[957] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using HeuristicLab.CEDMA.DB.Interfaces;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.CEDMA.Core {
|
---|
[1287] | 32 |
|
---|
| 33 | public enum LearningTask {
|
---|
| 34 | Classification,
|
---|
| 35 | Regression,
|
---|
| 36 | TimeSeries,
|
---|
| 37 | Clustering
|
---|
| 38 | }
|
---|
| 39 |
|
---|
[957] | 40 | /// <summary>
|
---|
| 41 | /// Problem describes the data mining task.
|
---|
| 42 | /// Contains the actual data and meta-data:
|
---|
| 43 | /// * which variables should be modelled
|
---|
| 44 | /// * regression, time-series or classification problem
|
---|
| 45 | /// </summary>
|
---|
[1287] | 46 | public class Problem : ItemBase {
|
---|
| 47 | private HeuristicLab.DataAnalysis.Dataset dataset;
|
---|
[2000] | 48 | public HeuristicLab.DataAnalysis.Dataset Dataset {
|
---|
[1287] | 49 | get { return dataset; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | private int trainingSamplesStart;
|
---|
| 53 | public int TrainingSamplesStart {
|
---|
| 54 | get { return trainingSamplesStart; }
|
---|
| 55 | set { trainingSamplesStart = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | private int trainingSamplesEnd;
|
---|
| 59 | public int TrainingSamplesEnd {
|
---|
| 60 | get { return trainingSamplesEnd; }
|
---|
| 61 | set { trainingSamplesEnd = value; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | private int validationSamplesStart;
|
---|
| 65 | public int ValidationSamplesStart {
|
---|
| 66 | get { return validationSamplesStart; }
|
---|
| 67 | set { validationSamplesStart = value; }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | private int validationSamplesEnd;
|
---|
| 71 | public int ValidationSamplesEnd {
|
---|
| 72 | get { return validationSamplesEnd; }
|
---|
| 73 | set { validationSamplesEnd = value; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | private int testSamplesStart;
|
---|
| 77 | public int TestSamplesStart {
|
---|
| 78 | get { return testSamplesStart; }
|
---|
| 79 | set { testSamplesStart = value; }
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | private int testSamplesEnd;
|
---|
| 83 | public int TestSamplesEnd {
|
---|
| 84 | get { return testSamplesEnd; }
|
---|
| 85 | set { testSamplesEnd = value; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | private List<int> allowedInputVariables;
|
---|
| 89 | public List<int> AllowedInputVariables {
|
---|
| 90 | get { return allowedInputVariables; }
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private List<int> allowedTargetVariables;
|
---|
| 94 | public List<int> AllowedTargetVariables {
|
---|
| 95 | get { return allowedTargetVariables; }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | private bool autoRegressive;
|
---|
| 99 | public bool AutoRegressive {
|
---|
| 100 | get { return autoRegressive; }
|
---|
| 101 | set { autoRegressive = value; }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | private int minTimeOffset;
|
---|
| 105 | public int MinTimeOffset {
|
---|
| 106 | get { return minTimeOffset; }
|
---|
| 107 | set { minTimeOffset = value; }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | private int maxTimeOffset;
|
---|
| 111 | public int MaxTimeOffset {
|
---|
| 112 | get { return maxTimeOffset; }
|
---|
| 113 | set { maxTimeOffset = value; }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | private LearningTask learningTask;
|
---|
| 117 | public LearningTask LearningTask {
|
---|
| 118 | get { return learningTask; }
|
---|
| 119 | set { learningTask = value; }
|
---|
| 120 | }
|
---|
| 121 |
|
---|
[957] | 122 | public Problem()
|
---|
| 123 | : base() {
|
---|
[1287] | 124 | dataset = new DataAnalysis.Dataset();
|
---|
| 125 | allowedInputVariables = new List<int>();
|
---|
| 126 | allowedTargetVariables = new List<int>();
|
---|
[957] | 127 | }
|
---|
[1287] | 128 |
|
---|
| 129 |
|
---|
| 130 | public string GetVariableName(int index) {
|
---|
| 131 | return dataset.GetVariableName(index);
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | public override IView CreateView() {
|
---|
| 135 | return new ProblemView(this);
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
| 139 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
| 140 | node.AppendChild(PersistenceManager.Persist("DataSet", dataset, document, persistedObjects));
|
---|
| 141 | XmlAttribute trainingSamplesStartAttr = document.CreateAttribute("TrainingSamplesStart");
|
---|
| 142 | trainingSamplesStartAttr.Value = TrainingSamplesStart.ToString();
|
---|
| 143 | XmlAttribute trainingSamplesEndAttr = document.CreateAttribute("TrainingSamplesEnd");
|
---|
| 144 | trainingSamplesEndAttr.Value = TrainingSamplesEnd.ToString();
|
---|
| 145 | XmlAttribute validationSamplesStartAttr = document.CreateAttribute("ValidationSamplesStart");
|
---|
| 146 | validationSamplesStartAttr.Value = ValidationSamplesStart.ToString();
|
---|
| 147 | XmlAttribute validationSamplesEndAttr = document.CreateAttribute("ValidationSamplesEnd");
|
---|
| 148 | validationSamplesEndAttr.Value = ValidationSamplesEnd.ToString();
|
---|
| 149 | XmlAttribute testSamplesStartAttr = document.CreateAttribute("TestSamplesStart");
|
---|
| 150 | testSamplesStartAttr.Value = TestSamplesStart.ToString();
|
---|
| 151 | XmlAttribute testSamplesEndAttr = document.CreateAttribute("TestSamplesEnd");
|
---|
| 152 | testSamplesEndAttr.Value = TestSamplesEnd.ToString();
|
---|
| 153 | XmlAttribute learningTaskAttr = document.CreateAttribute("LearningTask");
|
---|
| 154 | learningTaskAttr.Value = LearningTask.ToString();
|
---|
| 155 | XmlAttribute autoRegressiveAttr = document.CreateAttribute("AutoRegressive");
|
---|
| 156 | autoRegressiveAttr.Value = AutoRegressive.ToString();
|
---|
| 157 | XmlAttribute minTimeOffsetAttr = document.CreateAttribute("MinTimeOffset");
|
---|
| 158 | minTimeOffsetAttr.Value = MinTimeOffset.ToString();
|
---|
| 159 | XmlAttribute maxTimeOffsetAttr = document.CreateAttribute("MaxTimeOffset");
|
---|
| 160 | maxTimeOffsetAttr.Value = MaxTimeOffset.ToString();
|
---|
| 161 |
|
---|
| 162 | node.Attributes.Append(trainingSamplesStartAttr);
|
---|
| 163 | node.Attributes.Append(trainingSamplesEndAttr);
|
---|
| 164 | node.Attributes.Append(validationSamplesStartAttr);
|
---|
| 165 | node.Attributes.Append(validationSamplesEndAttr);
|
---|
| 166 | node.Attributes.Append(testSamplesStartAttr);
|
---|
| 167 | node.Attributes.Append(testSamplesEndAttr);
|
---|
| 168 | node.Attributes.Append(learningTaskAttr);
|
---|
| 169 | node.Attributes.Append(autoRegressiveAttr);
|
---|
| 170 | node.Attributes.Append(minTimeOffsetAttr);
|
---|
| 171 | node.Attributes.Append(maxTimeOffsetAttr);
|
---|
| 172 |
|
---|
| 173 | XmlElement targetVariablesElement = document.CreateElement("AllowedTargetVariables");
|
---|
| 174 | targetVariablesElement.InnerText = SemiColonSeparatedList(AllowedTargetVariables);
|
---|
| 175 | XmlElement inputVariablesElement = document.CreateElement("AllowedInputVariables");
|
---|
| 176 | inputVariablesElement.InnerText = SemiColonSeparatedList(AllowedInputVariables);
|
---|
| 177 | node.AppendChild(targetVariablesElement);
|
---|
| 178 | node.AppendChild(inputVariablesElement);
|
---|
| 179 | return node;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
| 183 | base.Populate(node, restoredObjects);
|
---|
| 184 | dataset = (HeuristicLab.DataAnalysis.Dataset)PersistenceManager.Restore(node.SelectSingleNode("DataSet"), restoredObjects);
|
---|
| 185 | TrainingSamplesStart = int.Parse(node.Attributes["TrainingSamplesStart"].Value);
|
---|
| 186 | TrainingSamplesEnd = int.Parse(node.Attributes["TrainingSamplesEnd"].Value);
|
---|
| 187 | ValidationSamplesStart = int.Parse(node.Attributes["ValidationSamplesStart"].Value);
|
---|
| 188 | ValidationSamplesEnd = int.Parse(node.Attributes["ValidationSamplesEnd"].Value);
|
---|
| 189 | TestSamplesStart = int.Parse(node.Attributes["TestSamplesStart"].Value);
|
---|
| 190 | TestSamplesEnd = int.Parse(node.Attributes["TestSamplesEnd"].Value);
|
---|
| 191 | LearningTask = (LearningTask)Enum.Parse(typeof(LearningTask), node.Attributes["LearningTask"].Value);
|
---|
| 192 | AutoRegressive = bool.Parse(node.Attributes["AutoRegressive"].Value);
|
---|
| 193 | if (node.Attributes["MinTimeOffset"] != null)
|
---|
| 194 | MinTimeOffset = XmlConvert.ToInt32(node.Attributes["MinTimeOffset"].Value);
|
---|
| 195 | else MinTimeOffset = 0;
|
---|
| 196 | if (node.Attributes["MaxTimeOffset"] != null)
|
---|
| 197 | MaxTimeOffset = XmlConvert.ToInt32(node.Attributes["MaxTimeOffset"].Value);
|
---|
| 198 | else MaxTimeOffset = 0;
|
---|
| 199 |
|
---|
| 200 | allowedTargetVariables.Clear();
|
---|
| 201 | foreach (string tok in node.SelectSingleNode("AllowedTargetVariables").InnerText.Split(new string[] { ";" }, StringSplitOptions.RemoveEmptyEntries))
|
---|
| 202 | allowedTargetVariables.Add(int.Parse(tok));
|
---|
| 203 | allowedInputVariables.Clear();
|
---|
| 204 | foreach (string tok in node.SelectSingleNode("AllowedInputVariables").InnerText.Split(new string[] { ";" }, StringSplitOptions.RemoveEmptyEntries))
|
---|
| 205 | allowedInputVariables.Add(int.Parse(tok));
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | private string SemiColonSeparatedList(List<int> xs) {
|
---|
| 209 | StringBuilder b = new StringBuilder();
|
---|
| 210 | foreach (int x in xs) {
|
---|
| 211 | b = b.Append(x).Append(";");
|
---|
| 212 | }
|
---|
| 213 | if (xs.Count > 0) b.Remove(b.Length - 1, 1); // remove last ';'
|
---|
| 214 | return b.ToString();
|
---|
| 215 | }
|
---|
[957] | 216 | }
|
---|
| 217 | }
|
---|