Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Analysis/3.3/PopulationDiversityAnalyzer.cs @ 4857

Last change on this file since 4857 was 4848, checked in by gkronber, 14 years ago

Reviewed classes HeatMap, HeatMapHistory, PopulationDiversityAnalyzer, DataTableHistory, !TSPPopulationDiversityAnalyzer and made minor changes. #1188

File size: 12.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Operators;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Analysis {
32  /// <summary>
33  /// An operator for analyzing the solution diversity in a population.
34  /// </summary>
35  [Item("PopulationDiversityAnalyzer", "An operator for analyzing the solution diversity in a population.")]
36  [StorableClass]
37  public abstract class PopulationDiversityAnalyzer<T> : SingleSuccessorOperator, IAnalyzer where T : class, IItem {
38    public LookupParameter<BoolValue> MaximizationParameter {
39      get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
40    }
41    public ScopeTreeLookupParameter<T> SolutionParameter {
42      get { return (ScopeTreeLookupParameter<T>)Parameters["Solution"]; }
43    }
44    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
45      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
46    }
47    public ValueLookupParameter<ResultCollection> ResultsParameter {
48      get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
49    }
50    public ValueParameter<BoolValue> StoreHistoryParameter {
51      get { return (ValueParameter<BoolValue>)Parameters["StoreHistory"]; }
52    }
53    public ValueParameter<IntValue> UpdateIntervalParameter {
54      get { return (ValueParameter<IntValue>)Parameters["UpdateInterval"]; }
55    }
56    public LookupParameter<IntValue> UpdateCounterParameter {
57      get { return (LookupParameter<IntValue>)Parameters["UpdateCounter"]; }
58    }
59
60    [StorableConstructor]
61    protected PopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { }
62    protected PopulationDiversityAnalyzer(PopulationDiversityAnalyzer<T> original, Cloner cloner) : base(original, cloner) { }
63    public PopulationDiversityAnalyzer()
64      : base() {
65      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem."));
66      Parameters.Add(new ScopeTreeLookupParameter<T>("Solution", "The solutions whose diversity should be analyzed."));
67      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the solutions which should be analyzed."));
68      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The result collection where the population diversity analysis results should be stored."));
69      Parameters.Add(new ValueParameter<BoolValue>("StoreHistory", "True if the history of the population diversity analysis should be stored.", new BoolValue(false)));
70      Parameters.Add(new ValueParameter<IntValue>("UpdateInterval", "The interval in which the population diversity analysis should be applied.", new IntValue(1)));
71      Parameters.Add(new LookupParameter<IntValue>("UpdateCounter", "The value which counts how many times the operator was called since the last update.", "PopulationDiversityAnalyzerUpdateCounter"));
72    }
73
74    public override IOperation Apply() {
75      int updateInterval = UpdateIntervalParameter.Value.Value;
76      IntValue updateCounter = UpdateCounterParameter.ActualValue;
77      // if counter does not yet exist then initialize it with update interval
78      // to make sure the solutions are analyzed on the first application of this operator
79      if (updateCounter == null) {
80        updateCounter = new IntValue(updateInterval);
81        UpdateCounterParameter.ActualValue = updateCounter;
82      } else updateCounter.Value++;
83
84      //analyze solutions only every 'updateInterval' times
85      if (updateCounter.Value == updateInterval) {
86        updateCounter.Value = 0;
87
88        bool max = MaximizationParameter.ActualValue.Value;
89        ItemArray<T> solutions = SolutionParameter.ActualValue;
90        ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
91        bool storeHistory = StoreHistoryParameter.Value.Value;
92        int count = solutions.Length;
93
94        if (count > 1) {
95          // sort solutions by quality
96          T[] sortedSolutions = null;
97          if (max)
98            sortedSolutions = solutions
99              .Select((x, index) => new { Solution = x, Quality = qualities[index] })
100              .OrderByDescending(x => x.Quality)
101              .Select(x => x.Solution)
102              .ToArray();
103          else
104            sortedSolutions = solutions
105              .Select((x, index) => new { Solution = x, Quality = qualities[index] })
106              .OrderBy(x => x.Quality)
107              .Select(x => x.Solution)
108              .ToArray();
109
110          // calculate solution similarities
111          double[,] similarities = CalculateSimilarities(sortedSolutions);
112
113          // calculate minimum, average and maximum similarities
114          double similarity;
115          double[] minSimilarities = new double[count];
116          double[] avgSimilarities = new double[count];
117          double[] maxSimilarities = new double[count];
118          for (int i = 0; i < count; i++) {
119            minSimilarities[i] = 1;
120            avgSimilarities[i] = 0;
121            maxSimilarities[i] = 0;
122            for (int j = 0; j < count; j++) {
123              if (i != j) {
124                similarity = similarities[i, j];
125                if (minSimilarities[i] > similarity) minSimilarities[i] = similarity;
126                avgSimilarities[i] += similarity;
127                if (maxSimilarities[i] < similarity) maxSimilarities[i] = similarity;
128              }
129            }
130            avgSimilarities[i] = avgSimilarities[i] / (count - 1);
131          }
132          double avgMinSimilarity = minSimilarities.Average();
133          double avgAvgSimilarity = avgSimilarities.Average();
134          double avgMaxSimilarity = maxSimilarities.Average();
135
136          // fetch results collection
137          ResultCollection results;
138          if (!ResultsParameter.ActualValue.ContainsKey("Population Diversity Analysis Results")) {
139            results = new ResultCollection();
140            ResultsParameter.ActualValue.Add(new Result("Population Diversity Analysis Results", results));
141          } else {
142            results = (ResultCollection)ResultsParameter.ActualValue["Population Diversity Analysis Results"].Value;
143          }
144
145          // store similarities
146          HeatMap similaritiesHeatMap = new HeatMap(similarities, "Solution Similarities", 0.0, 1.0);
147          if (!results.ContainsKey("Solution Similarities"))
148            results.Add(new Result("Solution Similarities", similaritiesHeatMap));
149          else
150            results["Solution Similarities"].Value = similaritiesHeatMap;
151
152          // store similarities history
153          if (storeHistory) {
154            if (!results.ContainsKey("Solution Similarities History")) {
155              HeatMapHistory history = new HeatMapHistory();
156              history.Add(similaritiesHeatMap);
157              results.Add(new Result("Solution Similarities History", history));
158            } else {
159              ((HeatMapHistory)results["Solution Similarities History"].Value).Add(similaritiesHeatMap);
160            }
161          }
162
163          // store average minimum, average and maximum similarity
164          if (!results.ContainsKey("Average Minimum Solution Similarity"))
165            results.Add(new Result("Average Minimum Solution Similarity", new DoubleValue(avgMinSimilarity)));
166          else
167            ((DoubleValue)results["Average Minimum Solution Similarity"].Value).Value = avgMinSimilarity;
168
169          if (!results.ContainsKey("Average Average Solution Similarity"))
170            results.Add(new Result("Average Average Solution Similarity", new DoubleValue(avgAvgSimilarity)));
171          else
172            ((DoubleValue)results["Average Average Solution Similarity"].Value).Value = avgAvgSimilarity;
173
174          if (!results.ContainsKey("Average Maximum Solution Similarity"))
175            results.Add(new Result("Average Maximum Solution Similarity", new DoubleValue(avgMaxSimilarity)));
176          else
177            ((DoubleValue)results["Average Maximum Solution Similarity"].Value).Value = avgMaxSimilarity;
178
179          // store average minimum, average and maximum solution similarity data table
180          DataTable minAvgMaxSimilarityDataTable;
181          if (!results.ContainsKey("Average Minimum/Average/Maximum Solution Similarity")) {
182            minAvgMaxSimilarityDataTable = new DataTable("Average Minimum/Average/Maximum Solution Similarity");
183            results.Add(new Result("Average Minimum/Average/Maximum Solution Similarity", minAvgMaxSimilarityDataTable));
184            minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Minimum Solution Similarity", null));
185            minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].VisualProperties.StartIndexZero = true;
186            minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Average Solution Similarity", null));
187            minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].VisualProperties.StartIndexZero = true;
188            minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Maximum Solution Similarity", null));
189            minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].VisualProperties.StartIndexZero = true;
190          } else {
191            minAvgMaxSimilarityDataTable = (DataTable)results["Average Minimum/Average/Maximum Solution Similarity"].Value;
192          }
193          minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].Values.Add(avgMinSimilarity);
194          minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].Values.Add(avgAvgSimilarity);
195          minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].Values.Add(avgMaxSimilarity);
196
197          // store minimum, average, maximum similarities data table
198          DataTable minAvgMaxSimilaritiesDataTable = new DataTable("Minimum/Average/Maximum Solution Similarities");
199          minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Minimum Solution Similarity", null, minSimilarities));
200          minAvgMaxSimilaritiesDataTable.Rows["Minimum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
201          minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Average Solution Similarity", null, avgSimilarities));
202          minAvgMaxSimilaritiesDataTable.Rows["Average Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
203          minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Maximum Solution Similarity", null, maxSimilarities));
204          minAvgMaxSimilaritiesDataTable.Rows["Maximum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
205          if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities")) {
206            results.Add(new Result("Minimum/Average/Maximum Solution Similarities", minAvgMaxSimilaritiesDataTable));
207          } else {
208            results["Minimum/Average/Maximum Solution Similarities"].Value = minAvgMaxSimilaritiesDataTable;
209          }
210
211          // store minimum, average, maximum similarities history
212          if (storeHistory) {
213            if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities History")) {
214              DataTableHistory history = new DataTableHistory();
215              history.Add(minAvgMaxSimilaritiesDataTable);
216              results.Add(new Result("Minimum/Average/Maximum Solution Similarities History", history));
217            } else {
218              ((DataTableHistory)results["Minimum/Average/Maximum Solution Similarities History"].Value).Add(minAvgMaxSimilaritiesDataTable);
219            }
220          }
221        }
222      }
223      return base.Apply();
224    }
225
226    protected abstract double[,] CalculateSimilarities(T[] solutions);
227  }
228}
Note: See TracBrowser for help on using the repository browser.