[9353] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11375] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9353] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Analysis.Statistics {
|
---|
[10019] | 27 | public static class SampleSizeDetermination {
|
---|
[9353] | 28 | /// <summary>
|
---|
[10016] | 29 | /// Determines for a given sample the required sample size as described in
|
---|
[11671] | 30 | /// Göran Kauermann, Helmut Küchenhoff: Stichproben: Methoden und praktische Umsetzung mit R, section 2.27.
|
---|
[9353] | 31 | /// </summary>
|
---|
| 32 | /// <param name="samples">The pilot sample.</param>
|
---|
| 33 | /// <param name="conf">Confidence Interval.</param>
|
---|
[10017] | 34 | /// <returns>Number of required samples for the given confidence interval. </returns>
|
---|
[10016] | 35 | public static int DetermineSampleSizeByEstimatingMean(double[] samples, double conf = 0.95) {
|
---|
[10017] | 36 | if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one.");
|
---|
[9353] | 37 |
|
---|
[10016] | 38 | var confInterval = samples.ConfidenceIntervals(0.95);
|
---|
| 39 | double e = (confInterval.Item2 - confInterval.Item1) / 2;
|
---|
[11699] | 40 | double s = samples.StandardDeviation();
|
---|
[10016] | 41 | double z = alglib.invnormaldistribution((conf + 1) / 2);
|
---|
| 42 | double n = samples.Count();
|
---|
| 43 |
|
---|
| 44 | double result = Math.Pow(s, 2) / ((Math.Pow(e, 2) / Math.Pow(z, 2)) + (Math.Pow(s, 2) / n));
|
---|
| 45 |
|
---|
[9353] | 46 | result = Math.Ceiling(result);
|
---|
| 47 | if (result > int.MaxValue)
|
---|
| 48 | return int.MaxValue;
|
---|
| 49 | else
|
---|
| 50 | return (int)result;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
[10017] | 53 | public static int DetermineSampleSizeByEstimatingMeanForLargeSampleSizes(double[] samples, double conf = 0.95) {
|
---|
| 54 | if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one.");
|
---|
| 55 |
|
---|
| 56 | var confInterval = samples.ConfidenceIntervals(0.95);
|
---|
| 57 | double e = (confInterval.Item2 - confInterval.Item1) / 2;
|
---|
[11699] | 58 | double s = samples.StandardDeviation();
|
---|
[10017] | 59 | double z = alglib.invnormaldistribution((conf + 1) / 2);
|
---|
| 60 |
|
---|
| 61 | double result = Math.Pow(z, 2) * (Math.Pow(s, 2) / Math.Pow(e, 2));
|
---|
| 62 |
|
---|
| 63 | result = Math.Ceiling(result);
|
---|
| 64 | if (result > int.MaxValue)
|
---|
| 65 | return int.MaxValue;
|
---|
| 66 | else
|
---|
| 67 | return (int)result;
|
---|
| 68 | }
|
---|
| 69 |
|
---|
[9353] | 70 | /// <summary>
|
---|
| 71 | /// Calculates Cohen's d.
|
---|
| 72 | /// </summary>
|
---|
| 73 | /// <returns>Cohen's d.
|
---|
| 74 | /// d = 0.2 means small effect
|
---|
| 75 | /// d = 0.5 means medium effect
|
---|
| 76 | /// d = 0.8 means big effect
|
---|
| 77 | /// According to Wikipedia this means: "A lower Cohen's d indicates a necessity of larger sample sizes, and vice versa."
|
---|
| 78 | /// </returns>
|
---|
| 79 | public static double CalculateCohensD(double[] d1, double[] d2) {
|
---|
| 80 | double x1, x2, s1, s2;
|
---|
| 81 |
|
---|
| 82 | x1 = d1.Average();
|
---|
| 83 | x2 = d2.Average();
|
---|
| 84 | s1 = d1.Variance();
|
---|
| 85 | s2 = d2.Variance();
|
---|
| 86 |
|
---|
[11692] | 87 | return Math.Abs(x1 - x2) / Math.Sqrt((s1 + s2) / 2);
|
---|
[9353] | 88 | }
|
---|
| 89 |
|
---|
| 90 | /// <summary>
|
---|
| 91 | /// Calculates Hedges' g.
|
---|
| 92 | /// Hedges' g works like Cohen's d but corrects for bias.
|
---|
| 93 | /// </summary>
|
---|
| 94 | /// <returns>Hedges' g</returns>
|
---|
| 95 | public static double CalculateHedgesG(double[] d1, double[] d2) {
|
---|
| 96 | double x1, x2, s1, s2, n1, n2, s, g, c;
|
---|
| 97 |
|
---|
| 98 | x1 = d1.Average();
|
---|
| 99 | x2 = d2.Average();
|
---|
| 100 | s1 = d1.Variance();
|
---|
| 101 | s2 = d2.Variance();
|
---|
| 102 | n1 = d1.Count();
|
---|
| 103 | n2 = d2.Count();
|
---|
| 104 |
|
---|
| 105 | s = Math.Sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2));
|
---|
[11692] | 106 | g = Math.Abs(x1 - x2) / s;
|
---|
[9353] | 107 | c = (1 - (3 / (4 * (n1 + n2) - 9))) * g;
|
---|
| 108 |
|
---|
| 109 | return c;
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 | }
|
---|