Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.CEDMA.Server/3.3/SimpleDispatcher.cs @ 2422

Last change on this file since 2422 was 2422, checked in by gkronber, 15 years ago

Fixed bugs in CEDMA cockpit:

  • Runs were started for target variables that are turned off
  • Runs were started for deterministic algorithms with the same setting (when using time series settings)

#676 Cockpit for the CEDMA Server to control algorithm settings

File size: 12.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Text;
25using System.Windows.Forms;
26using HeuristicLab.PluginInfrastructure;
27using System.Net;
28using System.ServiceModel;
29using System.ServiceModel.Description;
30using System.Linq;
31using HeuristicLab.Data;
32using HeuristicLab.Core;
33using HeuristicLab.Modeling;
34using HeuristicLab.Modeling.Database;
35using HeuristicLab.DataAnalysis;
36
37namespace HeuristicLab.CEDMA.Server {
38  public class SimpleDispatcher : IDispatcher, IViewable {
39    private class AlgorithmConfiguration {
40      public string name;
41      public ProblemSpecification problemSpecification;
42    }
43
44    internal event EventHandler Changed;
45
46    private IModelingDatabase database;
47    public IModelingDatabase Database {
48      get {
49        return database;
50      }
51    }
52
53    private Dataset dataset;
54    public Dataset Dataset {
55      get {
56        return dataset;
57      }
58    }
59
60    public IEnumerable<string> TargetVariables {
61      get {
62        return Enumerable.Range(0, Dataset.Columns).Select(x => Dataset.GetVariableName(x));
63      }
64    }
65
66    public IEnumerable<string> Variables {
67      get {
68        return TargetVariables;
69      }
70    }
71
72    private HeuristicLab.Modeling.IAlgorithm[] defaultAlgorithms;
73    public IEnumerable<HeuristicLab.Modeling.IAlgorithm> GetAlgorithms(LearningTask task) {
74      switch (task) {
75        case LearningTask.Regression: {
76            return defaultAlgorithms.Where(a => (a as IClassificationAlgorithm) == null && (a as ITimeSeriesAlgorithm) == null);
77          }
78        case LearningTask.Classification: {
79            return defaultAlgorithms.Where(a => (a as IClassificationAlgorithm) != null);
80          }
81        case LearningTask.TimeSeries: {
82            return defaultAlgorithms.Where(a => (a as ITimeSeriesAlgorithm) != null);
83          }
84        default: {
85            return new HeuristicLab.Modeling.IAlgorithm[] { };
86          }
87      }
88    }
89
90    private Random random;
91    private Dictionary<string, ProblemSpecification> problemSpecifications;
92    private Dictionary<string, List<HeuristicLab.Modeling.IAlgorithm>> algorithms;
93    public IEnumerable<HeuristicLab.Modeling.IAlgorithm> GetAllowedAlgorithms(string targetVariable) {
94      if (algorithms.ContainsKey(targetVariable))
95        return algorithms[targetVariable];
96      else return new HeuristicLab.Modeling.IAlgorithm[] { };
97    }
98    private Dictionary<string, bool> activeVariables;
99    public IEnumerable<string> AllowedTargetVariables {
100      get { return activeVariables.Where(x => x.Value).Select(x => x.Key); }
101    }
102    private Dictionary<string, List<AlgorithmConfiguration>> finishedAndDispatchedRuns;
103    private object locker = new object();
104
105    public SimpleDispatcher(IModelingDatabase database, Dataset dataset) {
106      this.dataset = dataset;
107      this.database = database;
108      dataset.Changed += (sender, args) => FireChanged();
109      random = new Random();
110
111      activeVariables = new Dictionary<string, bool>();
112      problemSpecifications = new Dictionary<string, ProblemSpecification>();
113      algorithms = new Dictionary<string, List<HeuristicLab.Modeling.IAlgorithm>>();
114      finishedAndDispatchedRuns = new Dictionary<string, List<AlgorithmConfiguration>>();
115
116      DiscoveryService ds = new DiscoveryService();
117      defaultAlgorithms = ds.GetInstances<HeuristicLab.Modeling.IAlgorithm>();
118
119      // PopulateFinishedRuns();
120    }
121
122    public HeuristicLab.Modeling.IAlgorithm GetNextJob() {
123      lock (locker) {
124        if (activeVariables.Where(x => x.Value == true).Count() > 0) {
125          string[] targetVariables = (from pair in activeVariables
126                                      where pair.Value == true
127                                      select pair.Key).ToArray();
128          string targetVariable = SelectTargetVariable(targetVariables);
129          HeuristicLab.Modeling.IAlgorithm selectedAlgorithm = SelectAndConfigureAlgorithm(targetVariable);
130
131          return selectedAlgorithm;
132        } else return null;
133      }
134    }
135
136    public virtual string SelectTargetVariable(string[] targetVariables) {
137      return targetVariables[random.Next(targetVariables.Length)];
138    }
139
140    public HeuristicLab.Modeling.IAlgorithm SelectAndConfigureAlgorithm(string targetVariable) {
141      HeuristicLab.Modeling.IAlgorithm selectedAlgorithm = null;
142      var possibleAlgos =
143        algorithms[targetVariable]
144        .Where(x =>
145          ((x is IStochasticAlgorithm) || !AlgorithmFinishedOrDispatched(problemSpecifications[targetVariable], x.Name)));
146      if (possibleAlgos.Count() > 0) selectedAlgorithm = possibleAlgos.ElementAt(random.Next(possibleAlgos.Count()));
147      if (selectedAlgorithm != null) {
148        // create a clone of the algorithm template before setting the parameters
149        selectedAlgorithm = (HeuristicLab.Modeling.IAlgorithm)selectedAlgorithm.Clone();
150        SetProblemParameters(selectedAlgorithm, problemSpecifications[targetVariable]);
151        if (!(selectedAlgorithm is IStochasticAlgorithm))
152          AddDispatchedRun(problemSpecifications[targetVariable], selectedAlgorithm.Name);
153      }
154      return selectedAlgorithm;
155    }
156
157    //private void PopulateFinishedRuns() {
158    //  var dispatchedAlgos = from model in Database.GetAllModels()
159    //                        select new {
160    //                          TargetVariable = model.TargetVariable.Name,
161    //                          Algorithm = model.Algorithm.Name,
162    //                          InputVariables = Database.GetInputVariableResults(model).Select(x => x.Variable.Name).Distinct(),
163    //                        };
164    //  foreach (var algo in dispatchedAlgos) {
165    //    ProblemSpecification spec = new ProblemSpecification();
166    //    spec.TargetVariable = algo.TargetVariable;
167    //    foreach (string variable in algo.InputVariables) spec.AddInputVariable(variable);
168    //    AddDispatchedRun(spec, algo.Algorithm);
169    //  }
170    //}
171
172    private void SetProblemParameters(HeuristicLab.Modeling.IAlgorithm algo, ProblemSpecification spec) {
173      algo.Dataset = spec.Dataset;
174      algo.TargetVariable = spec.Dataset.GetVariableIndex(spec.TargetVariable);
175      algo.TrainingSamplesStart = spec.TrainingSamplesStart;
176      algo.TrainingSamplesEnd = spec.TrainingSamplesEnd;
177      algo.ValidationSamplesStart = spec.ValidationSamplesStart;
178      algo.ValidationSamplesEnd = spec.ValidationSamplesEnd;
179      algo.TestSamplesStart = spec.TestSamplesStart;
180      algo.TestSamplesEnd = spec.TestSamplesEnd;
181      List<int> allowedFeatures = new List<int>();
182      foreach (string inputVariable in spec.InputVariables) {
183        if (inputVariable != spec.TargetVariable) {
184          allowedFeatures.Add(spec.Dataset.GetVariableIndex(inputVariable));
185        }
186      }
187
188      if (spec.LearningTask == LearningTask.TimeSeries) {
189        ITimeSeriesAlgorithm timeSeriesAlgo = (ITimeSeriesAlgorithm)algo;
190        timeSeriesAlgo.MinTimeOffset = spec.MinTimeOffset;
191        timeSeriesAlgo.MaxTimeOffset = spec.MaxTimeOffset;
192        timeSeriesAlgo.TrainingSamplesStart = spec.TrainingSamplesStart - spec.MinTimeOffset + 1; // first possible index is 1 because of differential symbol
193        if (spec.AutoRegressive) {
194          allowedFeatures.Add(spec.Dataset.GetVariableIndex(spec.TargetVariable));
195        }
196      }
197      algo.AllowedVariables = allowedFeatures;
198    }
199
200
201    private void AddDispatchedRun(ProblemSpecification specification, string algorithm) {
202      AlgorithmConfiguration conf = new AlgorithmConfiguration();
203      conf.name = algorithm;
204      conf.problemSpecification = new ProblemSpecification(specification);
205      if (!finishedAndDispatchedRuns.ContainsKey(specification.TargetVariable))
206        finishedAndDispatchedRuns.Add(specification.TargetVariable, new List<AlgorithmConfiguration>());
207      finishedAndDispatchedRuns[specification.TargetVariable].Add(conf);
208    }
209
210    private bool AlgorithmFinishedOrDispatched(ProblemSpecification specification, string algoName) {
211      return
212        finishedAndDispatchedRuns.ContainsKey(specification.TargetVariable) &&
213        finishedAndDispatchedRuns[specification.TargetVariable].Any(x =>
214                                                           algoName == x.name &&
215                                                           specification.Equals(x.problemSpecification));
216    }
217
218    internal void EnableTargetVariable(string name) {
219      activeVariables[name] = true;
220    }
221
222    internal void DisableTargetVariable(string name) {
223      activeVariables[name] = false;
224    }
225
226    public void EnableAlgorithm(string targetVariable, HeuristicLab.Modeling.IAlgorithm algo) {
227      if (!algorithms.ContainsKey(targetVariable)) algorithms.Add(targetVariable, new List<HeuristicLab.Modeling.IAlgorithm>());
228      if (!algorithms[targetVariable].Contains(algo))
229        algorithms[targetVariable].Add(algo);
230    }
231
232    public void DisableAlgorithm(string targetVariable, HeuristicLab.Modeling.IAlgorithm algo) {
233      algorithms[targetVariable].Remove(algo);
234    }
235
236    public ProblemSpecification GetProblemSpecification(string targetVariable) {
237      if (!problemSpecifications.ContainsKey(targetVariable))
238        problemSpecifications[targetVariable] = CreateDefaultProblemSpecification(targetVariable);
239
240      return problemSpecifications[targetVariable];
241    }
242
243    //internal void EnableInputVariable(string target, string name) {
244    //  problemSpecifications[target].AddInputVariable(name);
245    //}
246
247    //internal void DisableInputVariable(string target, string name) {
248    //  problemSpecifications[target].RemoveInputVariable(name);
249    //}
250
251    //internal void SetLearningTask(string target, LearningTask task) {
252    //  problemSpecifications[target].LearningTask = task;
253    //}
254
255    //internal void SetDatasetBoundaries(
256    //  string target,
257    //  int trainingStart, int trainingEnd,
258    //  int validationStart, int validationEnd,
259    //  int testStart, int testEnd) {
260    //  problemSpecifications[target].TrainingSamplesStart = trainingStart;
261    //  problemSpecifications[target].TrainingSamplesEnd = trainingEnd;
262    //  problemSpecifications[target].ValidationSamplesStart = validationStart;
263    //  problemSpecifications[target].ValidationSamplesEnd = validationEnd;
264    //  problemSpecifications[target].TestSamplesStart = testStart;
265    //  problemSpecifications[target].TestSamplesEnd = testEnd;
266    //}
267
268    private ProblemSpecification CreateDefaultProblemSpecification(string targetVariable) {
269      ProblemSpecification spec = new ProblemSpecification();
270      spec.Dataset = dataset;
271      spec.TargetVariable = targetVariable;
272      spec.LearningTask = LearningTask.Regression;
273      int targetColumn = dataset.GetVariableIndex(targetVariable);
274      // find index of first correct target value
275      int firstValueIndex;
276      for (firstValueIndex = 0; firstValueIndex < dataset.Rows; firstValueIndex++) {
277        double x = dataset.GetValue(firstValueIndex, targetColumn);
278        if (!(double.IsNaN(x) || double.IsInfinity(x))) break;
279      }
280      // find index of last correct target value
281      int lastValueIndex;
282      for (lastValueIndex = dataset.Rows - 1; lastValueIndex > firstValueIndex; lastValueIndex--) {
283        double x = dataset.GetValue(lastValueIndex, targetColumn);
284        if (!(double.IsNaN(x) || double.IsInfinity(x))) break;
285      }
286
287      int validTargetRange = lastValueIndex - firstValueIndex;
288      spec.TrainingSamplesStart = firstValueIndex;
289      spec.TrainingSamplesEnd = firstValueIndex + (int)Math.Floor(validTargetRange * 0.5);
290      spec.ValidationSamplesStart = spec.TrainingSamplesEnd;
291      spec.ValidationSamplesEnd = firstValueIndex + (int)Math.Floor(validTargetRange * 0.75);
292      spec.TestSamplesStart = spec.ValidationSamplesEnd;
293      spec.TestSamplesEnd = lastValueIndex;
294      return spec;
295    }
296
297    public void FireChanged() {
298      if (Changed != null) Changed(this, new EventArgs());
299    }
300
301    #region IViewable Members
302
303    public virtual IView CreateView() {
304      return new DispatcherView(this);
305    }
306
307    #endregion
308  }
309}
Note: See TracBrowser for help on using the repository browser.