1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Problems.Binary;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
32 | // This code is based off the publication
|
---|
33 | // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
|
---|
34 | // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
|
---|
35 | internal sealed class EvaluationTracker : BinaryProblem {
|
---|
36 | private readonly BinaryProblem problem;
|
---|
37 |
|
---|
38 | private int maxEvaluations;
|
---|
39 |
|
---|
40 | #region Properties
|
---|
41 | public double BestQuality {
|
---|
42 | get;
|
---|
43 | private set;
|
---|
44 | }
|
---|
45 |
|
---|
46 | public int Evaluations {
|
---|
47 | get;
|
---|
48 | private set;
|
---|
49 | }
|
---|
50 |
|
---|
51 | public int BestFoundOnEvaluation {
|
---|
52 | get;
|
---|
53 | private set;
|
---|
54 | }
|
---|
55 |
|
---|
56 | public BinaryVector BestSolution {
|
---|
57 | get;
|
---|
58 | private set;
|
---|
59 | }
|
---|
60 | #endregion
|
---|
61 |
|
---|
62 | private EvaluationTracker(EvaluationTracker original, Cloner cloner)
|
---|
63 | : base(original, cloner) {
|
---|
64 | problem = cloner.Clone(original.problem);
|
---|
65 | maxEvaluations = original.maxEvaluations;
|
---|
66 | BestQuality = original.BestQuality;
|
---|
67 | Evaluations = original.Evaluations;
|
---|
68 | BestFoundOnEvaluation = original.BestFoundOnEvaluation;
|
---|
69 | BestSolution = cloner.Clone(BestSolution);
|
---|
70 | }
|
---|
71 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
72 | return new EvaluationTracker(this, cloner);
|
---|
73 | }
|
---|
74 | public EvaluationTracker(BinaryProblem problem, int maxEvaluations) {
|
---|
75 | this.problem = problem;
|
---|
76 | this.maxEvaluations = maxEvaluations;
|
---|
77 | BestSolution = new BinaryVector(Length);
|
---|
78 | BestQuality = double.NaN;
|
---|
79 | Evaluations = 0;
|
---|
80 | BestFoundOnEvaluation = 0;
|
---|
81 |
|
---|
82 | if (Parameters.ContainsKey("Maximization")) Parameters.Remove("Maximization");
|
---|
83 | Parameters.Add(new FixedValueParameter<BoolValue>("Maximization", "Set to false if the problem should be minimized.", (BoolValue)new BoolValue(Maximization).AsReadOnly()) { Hidden = true });
|
---|
84 | }
|
---|
85 |
|
---|
86 | public override double Evaluate(BinaryVector vector, IRandom random) {
|
---|
87 | if (Evaluations >= maxEvaluations) throw new OperationCanceledException("Maximum Evaluation Limit Reached");
|
---|
88 | Evaluations++;
|
---|
89 | double fitness = problem.Evaluate(vector, random);
|
---|
90 | if (double.IsNaN(BestQuality) || problem.IsBetter(fitness, BestQuality)) {
|
---|
91 | BestQuality = fitness;
|
---|
92 | BestSolution = (BinaryVector)vector.Clone();
|
---|
93 | BestFoundOnEvaluation = Evaluations;
|
---|
94 | }
|
---|
95 | return fitness;
|
---|
96 | }
|
---|
97 |
|
---|
98 | public override int Length {
|
---|
99 | get { return problem.Length; }
|
---|
100 | set { problem.Length = value; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | public override bool Maximization {
|
---|
104 | get {
|
---|
105 | if (problem == null) return false;
|
---|
106 | return problem.Maximization;
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | public override bool IsBetter(double quality, double bestQuality) {
|
---|
111 | return problem.IsBetter(quality, bestQuality);
|
---|
112 | }
|
---|
113 |
|
---|
114 | }
|
---|
115 | }
|
---|