[1044] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using HeuristicLab.PluginInfrastructure;
|
---|
| 27 | using System.Net;
|
---|
| 28 | using System.ServiceModel;
|
---|
| 29 | using HeuristicLab.CEDMA.DB.Interfaces;
|
---|
| 30 | using HeuristicLab.CEDMA.DB;
|
---|
| 31 | using System.ServiceModel.Description;
|
---|
| 32 | using System.Linq;
|
---|
| 33 | using HeuristicLab.CEDMA.Core;
|
---|
[1053] | 34 | using HeuristicLab.GP.StructureIdentification;
|
---|
| 35 | using HeuristicLab.Data;
|
---|
[1060] | 36 | using HeuristicLab.Core;
|
---|
[1857] | 37 | using HeuristicLab.Modeling;
|
---|
[1044] | 38 |
|
---|
| 39 | namespace HeuristicLab.CEDMA.Server {
|
---|
[1287] | 40 | public abstract class DispatcherBase : IDispatcher {
|
---|
[1044] | 41 | private IStore store;
|
---|
[1217] | 42 | public DispatcherBase(IStore store) {
|
---|
[1044] | 43 | this.store = store;
|
---|
| 44 | }
|
---|
| 45 |
|
---|
[1217] | 46 | public Execution GetNextJob() {
|
---|
[1130] | 47 | // find and select a dataset
|
---|
| 48 | var dataSetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("DataSet");
|
---|
| 49 | var dataSetQuery = new Statement[] {
|
---|
| 50 | new Statement(dataSetVar, Ontology.PredicateInstanceOf, Ontology.TypeDataSet)
|
---|
| 51 | };
|
---|
| 52 |
|
---|
[1417] | 53 | Entity[] datasets = store.Query("?DataSet <" + Ontology.PredicateInstanceOf.Uri + "> <" + Ontology.TypeDataSet.Uri + "> .", 0, 100)
|
---|
[1217] | 54 | .Select(x => (Entity)x.Get("DataSet"))
|
---|
| 55 | .ToArray();
|
---|
[1130] | 56 |
|
---|
| 57 | // no datasets => do nothing
|
---|
[1217] | 58 | if (datasets.Length == 0) return null;
|
---|
[1130] | 59 |
|
---|
[1217] | 60 | Entity dataSetEntity = SelectDataSet(datasets);
|
---|
[1130] | 61 | DataSet dataSet = new DataSet(store, dataSetEntity);
|
---|
[1217] | 62 |
|
---|
[1873] | 63 | int targetVariable = SelectTargetVariable(dataSetEntity, dataSet.Problem.AllowedTargetVariables.ToArray());
|
---|
| 64 | IAlgorithm selectedAlgorithm = SelectAlgorithm(dataSetEntity, targetVariable, dataSet.Problem.LearningTask);
|
---|
[1216] | 65 | string targetVariableName = dataSet.Problem.GetVariableName(targetVariable);
|
---|
[1217] | 66 |
|
---|
[1857] | 67 |
|
---|
| 68 | if (selectedAlgorithm != null) {
|
---|
| 69 | Execution exec = CreateExecution(dataSet.Problem, targetVariable, selectedAlgorithm);
|
---|
[1216] | 70 | exec.DataSetEntity = dataSetEntity;
|
---|
| 71 | exec.TargetVariable = targetVariableName;
|
---|
[1857] | 72 | return exec;
|
---|
| 73 | } else return null;
|
---|
[1044] | 74 | }
|
---|
| 75 |
|
---|
[1217] | 76 | public abstract Entity SelectDataSet(Entity[] datasets);
|
---|
[1873] | 77 | public abstract int SelectTargetVariable(Entity dataSet, int[] targetVariables);
|
---|
| 78 | public abstract IAlgorithm SelectAlgorithm(Entity dataSet, int targetVariable, LearningTask learningTask);
|
---|
[1060] | 79 |
|
---|
[1857] | 80 | private Execution CreateExecution(Problem problem, int targetVariable, IAlgorithm algorithm) {
|
---|
| 81 | SetProblemParameters(algorithm, problem, targetVariable);
|
---|
| 82 | Execution exec = new Execution(algorithm.Engine);
|
---|
| 83 | exec.Description = algorithm.Name;
|
---|
| 84 | return exec;
|
---|
[1060] | 85 | }
|
---|
| 86 |
|
---|
[1857] | 87 | private void SetProblemParameters(IAlgorithm algo, Problem problem, int targetVariable) {
|
---|
[1287] | 88 | algo.ProblemInjector.GetVariable("Dataset").Value = problem.DataSet;
|
---|
| 89 | algo.ProblemInjector.GetVariable("TargetVariable").GetValue<IntData>().Data = targetVariable;
|
---|
| 90 | algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue<IntData>().Data = problem.TrainingSamplesStart;
|
---|
| 91 | algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue<IntData>().Data = problem.TrainingSamplesEnd;
|
---|
| 92 | algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue<IntData>().Data = problem.ValidationSamplesStart;
|
---|
| 93 | algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue<IntData>().Data = problem.ValidationSamplesEnd;
|
---|
| 94 | algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue<IntData>().Data = problem.TestSamplesStart;
|
---|
| 95 | algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue<IntData>().Data = problem.TestSamplesEnd;
|
---|
| 96 | ItemList<IntData> allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue<ItemList<IntData>>();
|
---|
| 97 | foreach (int allowedFeature in problem.AllowedInputVariables) allowedFeatures.Add(new IntData(allowedFeature));
|
---|
| 98 |
|
---|
| 99 | if (problem.LearningTask == LearningTask.TimeSeries) {
|
---|
| 100 | algo.ProblemInjector.GetVariable("Autoregressive").GetValue<BoolData>().Data = problem.AutoRegressive;
|
---|
| 101 | algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue<IntData>().Data = problem.MinTimeOffset;
|
---|
| 102 | algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue<IntData>().Data = problem.MaxTimeOffset;
|
---|
| 103 | } else if (problem.LearningTask == LearningTask.Classification) {
|
---|
| 104 | ItemList<DoubleData> classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue<ItemList<DoubleData>>();
|
---|
| 105 | foreach (double classValue in GetDifferentClassValues(problem.DataSet, targetVariable)) classValues.Add(new DoubleData(classValue));
|
---|
| 106 | }
|
---|
[1053] | 107 | }
|
---|
[1287] | 108 |
|
---|
| 109 | private IEnumerable<double> GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) {
|
---|
| 110 | return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct();
|
---|
| 111 | }
|
---|
[1044] | 112 | }
|
---|
| 113 | }
|
---|