[11610] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Analysis.Statistics {
|
---|
| 28 | public static class NormalDistribution {
|
---|
| 29 | public static double[] Density(double[] x, double mean, double stdDev) {
|
---|
| 30 | double[] result = new double[x.Length];
|
---|
| 31 |
|
---|
| 32 | for (int i = 0; i < x.Length; i++) {
|
---|
| 33 | result[i] = (1.0 / (stdDev * Math.Sqrt(2.0 * Math.PI))) *
|
---|
| 34 | Math.Exp(-((Math.Pow(x[i] - mean, 2.0)) /
|
---|
| 35 | (2.0 * Math.Pow(stdDev, 2.0))));
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | return result;
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | // based on the idea from http://www.statmethods.net/graphs/density.html
|
---|
| 42 | public static List<Tuple<double, double>> Density(double[] x, int nrOfPoints, double stepWidth) {
|
---|
| 43 | double[] newX = new double[nrOfPoints];
|
---|
| 44 | double mean = x.Average();
|
---|
| 45 | double stdDev = x.StandardDeviation();
|
---|
| 46 | double margin = stepWidth * 2;
|
---|
| 47 |
|
---|
| 48 | double dataMin = x.Min() - margin;
|
---|
| 49 | double dataMax = x.Max() + margin;
|
---|
| 50 | double diff = (dataMax - dataMin) / nrOfPoints;
|
---|
| 51 | double cur = dataMin;
|
---|
| 52 | newX[0] = cur;
|
---|
| 53 | for (int i = 1; i < nrOfPoints; i++) {
|
---|
| 54 | cur += diff;
|
---|
| 55 | newX[i] = cur;
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | var y = Density(newX, mean, stdDev).Select(k => k * stepWidth * x.Length).ToList();
|
---|
| 59 |
|
---|
| 60 | var points = new List<Tuple<double, double>>();
|
---|
| 61 | for (int i = 0; i < newX.Length; i++) {
|
---|
| 62 | points.Add(new Tuple<double, double>(newX[i], y[i]));
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | return points;
|
---|
| 66 | }
|
---|
| 67 | }
|
---|
| 68 | }
|
---|