[2562] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.DataAnalysis;
|
---|
| 28 | using HeuristicLab.Modeling;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.ArtificialNeuralNetworks {
|
---|
| 31 | public class MultiLayerPerceptronRegressionOperator : OperatorBase {
|
---|
| 32 |
|
---|
| 33 | public MultiLayerPerceptronRegressionOperator() {
|
---|
| 34 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
| 35 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
| 36 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 37 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
[2985] | 38 | AddVariableInfo(new VariableInfo("ValidationSamplesStart", "Start of validation set", typeof(IntData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("ValidationSamplesEnd", "End of validation set", typeof(IntData), VariableKind.In));
|
---|
[2562] | 40 | AddVariableInfo(new VariableInfo("NumberOfHiddenLayerNeurons", "The number of nodes in the hidden layer.", typeof(IntData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
| 42 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Formula that was calculated by multi layer perceptron regression", typeof(MultiLayerPerceptron), VariableKind.Out | VariableKind.New));
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public override IOperation Apply(IScope scope) {
|
---|
| 47 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
| 48 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
| 49 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
| 50 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
| 51 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
[2985] | 52 |
|
---|
| 53 | int valStart = GetVariableValue<IntData>("ValidationSamplesStart", scope, true).Data;
|
---|
| 54 | int valEnd = GetVariableValue<IntData>("ValidationSamplesEnd", scope, true).Data;
|
---|
| 55 |
|
---|
| 56 |
|
---|
[2562] | 57 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
| 58 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
| 59 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
| 60 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
| 61 | int nHiddenNodes = GetVariableValue<IntData>("NumberOfHiddenLayerNeurons", scope, true).Data;
|
---|
| 62 |
|
---|
[2985] | 63 | var perceptron = CreateModel(dataset, targetVariable, dataset.VariableNames, start, end, valStart, valEnd, minTimeOffset, maxTimeOffset, nHiddenNodes);
|
---|
[2562] | 64 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MultiLayerPerceptron"), perceptron));
|
---|
| 65 | return null;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
[2985] | 68 | //public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end, int nHiddenNodes) {
|
---|
| 69 | // return CreateModel(dataset, targetVariable, inputVariables, start, end, 0, 0, nHiddenNodes);
|
---|
| 70 | //}
|
---|
[2562] | 71 |
|
---|
| 72 | public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables,
|
---|
[2985] | 73 | int start, int end, int valStart, int valEnd,
|
---|
[2562] | 74 | int minTimeOffset, int maxTimeOffset, int nHiddenNodes) {
|
---|
[2985] | 75 | double[,] inputMatrix;
|
---|
| 76 | double[,] validationData;
|
---|
| 77 | double[] targetVector;
|
---|
| 78 | double[] validationTargetVector;
|
---|
| 79 | PrepareDataset(dataset, targetVariable, inputVariables, start, end, minTimeOffset, maxTimeOffset, out inputMatrix, out targetVector);
|
---|
| 80 | PrepareDataset(dataset, targetVariable, inputVariables, valStart, valEnd, minTimeOffset, maxTimeOffset, out validationData, out validationTargetVector);
|
---|
| 81 | var perceptron = TrainPerceptron(inputMatrix, targetVector, nHiddenNodes, validationData, validationTargetVector);
|
---|
[2562] | 82 | return new MultiLayerPerceptron(perceptron, inputVariables, minTimeOffset, maxTimeOffset);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 |
|
---|
[2985] | 87 | private static alglib.mlpbase.multilayerperceptron TrainPerceptron(double[,] inputMatrix, double[] targetVector, int nHiddenNodes, double[,] validationData, double[] validationTargetVector) {
|
---|
[2562] | 88 | int retVal = 0;
|
---|
| 89 | int n = targetVector.Length;
|
---|
[2985] | 90 | int validationN = validationTargetVector.Length;
|
---|
[2562] | 91 | int p = inputMatrix.GetLength(1);
|
---|
| 92 | alglib.mlpbase.multilayerperceptron perceptron = new alglib.mlpbase.multilayerperceptron();
|
---|
| 93 | alglib.mlpbase.mlpcreate1(p - 1, nHiddenNodes, 1, ref perceptron);
|
---|
| 94 | alglib.mlptrain.mlpreport report = new alglib.mlptrain.mlpreport();
|
---|
| 95 | double[,] dataset = new double[n, p];
|
---|
| 96 | for (int row = 0; row < n; row++) {
|
---|
| 97 | for (int column = 0; column < p - 1; column++) {
|
---|
| 98 | dataset[row, column] = inputMatrix[row, column];
|
---|
| 99 | }
|
---|
| 100 | dataset[row, p - 1] = targetVector[row];
|
---|
| 101 | }
|
---|
[2985] | 102 | double[,] validationDataset = new double[validationN, p];
|
---|
| 103 | for (int row = 0; row < validationN; row++) {
|
---|
| 104 | for (int column = 0; column < p - 1; column++) {
|
---|
| 105 | validationDataset[row, column] = validationData[row, column];
|
---|
| 106 | }
|
---|
| 107 | validationDataset[row, p - 1] = validationTargetVector[row];
|
---|
| 108 | }
|
---|
| 109 | //alglib.mlptrain.mlptrainlbfgs(ref perceptron, ref dataset, n, 0.001, 10, 0.01, 0, ref retVal, ref report);
|
---|
| 110 | alglib.mlptrain.mlptraines(ref perceptron, ref dataset, n, ref validationDataset, validationN, 0.001, 10, ref retVal, ref report);
|
---|
| 111 | if (retVal != 2 && retVal != 6) throw new ArgumentException("Error in training of multi layer perceptron");
|
---|
[2562] | 112 | return perceptron;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[2985] | 115 | public static void PrepareDataset(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end, int minTimeOffset, int maxTimeOffset,
|
---|
| 116 | out double[,] inputMatrix, out double[] targetVector) {
|
---|
| 117 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
| 118 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, inputVariables.Select(x => dataset.GetVariableIndex(x)), start, end);
|
---|
| 119 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset);
|
---|
| 120 |
|
---|
| 121 | inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset);
|
---|
| 122 | targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows);
|
---|
| 123 |
|
---|
| 124 | }
|
---|
| 125 |
|
---|
[2562] | 126 | //returns list of valid row indexes (rows without NaN values)
|
---|
| 127 | private static List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, IList<int> allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) {
|
---|
| 128 | List<int> allowedRows = new List<int>();
|
---|
| 129 | bool add;
|
---|
| 130 | for (int row = start; row < end; row++) {
|
---|
| 131 | add = true;
|
---|
| 132 | for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) {
|
---|
| 133 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
| 134 | if (
|
---|
| 135 | row + timeOffset < 0 ||
|
---|
| 136 | row + timeOffset > dataset.Rows ||
|
---|
| 137 | double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
| 138 | double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
| 139 | double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) {
|
---|
| 140 | add = false;
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | if (add)
|
---|
| 145 | allowedRows.Add(row);
|
---|
| 146 | add = true;
|
---|
| 147 | }
|
---|
| 148 | return allowedRows;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values)
|
---|
| 152 | private static List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, IEnumerable<int> inputVariables, int start, int end) {
|
---|
| 153 | List<int> allowedColumns = new List<int>();
|
---|
| 154 | double n = end - start;
|
---|
| 155 | foreach (int inputVariable in inputVariables) {// = 0; i < dataset.Columns; i++) {
|
---|
| 156 | double nanRatio = dataset.CountMissingValues(inputVariable, start, end) / n;
|
---|
| 157 | if (inputVariable != targetVariable && nanRatio < 0.1 && dataset.GetRange(inputVariable, start, end) > 0.0) {
|
---|
| 158 | allowedColumns.Add(inputVariable);
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | return allowedColumns;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | private static double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows, int minTimeOffset, int maxTimeOffset) {
|
---|
| 165 | int rowCount = allowedRows.Count;
|
---|
| 166 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
[2985] | 167 | double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange)];
|
---|
[2562] | 168 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
| 169 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
| 170 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++)
|
---|
| 171 | matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]);
|
---|
| 172 | }
|
---|
| 173 | return matrix;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | private static double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
| 177 | int rowCount = allowedRows.Count;
|
---|
| 178 | double[] targetVector = new double[rowCount];
|
---|
| 179 | double[] samples = dataset.Samples;
|
---|
| 180 | for (int row = 0; row < rowCount; row++) {
|
---|
| 181 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
| 182 | }
|
---|
| 183 | return targetVector;
|
---|
| 184 | }
|
---|
| 185 | }
|
---|
| 186 | }
|
---|