1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Analysis.Statistics {
|
---|
26 | public class LinearLeastSquaresFitting : IFitting {
|
---|
27 | public void Calculate(double[] dataPoints, out double p0, out double p1) {
|
---|
28 | var stdX = Enumerable.Range(0, dataPoints.Count()).Select(x => (double)x).ToArray();
|
---|
29 | Calculate(dataPoints, stdX, out p0, out p1);
|
---|
30 | }
|
---|
31 |
|
---|
32 | public void Calculate(double[] y, double[] x, out double p0, out double p1) {
|
---|
33 | if (y.Count() != x.Count()) {
|
---|
34 | throw new ArgumentException("The lenght of x and y needs do be equal. ");
|
---|
35 | }
|
---|
36 |
|
---|
37 | double sxy = 0.0;
|
---|
38 | double sxx = 0.0;
|
---|
39 | int n = y.Count();
|
---|
40 | double sy = y.Sum();
|
---|
41 | double sx = ((n - 1) * n) / 2.0;
|
---|
42 | double avgy = sy / n;
|
---|
43 | double avgx = sx / n;
|
---|
44 |
|
---|
45 | for (int i = 0; i < n; i++) {
|
---|
46 | sxy += x[i] * y[i];
|
---|
47 | sxx += x[i] * x[i];
|
---|
48 | }
|
---|
49 |
|
---|
50 | p0 = (sxy - (n * avgx * avgy)) / (sxx - (n * avgx * avgx));
|
---|
51 | p1 = avgy - p0 * avgx;
|
---|
52 | }
|
---|
53 |
|
---|
54 | public double CalculateError(double[] dataPoints, double p0, double p1) {
|
---|
55 | double r;
|
---|
56 | double avgy = dataPoints.Average();
|
---|
57 | double sstot = 0.0;
|
---|
58 | double sserr = 0.0;
|
---|
59 |
|
---|
60 | for (int i = 0; i < dataPoints.Count(); i++) {
|
---|
61 | double y = p0 * i + p1;
|
---|
62 | sstot += Math.Pow(dataPoints[i] - avgy, 2);
|
---|
63 | sserr += Math.Pow(dataPoints[i] - y, 2);
|
---|
64 | }
|
---|
65 |
|
---|
66 | r = 1.0 - (sserr / sstot);
|
---|
67 | return r;
|
---|
68 | }
|
---|
69 |
|
---|
70 | public DataRow CalculateFittedLine(double[] y, double[] x, string rowName) {
|
---|
71 | double k, d;
|
---|
72 | Calculate(y, x, out k, out d);
|
---|
73 |
|
---|
74 | DataRow newRow = new DataRow(rowName);
|
---|
75 | for (int i = 0; i < x.Count(); i++) {
|
---|
76 | newRow.Values.Add(k * x[i] + d);
|
---|
77 | }
|
---|
78 | return newRow;
|
---|
79 | }
|
---|
80 |
|
---|
81 | public DataRow CalculateFittedLine(double[] dataPoints, string rowName) {
|
---|
82 | DataRow newRow = new DataRow(rowName);
|
---|
83 | double c0, c1;
|
---|
84 | Calculate(dataPoints, out c0, out c1);
|
---|
85 | var stdX = Enumerable.Range(0, dataPoints.Count()).Select(x => (double)x).ToArray();
|
---|
86 |
|
---|
87 | for (int i = 0; i < stdX.Count(); i++) {
|
---|
88 | newRow.Values.Add(c0 * stdX[i] + c1);
|
---|
89 | }
|
---|
90 |
|
---|
91 | return newRow;
|
---|
92 | }
|
---|
93 |
|
---|
94 | public override string ToString() {
|
---|
95 | return "Linear Fitting";
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|