[2562] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Modeling;
|
---|
| 26 | using System;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.ArtificialNeuralNetworks {
|
---|
| 31 | public class Predictor : PredictorBase {
|
---|
| 32 | private MultiLayerPerceptron perceptron;
|
---|
| 33 | public Predictor() : base() { } // for persistence
|
---|
| 34 | public Predictor(MultiLayerPerceptron perceptron, double lowerPredictionLimit, double upperPredictionLimit)
|
---|
| 35 | : base(lowerPredictionLimit, upperPredictionLimit) {
|
---|
| 36 | this.perceptron = perceptron;
|
---|
| 37 | }
|
---|
| 38 |
|
---|
[2619] | 39 | public override IEnumerable<double> Predict(Dataset input, int start, int end) {
|
---|
[2562] | 40 |
|
---|
| 41 | if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
|
---|
| 42 | if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
|
---|
[2619] | 43 |
|
---|
| 44 | for (int i = 0; i < end - start; i++) {
|
---|
| 45 | double[] output = new double[1];
|
---|
| 46 | double[] inputRow = new double[input.Columns - 1];
|
---|
| 47 | for (int c = 1; c < inputRow.Length; c++) {
|
---|
| 48 | inputRow[c - 1] = input.GetValue(i + start, c);
|
---|
[2562] | 49 | }
|
---|
[2619] | 50 | alglib.mlpbase.multilayerperceptron p = perceptron.Perceptron;
|
---|
| 51 | alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
|
---|
| 52 | perceptron.Perceptron = p;
|
---|
| 53 | yield return Math.Max(Math.Min(output[0], UpperPredictionLimit), LowerPredictionLimit);
|
---|
[2562] | 54 | }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public override IEnumerable<string> GetInputVariables() {
|
---|
| 58 | return perceptron.InputVariables;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
| 63 | Predictor clone = (Predictor)base.Clone(clonedObjects);
|
---|
| 64 | clone.perceptron = (MultiLayerPerceptron)Auxiliary.Clone(perceptron, clonedObjects);
|
---|
| 65 | return clone;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
| 69 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
| 70 | node.AppendChild(PersistenceManager.Persist("Perceptron", perceptron, document, persistedObjects));
|
---|
| 71 | return node;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public override void Populate(System.Xml.XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
| 75 | base.Populate(node, restoredObjects);
|
---|
| 76 | perceptron = (MultiLayerPerceptron)PersistenceManager.Restore(node.SelectSingleNode("Perceptron"), restoredObjects);
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 | }
|
---|