cachedMeans[column][from][to] = mean;
288        return mean;
289      } else {
290        return cachedMeans[column][from][to];
[2]291      }
292    }
293
[132]294    public double GetRange(int column) {
[1784]295      return GetRange(column, 0, Rows);
[132]296    }
297
[2]298    public double GetRange(int column, int from, int to) {
[2038]299      if (cachedValuesInvalidated) CreateDictionaries();
[1786]300      if (!cachedRanges[column].ContainsKey(from) || !cachedRanges[column][from].ContainsKey(to)) {
[1784]301        double[] values = new double[to - from];
[1786]302        for (int sample = from; sample < to; sample++) {
[196]303          values[sample - from] = GetValue(sample, column);
304        }
305        double range = Statistics.Range(values);
[1786]306        if (!cachedRanges[column].ContainsKey(from)) cachedRanges[column][from] = new Dictionary<int, double>();
[196]307        cachedRanges[column][from][to] = range;
308        return range;
309      } else {
310        return cachedRanges[column][from][to];
[2]311      }
312    }
[232]313
314    public double GetMaximum(int column) {
[2144]315      return GetMaximum(column, 0, Rows);
316    }
317
318    public double GetMaximum(int column, int start, int end) {
[232]319      double max = Double.NegativeInfinity;
[2144]320      for (int i = start; i < end; i++) {
[232]321        double val = GetValue(i, column);
[1786]322        if (!double.IsNaN(val) && val > max) max = val;
[232]323      }
324      return max;
325    }
326
327    public double GetMinimum(int column) {
[2144]328      return GetMinimum(column, 0, Rows);
329    }
330
331    public double GetMinimum(int column, int start, int end) {
[232]332      double min = Double.PositiveInfinity;
[2144]333      for (int i = start; i < end; i++) {
[232]334        double val = GetValue(i, column);
[1786]335        if (!double.IsNaN(val) && val < min) min = val;
[232]336      }
337      return min;
338    }
[237]339
340    internal void ScaleVariable(int column) {
[1786]341      if (scalingFactor[column] == 1.0 && scalingOffset[column] == 0.0) {
[237]342        double min = GetMinimum(column);
343        double max = GetMaximum(column);
344        double range = max - min;
[1786]345        if (range == 0) ScaleVariable(column, 1.0, -min);
[312]346        else ScaleVariable(column, 1.0 / range, -min);
[237]347      }
[2038]348      cachedValuesInvalidated = true;
349      if (fireChangeEvents) FireChanged();
[237]350    }
351
[312]352    internal void ScaleVariable(int column, double factor, double offset) {
353      scalingFactor[column] = factor;
354      scalingOffset[column] = offset;
[1786]355      for (int i = 0; i < Rows; i++) {
[312]356        double origValue = samples[i * columns + column];
357        samples[i * columns + column] = (origValue + offset) * factor;
358      }
[2038]359      cachedValuesInvalidated = true;
360      if (fireChangeEvents) FireChanged();
[312]361    }
362
[237]363    internal void UnscaleVariable(int column) {
[1786]364      if (scalingFactor[column] != 1.0 || scalingOffset[column] != 0.0) {
365        for (int i = 0; i < rows; i++) {
[237]366          double scaledValue = samples[i * columns + column];
[312]367          samples[i * columns + column] = scaledValue / scalingFactor[column] - scalingOffset[column];
[237]368        }
369        scalingFactor[column] = 1.0;
370        scalingOffset[column] = 0.0;
371      }
[2038]372      cachedValuesInvalidated = true;
373      if (fireChangeEvents) FireChanged();
[237]374    }
[2038]375
376    private void CreateDictionaries() {
377      // keep a means and ranges dictionary for each column (possible target variable) of the dataset.
378      cachedMeans = new Dictionary<int, Dictionary<int, double>>[columns];
379      cachedRanges = new Dictionary<int, Dictionary<int, double>>[columns];
380      for (int i = 0; i < columns; i++) {
381        cachedMeans[i] = new Dictionary<int, Dictionary<int, double>>();
382        cachedRanges[i] = new Dictionary<int, Dictionary<int, double>>();
383      }
384    }
[2]385  }
386}
Note: See TracBrowser for help on using the repository browser.