Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.ArtificialNeuralNetworks/3.2/MultiLayerPerceptronEvaluator.cs @ 2904

Last change on this file since 2904 was 2562, checked in by gkronber, 15 years ago

Added project for ANN. #751 (Plugin for for data-modeling with ANN (integrated into CEDMA))

File size: 4.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29
30namespace HeuristicLab.ArtificialNeuralNetworks {
31  public class MultiLayerPerceptronEvaluator : OperatorBase {
32
33    public MultiLayerPerceptronEvaluator()
34      : base() {
35      //Dataset infos
36      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
37      AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
38      AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
39      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal allowed time offset for input variables", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal allowed time offset for input variables", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Represent the model learned by the SVM", typeof(MultiLayerPerceptron), VariableKind.In));
44      AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
45    }
46
47
48    public override IOperation Apply(IScope scope) {
49      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
50      ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
51      var inputVariableNames = from x in inputVariables
52                               select ((StringData)x).Data;
53      string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
54      int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
55      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
56      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
57      IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
58      int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
59      IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
60      int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
61      MultiLayerPerceptron model = GetVariableValue<MultiLayerPerceptron>("MultiLayerPerceptron", scope, true);
62
63      double[,] values = new double[end - start, 2];
64      for (int i = 0; i < end - start; i++) {
65        double[] output = new double[1];
66        double[] inputRow = new double[dataset.Columns - 1];
67        for (int c = 1; c < inputRow.Length; c++) {
68          inputRow[c - 1] = dataset.GetValue(i + start, c);
69        }
70        alglib.mlpbase.multilayerperceptron p = model.Perceptron;
71        alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
72        model.Perceptron = p;
73        values[i, 0] = dataset.GetValue(start + i, targetVariableIndex);
74        values[i, 1] = output[0];
75      }
76
77      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
78      return null;
79    }
80  }
81}
Note: See TracBrowser for help on using the repository browser.