1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Optimization.Operators;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.PluginInfrastructure;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.NSGA2 {
|
---|
37 | /// <summary>
|
---|
38 | /// The Nondominated Sorting Genetic Algorithm II was introduced in Deb et al. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.
|
---|
39 | /// </summary>
|
---|
40 | [Item("NSGA-II", "The Nondominated Sorting Genetic Algorithm II was introduced in Deb et al. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.")]
|
---|
41 | [Creatable("Algorithms")]
|
---|
42 | [StorableClass]
|
---|
43 | public class NSGA2 : EngineAlgorithm, IStorableContent {
|
---|
44 | public string Filename { get; set; }
|
---|
45 |
|
---|
46 | #region Problem Properties
|
---|
47 | public override Type ProblemType {
|
---|
48 | get { return typeof(IMultiObjectiveProblem); }
|
---|
49 | }
|
---|
50 | public new IMultiObjectiveProblem Problem {
|
---|
51 | get { return (IMultiObjectiveProblem)base.Problem; }
|
---|
52 | set { base.Problem = value; }
|
---|
53 | }
|
---|
54 | #endregion
|
---|
55 |
|
---|
56 | #region Parameter Properties
|
---|
57 | private ValueParameter<IntValue> SeedParameter {
|
---|
58 | get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
|
---|
59 | }
|
---|
60 | private ValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
61 | get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
|
---|
62 | }
|
---|
63 | private ValueParameter<IntValue> PopulationSizeParameter {
|
---|
64 | get { return (ValueParameter<IntValue>)Parameters["PopulationSize"]; }
|
---|
65 | }
|
---|
66 | private ConstrainedValueParameter<ISelector> SelectorParameter {
|
---|
67 | get { return (ConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
|
---|
68 | }
|
---|
69 | private ValueParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
70 | get { return (ValueParameter<PercentValue>)Parameters["CrossoverProbability"]; }
|
---|
71 | }
|
---|
72 | private ConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
73 | get { return (ConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
|
---|
74 | }
|
---|
75 | private ValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
76 | get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
77 | }
|
---|
78 | private OptionalConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
79 | get { return (OptionalConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
|
---|
80 | }
|
---|
81 | private ValueParameter<MultiAnalyzer> AnalyzerParameter {
|
---|
82 | get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
|
---|
83 | }
|
---|
84 | private ValueParameter<IntValue> MaximumGenerationsParameter {
|
---|
85 | get { return (ValueParameter<IntValue>)Parameters["MaximumGenerations"]; }
|
---|
86 | }
|
---|
87 | private ValueParameter<IntValue> SelectedParentsParameter {
|
---|
88 | get { return (ValueParameter<IntValue>)Parameters["SelectedParents"]; }
|
---|
89 | }
|
---|
90 | #endregion
|
---|
91 |
|
---|
92 | #region Properties
|
---|
93 | public IntValue Seed {
|
---|
94 | get { return SeedParameter.Value; }
|
---|
95 | set { SeedParameter.Value = value; }
|
---|
96 | }
|
---|
97 | public BoolValue SetSeedRandomly {
|
---|
98 | get { return SetSeedRandomlyParameter.Value; }
|
---|
99 | set { SetSeedRandomlyParameter.Value = value; }
|
---|
100 | }
|
---|
101 | public IntValue PopulationSize {
|
---|
102 | get { return PopulationSizeParameter.Value; }
|
---|
103 | set { PopulationSizeParameter.Value = value; }
|
---|
104 | }
|
---|
105 | public ISelector Selector {
|
---|
106 | get { return SelectorParameter.Value; }
|
---|
107 | set { SelectorParameter.Value = value; }
|
---|
108 | }
|
---|
109 | public PercentValue CrossoverProbability {
|
---|
110 | get { return CrossoverProbabilityParameter.Value; }
|
---|
111 | set { CrossoverProbabilityParameter.Value = value; }
|
---|
112 | }
|
---|
113 | public ICrossover Crossover {
|
---|
114 | get { return CrossoverParameter.Value; }
|
---|
115 | set { CrossoverParameter.Value = value; }
|
---|
116 | }
|
---|
117 | public PercentValue MutationProbability {
|
---|
118 | get { return MutationProbabilityParameter.Value; }
|
---|
119 | set { MutationProbabilityParameter.Value = value; }
|
---|
120 | }
|
---|
121 | public IManipulator Mutator {
|
---|
122 | get { return MutatorParameter.Value; }
|
---|
123 | set { MutatorParameter.Value = value; }
|
---|
124 | }
|
---|
125 | public MultiAnalyzer Analyzer {
|
---|
126 | get { return AnalyzerParameter.Value; }
|
---|
127 | set { AnalyzerParameter.Value = value; }
|
---|
128 | }
|
---|
129 | public IntValue MaximumGenerations {
|
---|
130 | get { return MaximumGenerationsParameter.Value; }
|
---|
131 | set { MaximumGenerationsParameter.Value = value; }
|
---|
132 | }
|
---|
133 | public IntValue SelectedParents {
|
---|
134 | get { return SelectedParentsParameter.Value; }
|
---|
135 | set { SelectedParentsParameter.Value = value; }
|
---|
136 | }
|
---|
137 | private RandomCreator RandomCreator {
|
---|
138 | get { return (RandomCreator)OperatorGraph.InitialOperator; }
|
---|
139 | }
|
---|
140 | private SolutionsCreator SolutionsCreator {
|
---|
141 | get { return (SolutionsCreator)RandomCreator.Successor; }
|
---|
142 | }
|
---|
143 | private RankAndCrowdingSorter RankAndCrowdingSorter {
|
---|
144 | get { return (RankAndCrowdingSorter)((SubScopesCounter)SolutionsCreator.Successor).Successor; }
|
---|
145 | }
|
---|
146 | private NSGA2MainLoop MainLoop {
|
---|
147 | get { return FindMainLoop(RankAndCrowdingSorter.Successor); }
|
---|
148 | }
|
---|
149 | #endregion
|
---|
150 |
|
---|
151 | [Storable]
|
---|
152 | private RankBasedParetoFrontAnalyzer paretoFrontAnalyzer;
|
---|
153 |
|
---|
154 | [StorableConstructor]
|
---|
155 | protected NSGA2(bool deserializing) : base(deserializing) { }
|
---|
156 | protected NSGA2(NSGA2 original, Cloner cloner)
|
---|
157 | : base(original, cloner) {
|
---|
158 | paretoFrontAnalyzer = (RankBasedParetoFrontAnalyzer)cloner.Clone(original.paretoFrontAnalyzer);
|
---|
159 | AttachEventHandlers();
|
---|
160 | }
|
---|
161 | public NSGA2() {
|
---|
162 | Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
163 | Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
164 | Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
|
---|
165 | Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
|
---|
166 | Parameters.Add(new ValueParameter<PercentValue>("CrossoverProbability", "The probability that the crossover operator is applied on two parents.", new PercentValue(0.9)));
|
---|
167 | Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
|
---|
168 | Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
|
---|
169 | Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
|
---|
170 | Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
|
---|
171 | Parameters.Add(new ValueParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000)));
|
---|
172 | Parameters.Add(new ValueParameter<IntValue>("SelectedParents", "Each two parents form a new child, typically this value should be twice the population size, but because the NSGA-II is maximally elitist it can be any multiple of 2 greater than 0.", new IntValue(200)));
|
---|
173 |
|
---|
174 | RandomCreator randomCreator = new RandomCreator();
|
---|
175 | SolutionsCreator solutionsCreator = new SolutionsCreator();
|
---|
176 | SubScopesCounter subScopesCounter = new SubScopesCounter();
|
---|
177 | RankAndCrowdingSorter rankAndCrowdingSorter = new RankAndCrowdingSorter();
|
---|
178 | ResultsCollector resultsCollector = new ResultsCollector();
|
---|
179 | NSGA2MainLoop mainLoop = new NSGA2MainLoop();
|
---|
180 |
|
---|
181 | OperatorGraph.InitialOperator = randomCreator;
|
---|
182 |
|
---|
183 | randomCreator.RandomParameter.ActualName = "Random";
|
---|
184 | randomCreator.SeedParameter.ActualName = SeedParameter.Name;
|
---|
185 | randomCreator.SeedParameter.Value = null;
|
---|
186 | randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
|
---|
187 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
188 | randomCreator.Successor = solutionsCreator;
|
---|
189 |
|
---|
190 | solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
|
---|
191 | solutionsCreator.Successor = subScopesCounter;
|
---|
192 |
|
---|
193 | subScopesCounter.Name = "Initialize EvaluatedSolutions";
|
---|
194 | subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
|
---|
195 | subScopesCounter.Successor = rankAndCrowdingSorter;
|
---|
196 |
|
---|
197 | rankAndCrowdingSorter.CrowdingDistanceParameter.ActualName = "CrowdingDistance";
|
---|
198 | rankAndCrowdingSorter.RankParameter.ActualName = "Rank";
|
---|
199 | rankAndCrowdingSorter.Successor = resultsCollector;
|
---|
200 |
|
---|
201 | resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
|
---|
202 | resultsCollector.ResultsParameter.ActualName = "Results";
|
---|
203 | resultsCollector.Successor = mainLoop;
|
---|
204 |
|
---|
205 | mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
|
---|
206 | mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
|
---|
207 | mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
|
---|
208 | mainLoop.CrossoverProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name;
|
---|
209 | mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name;
|
---|
210 | mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
|
---|
211 | mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
212 | mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
|
---|
213 | mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
|
---|
214 | mainLoop.ResultsParameter.ActualName = "Results";
|
---|
215 | mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
|
---|
216 |
|
---|
217 | foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is ISingleObjectiveSelector)).OrderBy(x => x.Name))
|
---|
218 | SelectorParameter.ValidValues.Add(selector);
|
---|
219 | ISelector tournamentSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("CrowdedTournamentSelector"));
|
---|
220 | if (tournamentSelector != null) SelectorParameter.Value = tournamentSelector;
|
---|
221 |
|
---|
222 | ParameterizeSelectors();
|
---|
223 |
|
---|
224 | paretoFrontAnalyzer = new RankBasedParetoFrontAnalyzer();
|
---|
225 | paretoFrontAnalyzer.RankParameter.ActualName = "Rank";
|
---|
226 | paretoFrontAnalyzer.RankParameter.Depth = 1;
|
---|
227 | paretoFrontAnalyzer.ResultsParameter.ActualName = "Results";
|
---|
228 | ParameterizeAnalyzers();
|
---|
229 | UpdateAnalyzers();
|
---|
230 |
|
---|
231 | AttachEventHandlers();
|
---|
232 | }
|
---|
233 |
|
---|
234 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
235 | return new NSGA2(this, cloner);
|
---|
236 | }
|
---|
237 |
|
---|
238 | #region Events
|
---|
239 | protected override void OnProblemChanged() {
|
---|
240 | ParameterizeStochasticOperator(Problem.SolutionCreator);
|
---|
241 | ParameterizeStochasticOperator(Problem.Evaluator);
|
---|
242 | foreach (IOperator op in Problem.Operators) ParameterizeStochasticOperator(op);
|
---|
243 | ParameterizeSolutionsCreator();
|
---|
244 | ParameterizeRankAndCrowdingSorter();
|
---|
245 | ParameterizeMainLoop();
|
---|
246 | ParameterizeSelectors();
|
---|
247 | ParameterizeAnalyzers();
|
---|
248 | ParameterizeIterationBasedOperators();
|
---|
249 | UpdateCrossovers();
|
---|
250 | UpdateMutators();
|
---|
251 | UpdateAnalyzers();
|
---|
252 | Problem.Evaluator.QualitiesParameter.ActualNameChanged += new EventHandler(Evaluator_QualitiesParameter_ActualNameChanged);
|
---|
253 | base.OnProblemChanged();
|
---|
254 | }
|
---|
255 | protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
|
---|
256 | ParameterizeStochasticOperator(Problem.SolutionCreator);
|
---|
257 | ParameterizeSolutionsCreator();
|
---|
258 | base.Problem_SolutionCreatorChanged(sender, e);
|
---|
259 | }
|
---|
260 | protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
|
---|
261 | ParameterizeStochasticOperator(Problem.Evaluator);
|
---|
262 | ParameterizeSolutionsCreator();
|
---|
263 | ParameterizeRankAndCrowdingSorter();
|
---|
264 | ParameterizeMainLoop();
|
---|
265 | ParameterizeSelectors();
|
---|
266 | ParameterizeAnalyzers();
|
---|
267 | Problem.Evaluator.QualitiesParameter.ActualNameChanged += new EventHandler(Evaluator_QualitiesParameter_ActualNameChanged);
|
---|
268 | base.Problem_EvaluatorChanged(sender, e);
|
---|
269 | }
|
---|
270 | protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
|
---|
271 | foreach (IOperator op in Problem.Operators) ParameterizeStochasticOperator(op);
|
---|
272 | ParameterizeIterationBasedOperators();
|
---|
273 | UpdateCrossovers();
|
---|
274 | UpdateMutators();
|
---|
275 | UpdateAnalyzers();
|
---|
276 | base.Problem_OperatorsChanged(sender, e);
|
---|
277 | }
|
---|
278 | protected override void Problem_Reset(object sender, EventArgs e) {
|
---|
279 | base.Problem_Reset(sender, e);
|
---|
280 | }
|
---|
281 | private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
|
---|
282 | PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
|
---|
283 | ParameterizeSelectors();
|
---|
284 | }
|
---|
285 | private void PopulationSize_ValueChanged(object sender, EventArgs e) {
|
---|
286 | ParameterizeSelectors();
|
---|
287 | }
|
---|
288 | private void Evaluator_QualitiesParameter_ActualNameChanged(object sender, EventArgs e) {
|
---|
289 | ParameterizeRankAndCrowdingSorter();
|
---|
290 | ParameterizeMainLoop();
|
---|
291 | ParameterizeSelectors();
|
---|
292 | ParameterizeAnalyzers();
|
---|
293 | }
|
---|
294 | private void SelectedParentsParameter_ValueChanged(object sender, EventArgs e) {
|
---|
295 | SelectedParents.ValueChanged += new EventHandler(SelectedParents_ValueChanged);
|
---|
296 | SelectedParents_ValueChanged(null, EventArgs.Empty);
|
---|
297 | }
|
---|
298 | private void SelectedParents_ValueChanged(object sender, EventArgs e) {
|
---|
299 | if (SelectedParents.Value < 2) SelectedParents.Value = 2;
|
---|
300 | else if (SelectedParents.Value % 2 != 0) {
|
---|
301 | SelectedParents.Value = SelectedParents.Value + 1;
|
---|
302 | }
|
---|
303 | }
|
---|
304 | #endregion
|
---|
305 |
|
---|
306 | #region Helpers
|
---|
307 | [StorableHook(HookType.AfterDeserialization)]
|
---|
308 | private void AttachEventHandlers() {
|
---|
309 | PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
|
---|
310 | PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
|
---|
311 | SelectedParentsParameter.ValueChanged += new EventHandler(SelectedParentsParameter_ValueChanged);
|
---|
312 | SelectedParents.ValueChanged += new EventHandler(SelectedParents_ValueChanged);
|
---|
313 | if (Problem != null) {
|
---|
314 | Problem.Evaluator.QualitiesParameter.ActualNameChanged += new EventHandler(Evaluator_QualitiesParameter_ActualNameChanged);
|
---|
315 | }
|
---|
316 | }
|
---|
317 | private void ParameterizeSolutionsCreator() {
|
---|
318 | SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
|
---|
319 | SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
|
---|
320 | }
|
---|
321 | private void ParameterizeRankAndCrowdingSorter() {
|
---|
322 | RankAndCrowdingSorter.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
323 | RankAndCrowdingSorter.QualitiesParameter.ActualName = Problem.Evaluator.QualitiesParameter.ActualName;
|
---|
324 | }
|
---|
325 | private void ParameterizeMainLoop() {
|
---|
326 | MainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
|
---|
327 | MainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
328 | MainLoop.QualitiesParameter.ActualName = Problem.Evaluator.QualitiesParameter.ActualName;
|
---|
329 | }
|
---|
330 | private void ParameterizeStochasticOperator(IOperator op) {
|
---|
331 | if (op is IStochasticOperator)
|
---|
332 | ((IStochasticOperator)op).RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
|
---|
333 | }
|
---|
334 | private void ParameterizeSelectors() {
|
---|
335 | foreach (ISelector selector in SelectorParameter.ValidValues) {
|
---|
336 | selector.CopySelected = new BoolValue(true);
|
---|
337 | selector.NumberOfSelectedSubScopesParameter.ActualName = SelectedParentsParameter.Name;
|
---|
338 | ParameterizeStochasticOperator(selector);
|
---|
339 | }
|
---|
340 | if (Problem != null) {
|
---|
341 | foreach (IMultiObjectiveSelector selector in SelectorParameter.ValidValues.OfType<IMultiObjectiveSelector>()) {
|
---|
342 | selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
343 | selector.QualitiesParameter.ActualName = Problem.Evaluator.QualitiesParameter.ActualName;
|
---|
344 | }
|
---|
345 | }
|
---|
346 | }
|
---|
347 | private void ParameterizeAnalyzers() {
|
---|
348 | if (Problem != null) {
|
---|
349 | paretoFrontAnalyzer.QualitiesParameter.ActualName = Problem.Evaluator.QualitiesParameter.ActualName;
|
---|
350 | paretoFrontAnalyzer.QualitiesParameter.Depth = 1;
|
---|
351 | }
|
---|
352 | }
|
---|
353 | private void ParameterizeIterationBasedOperators() {
|
---|
354 | if (Problem != null) {
|
---|
355 | foreach (IIterationBasedOperator op in Problem.Operators.OfType<IIterationBasedOperator>()) {
|
---|
356 | op.IterationsParameter.ActualName = "Generations";
|
---|
357 | op.MaximumIterationsParameter.ActualName = "MaximumGenerations";
|
---|
358 | }
|
---|
359 | }
|
---|
360 | }
|
---|
361 | private void UpdateCrossovers() {
|
---|
362 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
363 | CrossoverParameter.ValidValues.Clear();
|
---|
364 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
365 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
366 | if (oldCrossover != null) {
|
---|
367 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
368 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
369 | }
|
---|
370 | }
|
---|
371 | private void UpdateMutators() {
|
---|
372 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
373 | MutatorParameter.ValidValues.Clear();
|
---|
374 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
375 | MutatorParameter.ValidValues.Add(mutator);
|
---|
376 | if (oldMutator != null) {
|
---|
377 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
378 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
379 | }
|
---|
380 | }
|
---|
381 | private void UpdateAnalyzers() {
|
---|
382 | Analyzer.Operators.Clear();
|
---|
383 | if (Problem != null) {
|
---|
384 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
385 | foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
386 | param.Depth = 1;
|
---|
387 | Analyzer.Operators.Add(analyzer);
|
---|
388 | }
|
---|
389 | }
|
---|
390 | Analyzer.Operators.Add(paretoFrontAnalyzer);
|
---|
391 | }
|
---|
392 | private NSGA2MainLoop FindMainLoop(IOperator start) {
|
---|
393 | IOperator mainLoop = start;
|
---|
394 | while (mainLoop != null && !(mainLoop is NSGA2MainLoop))
|
---|
395 | mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
|
---|
396 | if (mainLoop == null) return null;
|
---|
397 | else return (NSGA2MainLoop)mainLoop;
|
---|
398 | }
|
---|
399 | #endregion
|
---|
400 | }
|
---|
401 | }
|
---|