1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using HeuristicLab.PluginInfrastructure;
|
---|
27 | using System.Net;
|
---|
28 | using System.ServiceModel;
|
---|
29 | using System.ServiceModel.Description;
|
---|
30 | using System.Linq;
|
---|
31 | using HeuristicLab.CEDMA.Core;
|
---|
32 | using HeuristicLab.Data;
|
---|
33 | using HeuristicLab.Core;
|
---|
34 | using HeuristicLab.Modeling;
|
---|
35 | using HeuristicLab.Modeling.Database;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.CEDMA.Server {
|
---|
38 | public class SimpleDispatcher : DispatcherBase {
|
---|
39 | private class AlgorithmConfiguration {
|
---|
40 | public string name;
|
---|
41 | public int targetVariable;
|
---|
42 | public List<int> inputVariables;
|
---|
43 | }
|
---|
44 |
|
---|
45 | private Random random;
|
---|
46 | private Dictionary<int, List<AlgorithmConfiguration>> finishedAndDispatchedRuns;
|
---|
47 |
|
---|
48 | public SimpleDispatcher(IModelingDatabase database, Problem problem)
|
---|
49 | : base(database, problem) {
|
---|
50 | random = new Random();
|
---|
51 | finishedAndDispatchedRuns = new Dictionary<int, List<AlgorithmConfiguration>>();
|
---|
52 | PopulateFinishedRuns();
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override HeuristicLab.Modeling.IAlgorithm SelectAndConfigureAlgorithm(int targetVariable, int[] inputVariables, Problem problem) {
|
---|
56 | DiscoveryService ds = new DiscoveryService();
|
---|
57 | HeuristicLab.Modeling.IAlgorithm[] algos = ds.GetInstances<HeuristicLab.Modeling.IAlgorithm>();
|
---|
58 | HeuristicLab.Modeling.IAlgorithm selectedAlgorithm = null;
|
---|
59 | switch (problem.LearningTask) {
|
---|
60 | case LearningTask.Regression: {
|
---|
61 | var regressionAlgos = algos.Where(a => (a as IClassificationAlgorithm) == null && (a as ITimeSeriesAlgorithm) == null);
|
---|
62 | selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, regressionAlgos) ?? ChooseStochastic(regressionAlgos);
|
---|
63 | break;
|
---|
64 | }
|
---|
65 | case LearningTask.Classification: {
|
---|
66 | var classificationAlgos = algos.Where(a => (a as IClassificationAlgorithm) != null);
|
---|
67 | selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, classificationAlgos) ?? ChooseStochastic(classificationAlgos);
|
---|
68 | break;
|
---|
69 | }
|
---|
70 | case LearningTask.TimeSeries: {
|
---|
71 | var timeSeriesAlgos = algos.Where(a => (a as ITimeSeriesAlgorithm) != null);
|
---|
72 | selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, timeSeriesAlgos) ?? ChooseStochastic(timeSeriesAlgos);
|
---|
73 | break;
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 |
|
---|
78 | if (selectedAlgorithm != null) {
|
---|
79 | SetProblemParameters(selectedAlgorithm, problem, targetVariable, inputVariables);
|
---|
80 | AddDispatchedRun(targetVariable, inputVariables, selectedAlgorithm.Name);
|
---|
81 | }
|
---|
82 | return selectedAlgorithm;
|
---|
83 | }
|
---|
84 |
|
---|
85 | private HeuristicLab.Modeling.IAlgorithm ChooseDeterministic(int targetVariable, int[] inputVariables, IEnumerable<HeuristicLab.Modeling.IAlgorithm> algos) {
|
---|
86 | var deterministicAlgos = algos
|
---|
87 | .Where(a => (a as IStochasticAlgorithm) == null)
|
---|
88 | .Where(a => AlgorithmFinishedOrDispatched(targetVariable, inputVariables, a.Name) == false);
|
---|
89 |
|
---|
90 | if (deterministicAlgos.Count() == 0) return null;
|
---|
91 | return deterministicAlgos.ElementAt(random.Next(deterministicAlgos.Count()));
|
---|
92 | }
|
---|
93 |
|
---|
94 | private HeuristicLab.Modeling.IAlgorithm ChooseStochastic(IEnumerable<HeuristicLab.Modeling.IAlgorithm> regressionAlgos) {
|
---|
95 | var stochasticAlgos = regressionAlgos.Where(a => (a as IStochasticAlgorithm) != null);
|
---|
96 | if (stochasticAlgos.Count() == 0) return null;
|
---|
97 | return stochasticAlgos.ElementAt(random.Next(stochasticAlgos.Count()));
|
---|
98 | }
|
---|
99 |
|
---|
100 | private void PopulateFinishedRuns() {
|
---|
101 | //Dictionary<Entity, Entity> processedModels = new Dictionary<Entity, Entity>();
|
---|
102 | //var datasetBindings = store
|
---|
103 | // .Query(
|
---|
104 | // "?Dataset <" + Ontology.InstanceOf + "> <" + Ontology.TypeDataSet + "> .", 0, 1)
|
---|
105 | // .Select(x => (Entity)x.Get("Dataset"));
|
---|
106 |
|
---|
107 | //if (datasetBindings.Count() > 0) {
|
---|
108 | // var datasetEntity = datasetBindings.ElementAt(0);
|
---|
109 |
|
---|
110 | // DataSet ds = new DataSet(store, datasetEntity);
|
---|
111 | // var result = store
|
---|
112 | // .Query(
|
---|
113 | // "?Model <" + Ontology.TargetVariable + "> ?TargetVariable ." + Environment.NewLine +
|
---|
114 | // "?Model <" + Ontology.Name + "> ?AlgoName .",
|
---|
115 | // 0, 1000)
|
---|
116 | // .Select(x => new Resource[] { (Literal)x.Get("TargetVariable"), (Literal)x.Get("AlgoName"), (Entity)x.Get("Model") });
|
---|
117 |
|
---|
118 | // foreach (Resource[] row in result) {
|
---|
119 | // Entity model = ((Entity)row[2]);
|
---|
120 | // if (!processedModels.ContainsKey(model)) {
|
---|
121 | // processedModels.Add(model, model);
|
---|
122 |
|
---|
123 | // string targetVariable = (string)((Literal)row[0]).Value;
|
---|
124 | // string algoName = (string)((Literal)row[1]).Value;
|
---|
125 | // int targetVariableIndex = ds.Problem.Dataset.GetVariableIndex(targetVariable);
|
---|
126 |
|
---|
127 | // var inputVariableLiterals = store
|
---|
128 | // .Query(
|
---|
129 | // "<" + model.Uri + "> <" + Ontology.HasInputVariable + "> ?InputVariable ." + Environment.NewLine +
|
---|
130 | // "?InputVariable <" + Ontology.Name + "> ?Name .",
|
---|
131 | // 0, 1000)
|
---|
132 | // .Select(x => (Literal)x.Get("Name"))
|
---|
133 | // .Select(l => (string)l.Value)
|
---|
134 | // .Distinct();
|
---|
135 |
|
---|
136 | // List<int> inputVariables = new List<int>();
|
---|
137 | // foreach (string variableName in inputVariableLiterals) {
|
---|
138 | // int variableIndex = ds.Problem.Dataset.GetVariableIndex(variableName);
|
---|
139 | // inputVariables.Add(variableIndex);
|
---|
140 | // }
|
---|
141 | // if (!AlgorithmFinishedOrDispatched(targetVariableIndex, inputVariables.ToArray(), algoName)) {
|
---|
142 | // AddDispatchedRun(targetVariableIndex, inputVariables.ToArray(), algoName);
|
---|
143 | // }
|
---|
144 | // }
|
---|
145 | // }
|
---|
146 | //}
|
---|
147 | }
|
---|
148 |
|
---|
149 | private void SetProblemParameters(HeuristicLab.Modeling.IAlgorithm algo, Problem problem, int targetVariable, int[] inputVariables) {
|
---|
150 | algo.Dataset = problem.Dataset;
|
---|
151 | algo.TargetVariable = targetVariable;
|
---|
152 | algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue<IntData>().Data = problem.TrainingSamplesStart;
|
---|
153 | algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue<IntData>().Data = problem.TrainingSamplesEnd;
|
---|
154 | algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue<IntData>().Data = problem.ValidationSamplesStart;
|
---|
155 | algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue<IntData>().Data = problem.ValidationSamplesEnd;
|
---|
156 | algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue<IntData>().Data = problem.TestSamplesStart;
|
---|
157 | algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue<IntData>().Data = problem.TestSamplesEnd;
|
---|
158 | ItemList<IntData> allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue<ItemList<IntData>>();
|
---|
159 | foreach (int inputVariable in inputVariables) {
|
---|
160 | if (inputVariable != targetVariable) {
|
---|
161 | allowedFeatures.Add(new IntData(inputVariable));
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | if (problem.LearningTask == LearningTask.TimeSeries) {
|
---|
166 | algo.ProblemInjector.GetVariable("Autoregressive").GetValue<BoolData>().Data = problem.AutoRegressive;
|
---|
167 | algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue<IntData>().Data = problem.MinTimeOffset;
|
---|
168 | algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue<IntData>().Data = problem.MaxTimeOffset;
|
---|
169 | if (problem.AutoRegressive) {
|
---|
170 | allowedFeatures.Add(new IntData(targetVariable));
|
---|
171 | }
|
---|
172 | } else if (problem.LearningTask == LearningTask.Classification) {
|
---|
173 | ItemList<DoubleData> classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue<ItemList<DoubleData>>();
|
---|
174 | foreach (double classValue in GetDifferentClassValues(problem.Dataset, targetVariable)) classValues.Add(new DoubleData(classValue));
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | private IEnumerable<double> GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) {
|
---|
179 | return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct();
|
---|
180 | }
|
---|
181 |
|
---|
182 | private void AddDispatchedRun(int targetVariable, int[] inputVariables, string algoName) {
|
---|
183 | if (!finishedAndDispatchedRuns.ContainsKey(targetVariable)) {
|
---|
184 | finishedAndDispatchedRuns[targetVariable] = new List<AlgorithmConfiguration>();
|
---|
185 | }
|
---|
186 | AlgorithmConfiguration conf = new AlgorithmConfiguration();
|
---|
187 | conf.name = algoName;
|
---|
188 | conf.inputVariables = new List<int>(inputVariables);
|
---|
189 | conf.targetVariable = targetVariable;
|
---|
190 | finishedAndDispatchedRuns[targetVariable].Add(conf);
|
---|
191 | }
|
---|
192 |
|
---|
193 | private bool AlgorithmFinishedOrDispatched(int targetVariable, int[] inputVariables, string algoName) {
|
---|
194 | return
|
---|
195 | finishedAndDispatchedRuns.ContainsKey(targetVariable) &&
|
---|
196 | finishedAndDispatchedRuns[targetVariable].Any(x => targetVariable == x.targetVariable &&
|
---|
197 | algoName == x.name &&
|
---|
198 | inputVariables.Count() == x.inputVariables.Count() &&
|
---|
199 | inputVariables.All(v => x.inputVariables.Contains(v)));
|
---|
200 | }
|
---|
201 | }
|
---|
202 | }
|
---|