1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.ArtificialNeuralNetworks {
|
---|
31 | public class MultiLayerPerceptronEvaluator : OperatorBase {
|
---|
32 |
|
---|
33 | public MultiLayerPerceptronEvaluator()
|
---|
34 | : base() {
|
---|
35 | //Dataset infos
|
---|
36 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal allowed time offset for input variables", typeof(IntData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal allowed time offset for input variables", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Represent the model learned by the SVM", typeof(MultiLayerPerceptron), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
|
---|
45 | }
|
---|
46 |
|
---|
47 |
|
---|
48 | public override IOperation Apply(IScope scope) {
|
---|
49 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
50 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
|
---|
51 | var inputVariableNames = from x in inputVariables
|
---|
52 | select ((StringData)x).Data;
|
---|
53 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
54 | // int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
55 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
56 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
57 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
58 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
59 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
60 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
61 | MultiLayerPerceptron model = GetVariableValue<MultiLayerPerceptron>("MultiLayerPerceptron", scope, true);
|
---|
62 |
|
---|
63 | double[] targetVector;
|
---|
64 | double[,] inputMatrix;
|
---|
65 | MultiLayerPerceptronRegressionOperator.PrepareDataset(dataset, targetVariable, inputVariableNames, start, end, minTimeOffset, maxTimeOffset,
|
---|
66 | out inputMatrix, out targetVector);
|
---|
67 |
|
---|
68 | double[,] values = new double[targetVector.Length, 2];
|
---|
69 | for (int i = 0; i < targetVector.Length; i++) {
|
---|
70 | double[] output = new double[1];
|
---|
71 | double[] inputRow = new double[inputMatrix.GetLength(1)];
|
---|
72 | for (int c = 0; c < inputRow.Length; c++) {
|
---|
73 | inputRow[c] = inputMatrix[i, c];
|
---|
74 | }
|
---|
75 | alglib.mlpbase.multilayerperceptron p = model.Perceptron;
|
---|
76 | alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
|
---|
77 | model.Perceptron = p;
|
---|
78 | values[i, 0] = targetVector[i];
|
---|
79 | values[i, 1] = output[0];
|
---|
80 | }
|
---|
81 |
|
---|
82 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
|
---|
83 | return null;
|
---|
84 | }
|
---|
85 | }
|
---|
86 | }
|
---|