1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.DataAnalysis;
|
---|
28 | using HeuristicLab.Modeling;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.ArtificialNeuralNetworks {
|
---|
31 | public class MultiLayerPerceptronRegressionOperator : OperatorBase {
|
---|
32 |
|
---|
33 | public MultiLayerPerceptronRegressionOperator() {
|
---|
34 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
35 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
36 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("ValidationSamplesStart", "Start of validation set", typeof(IntData), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("ValidationSamplesEnd", "End of validation set", typeof(IntData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("NumberOfHiddenLayerNeurons", "The number of nodes in the hidden layer.", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Formula that was calculated by multi layer perceptron regression", typeof(MultiLayerPerceptron), VariableKind.Out | VariableKind.New));
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IOperation Apply(IScope scope) {
|
---|
47 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
48 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
49 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
50 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
51 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
52 |
|
---|
53 | int valStart = GetVariableValue<IntData>("ValidationSamplesStart", scope, true).Data;
|
---|
54 | int valEnd = GetVariableValue<IntData>("ValidationSamplesEnd", scope, true).Data;
|
---|
55 |
|
---|
56 |
|
---|
57 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
58 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
59 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
60 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
61 | int nHiddenNodes = GetVariableValue<IntData>("NumberOfHiddenLayerNeurons", scope, true).Data;
|
---|
62 |
|
---|
63 | var perceptron = CreateModel(dataset, targetVariable, dataset.VariableNames, start, end, valStart, valEnd, minTimeOffset, maxTimeOffset, nHiddenNodes);
|
---|
64 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MultiLayerPerceptron"), perceptron));
|
---|
65 | return null;
|
---|
66 | }
|
---|
67 |
|
---|
68 | //public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end, int nHiddenNodes) {
|
---|
69 | // return CreateModel(dataset, targetVariable, inputVariables, start, end, 0, 0, nHiddenNodes);
|
---|
70 | //}
|
---|
71 |
|
---|
72 | public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables,
|
---|
73 | int start, int end, int valStart, int valEnd,
|
---|
74 | int minTimeOffset, int maxTimeOffset, int nHiddenNodes) {
|
---|
75 | double[,] inputMatrix;
|
---|
76 | double[,] validationData;
|
---|
77 | double[] targetVector;
|
---|
78 | double[] validationTargetVector;
|
---|
79 | PrepareDataset(dataset, targetVariable, inputVariables, start, end, minTimeOffset, maxTimeOffset, out inputMatrix, out targetVector);
|
---|
80 | PrepareDataset(dataset, targetVariable, inputVariables, valStart, valEnd, minTimeOffset, maxTimeOffset, out validationData, out validationTargetVector);
|
---|
81 | var perceptron = TrainPerceptron(inputMatrix, targetVector, nHiddenNodes, validationData, validationTargetVector);
|
---|
82 | return new MultiLayerPerceptron(perceptron, inputVariables, minTimeOffset, maxTimeOffset);
|
---|
83 | }
|
---|
84 |
|
---|
85 |
|
---|
86 |
|
---|
87 | private static alglib.mlpbase.multilayerperceptron TrainPerceptron(double[,] inputMatrix, double[] targetVector, int nHiddenNodes, double[,] validationData, double[] validationTargetVector) {
|
---|
88 | int retVal = 0;
|
---|
89 | int n = targetVector.Length;
|
---|
90 | int validationN = validationTargetVector.Length;
|
---|
91 | int p = inputMatrix.GetLength(1);
|
---|
92 | alglib.mlpbase.multilayerperceptron perceptron = new alglib.mlpbase.multilayerperceptron();
|
---|
93 | alglib.mlpbase.mlpcreate1(p - 1, nHiddenNodes, 1, ref perceptron);
|
---|
94 | alglib.mlptrain.mlpreport report = new alglib.mlptrain.mlpreport();
|
---|
95 | double[,] dataset = new double[n, p];
|
---|
96 | for (int row = 0; row < n; row++) {
|
---|
97 | for (int column = 0; column < p - 1; column++) {
|
---|
98 | dataset[row, column] = inputMatrix[row, column];
|
---|
99 | }
|
---|
100 | dataset[row, p - 1] = targetVector[row];
|
---|
101 | }
|
---|
102 | double[,] validationDataset = new double[validationN, p];
|
---|
103 | for (int row = 0; row < validationN; row++) {
|
---|
104 | for (int column = 0; column < p - 1; column++) {
|
---|
105 | validationDataset[row, column] = validationData[row, column];
|
---|
106 | }
|
---|
107 | validationDataset[row, p - 1] = validationTargetVector[row];
|
---|
108 | }
|
---|
109 | //alglib.mlptrain.mlptrainlbfgs(ref perceptron, ref dataset, n, 0.001, 10, 0.01, 0, ref retVal, ref report);
|
---|
110 | alglib.mlptrain.mlptraines(ref perceptron, ref dataset, n, ref validationDataset, validationN, 0.001, 10, ref retVal, ref report);
|
---|
111 | if (retVal != 2 && retVal != 6) throw new ArgumentException("Error in training of multi layer perceptron");
|
---|
112 | return perceptron;
|
---|
113 | }
|
---|
114 |
|
---|
115 | public static void PrepareDataset(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end, int minTimeOffset, int maxTimeOffset,
|
---|
116 | out double[,] inputMatrix, out double[] targetVector) {
|
---|
117 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
118 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, inputVariables.Select(x => dataset.GetVariableIndex(x)), start, end);
|
---|
119 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset);
|
---|
120 |
|
---|
121 | inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset);
|
---|
122 | targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows);
|
---|
123 |
|
---|
124 | }
|
---|
125 |
|
---|
126 | //returns list of valid row indexes (rows without NaN values)
|
---|
127 | private static List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, IList<int> allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) {
|
---|
128 | List<int> allowedRows = new List<int>();
|
---|
129 | bool add;
|
---|
130 | for (int row = start; row < end; row++) {
|
---|
131 | add = true;
|
---|
132 | for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) {
|
---|
133 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
134 | if (
|
---|
135 | row + timeOffset < 0 ||
|
---|
136 | row + timeOffset > dataset.Rows ||
|
---|
137 | double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
138 | double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
139 | double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) {
|
---|
140 | add = false;
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 | if (add)
|
---|
145 | allowedRows.Add(row);
|
---|
146 | add = true;
|
---|
147 | }
|
---|
148 | return allowedRows;
|
---|
149 | }
|
---|
150 |
|
---|
151 | //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values)
|
---|
152 | private static List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, IEnumerable<int> inputVariables, int start, int end) {
|
---|
153 | List<int> allowedColumns = new List<int>();
|
---|
154 | double n = end - start;
|
---|
155 | foreach (int inputVariable in inputVariables) {// = 0; i < dataset.Columns; i++) {
|
---|
156 | double nanRatio = dataset.CountMissingValues(inputVariable, start, end) / n;
|
---|
157 | if (inputVariable != targetVariable && nanRatio < 0.1 && dataset.GetRange(inputVariable, start, end) > 0.0) {
|
---|
158 | allowedColumns.Add(inputVariable);
|
---|
159 | }
|
---|
160 | }
|
---|
161 | return allowedColumns;
|
---|
162 | }
|
---|
163 |
|
---|
164 | private static double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows, int minTimeOffset, int maxTimeOffset) {
|
---|
165 | int rowCount = allowedRows.Count;
|
---|
166 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
167 | double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange)];
|
---|
168 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
169 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
170 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++)
|
---|
171 | matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]);
|
---|
172 | }
|
---|
173 | return matrix;
|
---|
174 | }
|
---|
175 |
|
---|
176 | private static double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
177 | int rowCount = allowedRows.Count;
|
---|
178 | double[] targetVector = new double[rowCount];
|
---|
179 | double[] samples = dataset.Samples;
|
---|
180 | for (int row = 0; row < rowCount; row++) {
|
---|
181 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
182 | }
|
---|
183 | return targetVector;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | }
|
---|