1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Evolutionary;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.PluginInfrastructure;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.SGA {
|
---|
34 | /// <summary>
|
---|
35 | /// A standard genetic algorithm.
|
---|
36 | /// </summary>
|
---|
37 | [Item("SGA", "A standard genetic algorithm.")]
|
---|
38 | [Creatable("Algorithms")]
|
---|
39 | public sealed class SGA : EngineAlgorithm {
|
---|
40 | [Storable]
|
---|
41 | private PopulationCreator populationCreator;
|
---|
42 | [Storable]
|
---|
43 | private SGAOperator sgaOperator;
|
---|
44 |
|
---|
45 | private ValueParameter<IntData> PopulationSizeParameter {
|
---|
46 | get { return (ValueParameter<IntData>)Parameters["PopulationSize"]; }
|
---|
47 | }
|
---|
48 | private ConstrainedValueParameter<ISelector> SelectorParameter {
|
---|
49 | get { return (ConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
|
---|
50 | }
|
---|
51 | private ConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
52 | get { return (ConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
|
---|
53 | }
|
---|
54 | private ConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
55 | get { return (ConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
|
---|
56 | }
|
---|
57 | private ValueParameter<IntData> ElitesParameter {
|
---|
58 | get { return (ValueParameter<IntData>)Parameters["Elites"]; }
|
---|
59 | }
|
---|
60 |
|
---|
61 | public override Type ProblemType {
|
---|
62 | get { return typeof(ISingleObjectiveProblem); }
|
---|
63 | }
|
---|
64 | public new ISingleObjectiveProblem Problem {
|
---|
65 | get { return (ISingleObjectiveProblem)base.Problem; }
|
---|
66 | set { base.Problem = value; }
|
---|
67 | }
|
---|
68 |
|
---|
69 | public SGA()
|
---|
70 | : base() {
|
---|
71 | Parameters.Add(new ValueParameter<IntData>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntData(0)));
|
---|
72 | Parameters.Add(new ValueParameter<BoolData>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolData(true)));
|
---|
73 | Parameters.Add(new ValueParameter<IntData>("PopulationSize", "The size of the population of solutions.", new IntData(100)));
|
---|
74 | Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
|
---|
75 | Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
|
---|
76 | Parameters.Add(new ValueParameter<DoubleData>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new DoubleData(0.05)));
|
---|
77 | Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
|
---|
78 | Parameters.Add(new ValueParameter<IntData>("Elites", "The numer of elite solutions which are kept in each generation.", new IntData(1)));
|
---|
79 | Parameters.Add(new ValueParameter<IntData>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntData(1000)));
|
---|
80 |
|
---|
81 | PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
|
---|
82 | ElitesParameter.ValueChanged += new EventHandler(ElitesParameter_ValueChanged);
|
---|
83 |
|
---|
84 | RandomCreator randomCreator = new RandomCreator();
|
---|
85 | populationCreator = new PopulationCreator();
|
---|
86 | sgaOperator = new SGAOperator();
|
---|
87 |
|
---|
88 | randomCreator.RandomParameter.ActualName = "Random";
|
---|
89 | randomCreator.SeedParameter.ActualName = "Seed";
|
---|
90 | randomCreator.SeedParameter.Value = null;
|
---|
91 | randomCreator.SetSeedRandomlyParameter.ActualName = "SetSeedRandomly";
|
---|
92 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
93 | randomCreator.Successor = populationCreator;
|
---|
94 |
|
---|
95 | populationCreator.PopulationSizeParameter.ActualName = "PopulationSize";
|
---|
96 | populationCreator.PopulationSizeParameter.Value = null;
|
---|
97 | populationCreator.Successor = sgaOperator;
|
---|
98 |
|
---|
99 | sgaOperator.SelectorParameter.ActualName = "Selector";
|
---|
100 | sgaOperator.CrossoverParameter.ActualName = "Crossover";
|
---|
101 | sgaOperator.ElitesParameter.ActualName = "Elites";
|
---|
102 | sgaOperator.MaximumGenerationsParameter.ActualName = "MaximumGenerations";
|
---|
103 | sgaOperator.MutatorParameter.ActualName = "Mutator";
|
---|
104 | sgaOperator.MutationProbabilityParameter.ActualName = "MutationProbability";
|
---|
105 | sgaOperator.RandomParameter.ActualName = "Random";
|
---|
106 | sgaOperator.ResultsParameter.ActualName = "Results";
|
---|
107 |
|
---|
108 | OperatorGraph.InitialOperator = randomCreator;
|
---|
109 |
|
---|
110 | var selectors = ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector));
|
---|
111 | foreach (ISelector selector in selectors) {
|
---|
112 | selector.CopySelected = new BoolData(true);
|
---|
113 | selector.NumberOfSelectedSubScopesParameter.Value = new IntData(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
|
---|
114 | if (selector is IStochasticOperator) ((IStochasticOperator)selector).RandomParameter.ActualName = "Random";
|
---|
115 | SelectorParameter.ValidValues.Add(selector);
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
120 | SGA clone = (SGA)base.Clone(cloner);
|
---|
121 | clone.populationCreator = (PopulationCreator)cloner.Clone(populationCreator);
|
---|
122 | clone.sgaOperator = (SGAOperator)cloner.Clone(sgaOperator);
|
---|
123 | return clone;
|
---|
124 | }
|
---|
125 |
|
---|
126 | private void ElitesParameter_ValueChanged(object sender, EventArgs e) {
|
---|
127 | foreach (ISelector selector in SelectorParameter.ValidValues)
|
---|
128 | selector.NumberOfSelectedSubScopesParameter.Value = new IntData(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
|
---|
129 | }
|
---|
130 | private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
|
---|
131 | foreach (ISelector selector in SelectorParameter.ValidValues)
|
---|
132 | selector.NumberOfSelectedSubScopesParameter.Value = new IntData(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
|
---|
133 | }
|
---|
134 |
|
---|
135 | protected override void DeregisterProblemEvents() {
|
---|
136 | Problem.MaximizationChanged -= new EventHandler(Problem_MaximizationChanged);
|
---|
137 | base.DeregisterProblemEvents();
|
---|
138 | }
|
---|
139 | protected override void RegisterProblemEvents() {
|
---|
140 | base.RegisterProblemEvents();
|
---|
141 | Problem.MaximizationChanged += new EventHandler(Problem_MaximizationChanged);
|
---|
142 | }
|
---|
143 |
|
---|
144 | protected override void OnProblemChanged() {
|
---|
145 | if (Problem.SolutionCreator is IStochasticOperator) ((IStochasticOperator)Problem.SolutionCreator).RandomParameter.ActualName = "Random";
|
---|
146 | if (Problem.Evaluator is IStochasticOperator) ((IStochasticOperator)Problem.Evaluator).RandomParameter.ActualName = "Random";
|
---|
147 | foreach (IStochasticOperator op in Problem.Operators.OfType<IStochasticOperator>())
|
---|
148 | op.RandomParameter.ActualName = "Random";
|
---|
149 |
|
---|
150 | populationCreator.SolutionCreatorParameter.Value = Problem.SolutionCreator;
|
---|
151 | populationCreator.EvaluatorParameter.Value = Problem.Evaluator;
|
---|
152 | sgaOperator.MaximizationParameter.Value = Problem.Maximization;
|
---|
153 | sgaOperator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
154 | sgaOperator.EvaluatorParameter.Value = Problem.Evaluator;
|
---|
155 |
|
---|
156 | foreach (ISingleObjectiveSelector op in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
157 | op.MaximizationParameter.Value = Problem.Maximization;
|
---|
158 | op.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
159 | }
|
---|
160 |
|
---|
161 | CrossoverParameter.ValidValues.Clear();
|
---|
162 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>())
|
---|
163 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
164 |
|
---|
165 | MutatorParameter.ValidValues.Clear();
|
---|
166 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>())
|
---|
167 | MutatorParameter.ValidValues.Add(mutator);
|
---|
168 |
|
---|
169 | base.OnProblemChanged();
|
---|
170 | }
|
---|
171 | protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
|
---|
172 | if (Problem.SolutionCreator is IStochasticOperator) ((IStochasticOperator)Problem.SolutionCreator).RandomParameter.ActualName = "Random";
|
---|
173 | populationCreator.SolutionCreatorParameter.Value = Problem.SolutionCreator;
|
---|
174 | base.Problem_SolutionCreatorChanged(sender, e);
|
---|
175 | }
|
---|
176 | protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
|
---|
177 | if (Problem.Evaluator is IStochasticOperator) ((IStochasticOperator)Problem.Evaluator).RandomParameter.ActualName = "Random";
|
---|
178 |
|
---|
179 | foreach (ISingleObjectiveSelector op in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
180 | op.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
181 | }
|
---|
182 |
|
---|
183 | populationCreator.EvaluatorParameter.Value = Problem.Evaluator;
|
---|
184 | sgaOperator.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
185 | sgaOperator.EvaluatorParameter.Value = Problem.Evaluator;
|
---|
186 | base.Problem_EvaluatorChanged(sender, e);
|
---|
187 | }
|
---|
188 | private void Problem_MaximizationChanged(object sender, EventArgs e) {
|
---|
189 | sgaOperator.MaximizationParameter.Value = Problem.Maximization;
|
---|
190 | foreach (ISingleObjectiveSelector op in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
191 | op.MaximizationParameter.Value = Problem.Maximization;
|
---|
192 | }
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|