1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Analysis;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Operators;
|
---|
26 | using HeuristicLab.Optimization.Operators;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Selection;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm {
|
---|
32 | /// <summary>
|
---|
33 | /// An operator which represents the main loop of an offspring selection genetic algorithm.
|
---|
34 | /// </summary>
|
---|
35 | [Item("OffspringSelectionGeneticAlgorithmMainOperator", "An operator that represents the core of an offspring selection genetic algorithm.")]
|
---|
36 | [StorableClass]
|
---|
37 | public sealed class OffspringSelectionGeneticAlgorithmMainOperator : AlgorithmOperator {
|
---|
38 | #region Parameter properties
|
---|
39 | public ValueLookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | public ValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
43 | get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
44 | }
|
---|
45 | public SubScopesLookupParameter<DoubleValue> QualityParameter {
|
---|
46 | get { return (SubScopesLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
47 | }
|
---|
48 | public ValueLookupParameter<IOperator> SelectorParameter {
|
---|
49 | get { return (ValueLookupParameter<IOperator>)Parameters["Selector"]; }
|
---|
50 | }
|
---|
51 | public ValueLookupParameter<IOperator> CrossoverParameter {
|
---|
52 | get { return (ValueLookupParameter<IOperator>)Parameters["Crossover"]; }
|
---|
53 | }
|
---|
54 | public ValueLookupParameter<PercentValue> MutationProbabilityParameter {
|
---|
55 | get { return (ValueLookupParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
56 | }
|
---|
57 | public ValueLookupParameter<IOperator> MutatorParameter {
|
---|
58 | get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
|
---|
59 | }
|
---|
60 | public ValueLookupParameter<IOperator> EvaluatorParameter {
|
---|
61 | get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
|
---|
62 | }
|
---|
63 | public LookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
64 | get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
65 | }
|
---|
66 | public ValueLookupParameter<IntValue> ElitesParameter {
|
---|
67 | get { return (ValueLookupParameter<IntValue>)Parameters["Elites"]; }
|
---|
68 | }
|
---|
69 | public LookupParameter<DoubleValue> ComparisonFactorParameter {
|
---|
70 | get { return (LookupParameter<DoubleValue>)Parameters["ComparisonFactor"]; }
|
---|
71 | }
|
---|
72 | public LookupParameter<DoubleValue> CurrentSuccessRatioParameter {
|
---|
73 | get { return (LookupParameter<DoubleValue>)Parameters["CurrentSuccessRatio"]; }
|
---|
74 | }
|
---|
75 | public ValueLookupParameter<DoubleValue> SuccessRatioParameter {
|
---|
76 | get { return (ValueLookupParameter<DoubleValue>)Parameters["SuccessRatio"]; }
|
---|
77 | }
|
---|
78 | public LookupParameter<DoubleValue> SelectionPressureParameter {
|
---|
79 | get { return (LookupParameter<DoubleValue>)Parameters["SelectionPressure"]; }
|
---|
80 | }
|
---|
81 | public ValueLookupParameter<DoubleValue> MaximumSelectionPressureParameter {
|
---|
82 | get { return (ValueLookupParameter<DoubleValue>)Parameters["MaximumSelectionPressure"]; }
|
---|
83 | }
|
---|
84 | public ValueLookupParameter<BoolValue> OffspringSelectionBeforeMutationParameter {
|
---|
85 | get { return (ValueLookupParameter<BoolValue>)Parameters["OffspringSelectionBeforeMutation"]; }
|
---|
86 | }
|
---|
87 | #endregion
|
---|
88 |
|
---|
89 | [StorableConstructor]
|
---|
90 | private OffspringSelectionGeneticAlgorithmMainOperator(bool deserializing) : base() { }
|
---|
91 | public OffspringSelectionGeneticAlgorithmMainOperator()
|
---|
92 | : base() {
|
---|
93 | Initialize();
|
---|
94 | }
|
---|
95 |
|
---|
96 | private void Initialize() {
|
---|
97 | #region Create parameters
|
---|
98 | Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
|
---|
99 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
|
---|
100 | Parameters.Add(new SubScopesLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
|
---|
101 | Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
|
---|
102 | Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
|
---|
103 | Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
|
---|
104 | Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
|
---|
105 | Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions."));
|
---|
106 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
|
---|
107 | Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
|
---|
108 | Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
|
---|
109 | Parameters.Add(new LookupParameter<DoubleValue>("CurrentSuccessRatio", "The current success ratio."));
|
---|
110 | Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
|
---|
111 | Parameters.Add(new LookupParameter<DoubleValue>("SelectionPressure", "The actual selection pressure."));
|
---|
112 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
|
---|
113 | Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
|
---|
114 | #endregion
|
---|
115 |
|
---|
116 | #region Create operators
|
---|
117 | Placeholder selector = new Placeholder();
|
---|
118 | SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
|
---|
119 | ChildrenCreator childrenCreator = new ChildrenCreator();
|
---|
120 | UniformSubScopesProcessor uniformSubScopesProcessor = new UniformSubScopesProcessor();
|
---|
121 | Placeholder crossover = new Placeholder();
|
---|
122 | ConditionalBranch osBeforeMutationBranch = new ConditionalBranch();
|
---|
123 | Placeholder evaluator1 = new Placeholder();
|
---|
124 | IntCounter evaluationCounter1 = new IntCounter();
|
---|
125 | WeightedParentsQualityComparator qualityComparer1 = new WeightedParentsQualityComparator();
|
---|
126 | StochasticBranch mutationBranch1 = new StochasticBranch();
|
---|
127 | Placeholder mutator1 = new Placeholder();
|
---|
128 | Placeholder evaluator2 = new Placeholder();
|
---|
129 | IntCounter evaluationCounter2 = new IntCounter();
|
---|
130 | StochasticBranch mutationBranch2 = new StochasticBranch();
|
---|
131 | Placeholder mutator2 = new Placeholder();
|
---|
132 | Placeholder evaluator3 = new Placeholder();
|
---|
133 | IntCounter evaluationCounter3 = new IntCounter();
|
---|
134 | WeightedParentsQualityComparator qualityComparer2 = new WeightedParentsQualityComparator();
|
---|
135 | SubScopesRemover subScopesRemover = new SubScopesRemover();
|
---|
136 | ConditionalSelector conditionalSelector = new ConditionalSelector();
|
---|
137 | OffspringSelector offspringSelector = new OffspringSelector();
|
---|
138 | SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
|
---|
139 | BestSelector bestSelector = new BestSelector();
|
---|
140 | RightReducer rightReducer = new RightReducer();
|
---|
141 | MergingReducer mergingReducer = new MergingReducer();
|
---|
142 |
|
---|
143 | selector.Name = "Selector (placeholder)";
|
---|
144 | selector.OperatorParameter.ActualName = SelectorParameter.Name;
|
---|
145 |
|
---|
146 | childrenCreator.ParentsPerChild = new IntValue(2);
|
---|
147 |
|
---|
148 | crossover.Name = "Crossover (placeholder)";
|
---|
149 | crossover.OperatorParameter.ActualName = CrossoverParameter.Name;
|
---|
150 |
|
---|
151 | osBeforeMutationBranch.Name = "Apply OS before mutation?";
|
---|
152 | osBeforeMutationBranch.ConditionParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
|
---|
153 |
|
---|
154 | evaluator1.Name = "Evaluator (placeholder)";
|
---|
155 | evaluator1.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
156 |
|
---|
157 | evaluationCounter1.Name = "EvaluatedSolutions++";
|
---|
158 | evaluationCounter1.Increment = new IntValue(1);
|
---|
159 | evaluationCounter1.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
160 |
|
---|
161 | qualityComparer1.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
|
---|
162 | qualityComparer1.LeftSideParameter.ActualName = QualityParameter.Name;
|
---|
163 | qualityComparer1.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
164 | qualityComparer1.RightSideParameter.ActualName = QualityParameter.Name;
|
---|
165 | qualityComparer1.ResultParameter.ActualName = "SuccessfulOffspring";
|
---|
166 |
|
---|
167 | mutationBranch1.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
168 | mutationBranch1.RandomParameter.ActualName = RandomParameter.Name;
|
---|
169 |
|
---|
170 | mutator1.Name = "Mutator (placeholder)";
|
---|
171 | mutator1.OperatorParameter.ActualName = MutatorParameter.Name;
|
---|
172 |
|
---|
173 | evaluator2.Name = "Evaluator (placeholder)";
|
---|
174 | evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
175 |
|
---|
176 | evaluationCounter2.Name = "EvaluatedSolutions++";
|
---|
177 | evaluationCounter2.Increment = new IntValue(1);
|
---|
178 | evaluationCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
179 |
|
---|
180 | mutationBranch2.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
181 | mutationBranch2.RandomParameter.ActualName = RandomParameter.Name;
|
---|
182 |
|
---|
183 | mutator2.Name = "Mutator (placeholder)";
|
---|
184 | mutator2.OperatorParameter.ActualName = MutatorParameter.Name;
|
---|
185 |
|
---|
186 | evaluator3.Name = "Evaluator (placeholder)";
|
---|
187 | evaluator3.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
188 |
|
---|
189 | evaluationCounter3.Name = "EvaluatedSolutions++";
|
---|
190 | evaluationCounter3.Increment = new IntValue(1);
|
---|
191 | evaluationCounter3.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
192 |
|
---|
193 | qualityComparer2.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
|
---|
194 | qualityComparer2.LeftSideParameter.ActualName = QualityParameter.Name;
|
---|
195 | qualityComparer2.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
196 | qualityComparer2.RightSideParameter.ActualName = QualityParameter.Name;
|
---|
197 | qualityComparer2.ResultParameter.ActualName = "SuccessfulOffspring";
|
---|
198 |
|
---|
199 | subScopesRemover.RemoveAllSubScopes = true;
|
---|
200 |
|
---|
201 | conditionalSelector.CopySelected = new BoolValue(false);
|
---|
202 | conditionalSelector.ConditionParameter.ActualName = "SuccessfulOffspring";
|
---|
203 |
|
---|
204 | offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
|
---|
205 | offspringSelector.LuckyLosersParameter.ActualName = "OSLuckyLosers";
|
---|
206 | offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
|
---|
207 | offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
|
---|
208 | offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
|
---|
209 | offspringSelector.WinnersParameter.ActualName = "OSWinners";
|
---|
210 |
|
---|
211 | bestSelector.CopySelected = new BoolValue(false);
|
---|
212 | bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
213 | bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
|
---|
214 | bestSelector.QualityParameter.ActualName = QualityParameter.Name;
|
---|
215 | #endregion
|
---|
216 |
|
---|
217 | #region Create operator graph
|
---|
218 | OperatorGraph.InitialOperator = selector;
|
---|
219 | selector.Successor = subScopesProcessor1;
|
---|
220 | subScopesProcessor1.Operators.Add(new EmptyOperator());
|
---|
221 | subScopesProcessor1.Operators.Add(childrenCreator);
|
---|
222 | subScopesProcessor1.Successor = offspringSelector;
|
---|
223 | childrenCreator.Successor = uniformSubScopesProcessor;
|
---|
224 | uniformSubScopesProcessor.Operator = crossover;
|
---|
225 | uniformSubScopesProcessor.Successor = conditionalSelector;
|
---|
226 | crossover.Successor = osBeforeMutationBranch;
|
---|
227 | osBeforeMutationBranch.TrueBranch = evaluator1;
|
---|
228 | osBeforeMutationBranch.FalseBranch = mutationBranch2;
|
---|
229 | osBeforeMutationBranch.Successor = subScopesRemover;
|
---|
230 | evaluator1.Successor = evaluationCounter1;
|
---|
231 | evaluationCounter1.Successor = qualityComparer1;
|
---|
232 | qualityComparer1.Successor = mutationBranch1;
|
---|
233 | mutationBranch1.FirstBranch = mutator1;
|
---|
234 | mutationBranch1.SecondBranch = null;
|
---|
235 | mutationBranch1.Successor = null;
|
---|
236 | mutator1.Successor = evaluator2;
|
---|
237 | evaluator2.Successor = evaluationCounter2;
|
---|
238 | evaluationCounter2.Successor = null;
|
---|
239 | mutationBranch2.FirstBranch = mutator2;
|
---|
240 | mutationBranch2.SecondBranch = null;
|
---|
241 | mutationBranch2.Successor = evaluator3;
|
---|
242 | mutator2.Successor = null;
|
---|
243 | evaluator3.Successor = evaluationCounter3;
|
---|
244 | evaluationCounter3.Successor = qualityComparer2;
|
---|
245 | subScopesRemover.Successor = null;
|
---|
246 | offspringSelector.OffspringCreator = selector;
|
---|
247 | offspringSelector.Successor = subScopesProcessor2;
|
---|
248 | subScopesProcessor2.Operators.Add(bestSelector);
|
---|
249 | subScopesProcessor2.Operators.Add(new EmptyOperator());
|
---|
250 | subScopesProcessor2.Successor = mergingReducer;
|
---|
251 | bestSelector.Successor = rightReducer;
|
---|
252 | rightReducer.Successor = null;
|
---|
253 | mergingReducer.Successor = null;
|
---|
254 | #endregion
|
---|
255 | }
|
---|
256 | }
|
---|
257 | }
|
---|