[2562] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.ArtificialNeuralNetworks {
|
---|
| 31 | public class MultiLayerPerceptronEvaluator : OperatorBase {
|
---|
| 32 |
|
---|
| 33 | public MultiLayerPerceptronEvaluator()
|
---|
| 34 | : base() {
|
---|
| 35 | //Dataset infos
|
---|
| 36 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
| 37 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal allowed time offset for input variables", typeof(IntData), VariableKind.In));
|
---|
| 42 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal allowed time offset for input variables", typeof(IntData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Represent the model learned by the SVM", typeof(MultiLayerPerceptron), VariableKind.In));
|
---|
| 44 | AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | public override IOperation Apply(IScope scope) {
|
---|
| 49 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
| 50 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
|
---|
| 51 | var inputVariableNames = from x in inputVariables
|
---|
| 52 | select ((StringData)x).Data;
|
---|
| 53 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
[2985] | 54 | // int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
[2562] | 55 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
| 56 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
| 57 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
| 58 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
| 59 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
| 60 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
| 61 | MultiLayerPerceptron model = GetVariableValue<MultiLayerPerceptron>("MultiLayerPerceptron", scope, true);
|
---|
| 62 |
|
---|
[2985] | 63 | double[] targetVector;
|
---|
| 64 | double[,] inputMatrix;
|
---|
| 65 | MultiLayerPerceptronRegressionOperator.PrepareDataset(dataset, targetVariable, inputVariableNames, start, end, minTimeOffset, maxTimeOffset,
|
---|
| 66 | out inputMatrix, out targetVector);
|
---|
| 67 |
|
---|
| 68 | double[,] values = new double[targetVector.Length, 2];
|
---|
| 69 | for (int i = 0; i < targetVector.Length; i++) {
|
---|
[2562] | 70 | double[] output = new double[1];
|
---|
[2985] | 71 | double[] inputRow = new double[inputMatrix.GetLength(1)];
|
---|
| 72 | for (int c = 0; c < inputRow.Length; c++) {
|
---|
| 73 | inputRow[c] = inputMatrix[i, c];
|
---|
[2562] | 74 | }
|
---|
| 75 | alglib.mlpbase.multilayerperceptron p = model.Perceptron;
|
---|
| 76 | alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
|
---|
| 77 | model.Perceptron = p;
|
---|
[2985] | 78 | values[i, 0] = targetVector[i];
|
---|
[2562] | 79 | values[i, 1] = output[0];
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
|
---|
| 83 | return null;
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | }
|
---|